1
|
Evidence for a bigenic chromatin subdomain in regulation of the fetal-to-adult hemoglobin switch. Mol Cell Biol 2008; 29:1635-48. [PMID: 19114559 DOI: 10.1128/mcb.01735-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During development, human beta-globin locus regulation undergoes two critical switches, the embryonic-to-fetal and fetal-to-adult hemoglobin switches. To define the role of the fetal (A)gamma-globin promoter in switching, human beta-globin-YAC transgenic mice were produced with the (A)gamma-globin promoter replaced by the erythroid porphobilinogen deaminase (PBGD) promoter (PBGD(A)gamma-YAC). Activation of the stage-independent PBGD(A)gamma-globin strikingly stimulated native (G)gamma-globin expression at the fetal and adult stages, identifying a fetal gene pair or bigenic cooperative mechanism. This impaired fetal silencing severely suppressed both delta- and beta-globin expression in PBGD(A)gamma-YAC mice from fetal to neonatal stages and altered kinetics and delayed switching of adult beta-globin. This regulation evokes the two human globin switching patterns in the mouse. Both patterns of DNA demethylation and chromatin immunoprecipitation analysis correlated with gene activation and open chromatin. Locus control region (LCR) interactions detected by chromosome conformation capture revealed distinct spatial fetal and adult LCR bigenic subdomains. Since both intact fetal promoters are critical regulators of fetal silencing at the adult stage, we concluded that fetal genes are controlled as a bigenic subdomain rather than a gene-autonomous mechanism. Our study also provides evidence for LCR complex interaction with spatial fetal or adult bigenic functional subdomains as a niche for transcriptional activation and hemoglobin switching.
Collapse
|
2
|
Hug BA, Wesselschmidt RL, Fiering S, Bender MA, Epner E, Groudine M, Ley TJ. Analysis of mice containing a targeted deletion of beta-globin locus control region 5' hypersensitive site 3. Mol Cell Biol 1996; 16:2906-12. [PMID: 8649401 PMCID: PMC231284 DOI: 10.1128/mcb.16.6.2906] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To examine the function of murine beta-globin locus region (LCR) 5' hypersensitive site 3 (HS3) in its native chromosomal context, we deleted this site from the mouse germ line by using homologous recombination techniques. Previous experiments with human 5' HS3 in transgenic models suggested that this site independently contains at least 50% of total LCR activity and that it interacts preferentially with the human gamma-globin genes in embryonic erythroid cells. However, in this study, we demonstrate that deletion of murine 5' HS3 reduces expression of the linked embryonic epsilon y- and beta H 1-globin genes only minimally in yolk sac-derived erythroid cells and reduces output of the linked adult beta (beta major plus beta minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-neo cassette was left within the HS3 region of the LCR, a much more severe phenotype was observed at all developmental stages, suggesting that PGK-neo interferes with LCR activity when it is retained within the LCR. Collectively, these results suggest that murine 5' HS3 is not required for globin gene switching; importantly, however, it is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult erythrocytes.
Collapse
Affiliation(s)
- B A Hug
- Department of Internal Medicine, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
McCune SL, Reilly MP, Chomo MJ, Asakura T, Townes TM. Recombinant human hemoglobins designed for gene therapy of sickle cell disease. Proc Natl Acad Sci U S A 1994; 91:9852-6. [PMID: 7937904 PMCID: PMC44915 DOI: 10.1073/pnas.91.21.9852] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two human hemoglobins designed to inhibit the polymerization of sickle hemoglobin (Hb S; alpha 2 beta S2) have been produced. Mutations that disrupt the ability of Hb S to form polymers were introduced into the normal human beta-globin gene by site-specific mutagenesis. These mutations affect the axial and lateral contacts in the sickle fiber. The recombinant hemoglobin designated anti-sickling hemoglobin 1 (Hb AS1) contains the mutations beta 22 glutamic acid to alanine and beta 80 asparagine to lysine. Hb AS2 has the same beta 22 glutamic acid to alanine mutation combined with beta 87 threonine to glutamine. Human alpha- and beta AS-globin genes were separately fused downstream of beta-globin locus control region sequences and these constructs were coinjected into fertilized mouse eggs. Transgenic mouse lines that synthesize high levels of each anti-sickling hemoglobin were established and anti-sickling hemoglobins were purified from hemolysates and characterized. Both AS hemoglobins bind oxygen cooperatively and the oxygen affinities of these molecules are in the normal range. Delay time experiments demonstrate that Hb AS2 is a potent inhibitor of Hb S polymerization; therefore, locus control region beta AS2-globin gene constructs may be suitable for future gene therapy of sickle cell disease.
Collapse
Affiliation(s)
- S L McCune
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham 35294
| | | | | | | | | |
Collapse
|
4
|
Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells. Mol Cell Biol 1994. [PMID: 8264645 DOI: 10.1128/mcb.14.1.777] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiac myocytes undergo a major genetic switch within the first week of postnatal development, when cell division ceases terminally and many cardiac genes are either activated or silenced. We have developed stage-specific cardiocyte cultures to analyze transcriptional control of the rat atrial natriuretic factor (ANF) gene to identify the mechanisms underlying tissue-specific and developmental regulation of this gene in the heart. The first 700 bp of ANF flanking sequences was sufficient for cardiac muscle- and stage-specific expression in both atrial and ventricular myocytes, and a cardiac muscle-specific enhancer was localized between -136 and -700 bp. Deletion of this enhancer markedly reduced promoter activity in cardiac myocytes and derepressed ANF promoter activity in nonexpressing cells. Two distinct domains of the enhancer appeared to contribute differentially to cardiac specificity depending on the differentiation stage of the myocytes. DNase I footprinting of the enhancer domain active in differentiated cells revealed four putative regulatory elements including an A+T-rich region and a CArG element. Deletion mutagenesis and promoter reconstitution assays revealed an important role for the CArG-containing element exclusively in cardiac cells, where its activity was switched on in differentiated myocytes. Transcriptional activity of the ANF-CArG box correlated with the presence of a cardiac- and stage-specific DNA-binding complex which was not recognized by the c-fos serum response element. Thus, the use of this in vitro model system representing stage-specific cardiac development unraveled the presence of different regulatory mechanisms for transcription of the ANF gene during cardiac differentiation and may be useful for studying the regulatory pathways of other genes that undergo switching during cardiac myogenesis.
Collapse
|
5
|
Argentin S, Ardati A, Tremblay S, Lihrmann I, Robitaille L, Drouin J, Nemer M. Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells. Mol Cell Biol 1994; 14:777-90. [PMID: 8264645 PMCID: PMC358426 DOI: 10.1128/mcb.14.1.777-790.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cardiac myocytes undergo a major genetic switch within the first week of postnatal development, when cell division ceases terminally and many cardiac genes are either activated or silenced. We have developed stage-specific cardiocyte cultures to analyze transcriptional control of the rat atrial natriuretic factor (ANF) gene to identify the mechanisms underlying tissue-specific and developmental regulation of this gene in the heart. The first 700 bp of ANF flanking sequences was sufficient for cardiac muscle- and stage-specific expression in both atrial and ventricular myocytes, and a cardiac muscle-specific enhancer was localized between -136 and -700 bp. Deletion of this enhancer markedly reduced promoter activity in cardiac myocytes and derepressed ANF promoter activity in nonexpressing cells. Two distinct domains of the enhancer appeared to contribute differentially to cardiac specificity depending on the differentiation stage of the myocytes. DNase I footprinting of the enhancer domain active in differentiated cells revealed four putative regulatory elements including an A+T-rich region and a CArG element. Deletion mutagenesis and promoter reconstitution assays revealed an important role for the CArG-containing element exclusively in cardiac cells, where its activity was switched on in differentiated myocytes. Transcriptional activity of the ANF-CArG box correlated with the presence of a cardiac- and stage-specific DNA-binding complex which was not recognized by the c-fos serum response element. Thus, the use of this in vitro model system representing stage-specific cardiac development unraveled the presence of different regulatory mechanisms for transcription of the ANF gene during cardiac differentiation and may be useful for studying the regulatory pathways of other genes that undergo switching during cardiac myogenesis.
Collapse
Affiliation(s)
- S Argentin
- Institut de recherches cliniques de Montréal, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Anderson KP, Lloyd JA, Ponce E, Crable SC, Neumann JC, Lingrel JB. Regulated expression of the human beta globin gene in transgenic mice requires an upstream globin or nonglobin promoter. Mol Biol Cell 1993; 4:1077-85. [PMID: 8298193 PMCID: PMC275740 DOI: 10.1091/mbc.4.10.1077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transgenic mice have been used extensively to study elements governing the erythroid-specific developmental switch from human fetal gamma to human adult beta globin. Previous work demonstrated that a small construct composed of hypersensitive site 2 (HS2) of the locus control region (LCR) linked to the gamma and beta globin genes (HS2-gamma-beta) is sufficient for correct tissue and temporal expression of these genes, whereas HS2-beta alone is inappropriately expressed in the embryo. Two models, which are not mutually exclusive, have been proposed to explain these results and those of other constructs in transgenic mice. One model emphasizes the conserved polarity in the globin locus and suggests a distance effect whereby the beta globin gene must be removed from the LCR/HS2 to prevent an early and incorrect activation of this gene in the embryonic compartment. A second hypothesis proposes a competition between the gamma and beta globin gene promoters for interaction with the LCR/HS2. The active gamma globin gene promoter positioned between the LCR/HS2 and the beta globin gene thereby interacts with the HS2 elements early in erythroid development and is expressed until a change in putative stage-specific nuclear factors makes an interaction with the adult beta globin gene more favorable. In an effort to test the competition model, a construct has been prepared in which a small deletion was produced in the promoter region of the gamma globin gene while in the context of the HS2-gamma-beta plasmid. Analysis of this construct in transgenic mice reveals a constitutive unregulated expression of the human beta globin gene during erythroid development. To determine if this competition effect is specific for globin genes, a heterologous reporter gene has been substituted for the gamma globin gene in the construct HS2-gamma-beta. In this case, the beta globin gene exhibits correct developmental expression. This data is consistent with a model in which transcription from a promoter upstream of the beta globin gene in some manner protects this adult gene from activation by the LCR/HS2 during early development.
Collapse
Affiliation(s)
- K P Anderson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Ohio 45267-0524
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.
Collapse
|
8
|
Nonsense codons in human beta-globin mRNA result in the production of mRNA degradation products. Mol Cell Biol 1992. [PMID: 1545796 DOI: 10.1128/mcb.12.3.1149] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human beta zero-thalassemic beta-globin genes harboring either a frameshift or a nonsense mutation that results in the premature termination of beta-globin mRNA translation have been previously introduced into the germ line of mice (S.-K. Lim, J.J. Mullins, C.-M. Chen, K. Gross, and L.E. Maquat, EMBO J. 8:2613-2619, 1989). Each transgene produces properly processed albeit abnormally unstable mRNA as well as several smaller RNAs in erythroid cells. These smaller RNAs are detected only in the cytoplasm and, relative to mRNA, are longer-lived and are missing sequences from either exon I or exons I and II. In this communication, we show by using genetics and S1 nuclease transcript mapping that the premature termination of beta-globin mRNA translation is mechanistically required for the abnormal RNA metabolism. We also provide evidence that generation of the smaller RNAs is a cytoplasmic process: the 5' ends of intron 1-containing pre-mRNAs were normal, the rates of removal of introns 1 and 2 were normal, and studies inhibiting RNA synthesis with actinomycin D demonstrated a precursor-product relationship between full-length mRNA and the smaller RNAs. In vivo, about 50% of the full-length species that undergo decay are degraded to the smaller RNAs and the rest are degraded to undetectable products. Exposure of erythroid cells that expressed a normal human beta-globin transgene to either cycloheximide or puromycin did not result in the generation of the smaller RNAs. Therefore, a drug-induced reduction in cellular protein synthesis does not reproduce this aspect of cytoplasmic mRNA metabolism. These data suggest that the premature termination of beta-globin mRNA translation in either exon I or exon II results in the cytoplasmic generation of discrete mRNA degradation products that are missing sequences from exon I or exons I and II. Since these degradation products appear to be the same for all nonsense codons tested, there is no correlation between the position of translation termination and the sites of nucleolytic cleavage.
Collapse
|
9
|
Lloyd JA, Krakowsky JM, Crable SC, Lingrel JB. Human gamma- to beta-globin gene switching using a mini construct in transgenic mice. Mol Cell Biol 1992; 12:1561-7. [PMID: 1549112 PMCID: PMC369598 DOI: 10.1128/mcb.12.4.1561-1567.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.
Collapse
Affiliation(s)
- J A Lloyd
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Ohio 45267-0524
| | | | | | | |
Collapse
|
10
|
Lim SK, Sigmund CD, Gross KW, Maquat LE. Nonsense codons in human beta-globin mRNA result in the production of mRNA degradation products. Mol Cell Biol 1992; 12:1149-61. [PMID: 1545796 PMCID: PMC369546 DOI: 10.1128/mcb.12.3.1149-1161.1992] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human beta zero-thalassemic beta-globin genes harboring either a frameshift or a nonsense mutation that results in the premature termination of beta-globin mRNA translation have been previously introduced into the germ line of mice (S.-K. Lim, J.J. Mullins, C.-M. Chen, K. Gross, and L.E. Maquat, EMBO J. 8:2613-2619, 1989). Each transgene produces properly processed albeit abnormally unstable mRNA as well as several smaller RNAs in erythroid cells. These smaller RNAs are detected only in the cytoplasm and, relative to mRNA, are longer-lived and are missing sequences from either exon I or exons I and II. In this communication, we show by using genetics and S1 nuclease transcript mapping that the premature termination of beta-globin mRNA translation is mechanistically required for the abnormal RNA metabolism. We also provide evidence that generation of the smaller RNAs is a cytoplasmic process: the 5' ends of intron 1-containing pre-mRNAs were normal, the rates of removal of introns 1 and 2 were normal, and studies inhibiting RNA synthesis with actinomycin D demonstrated a precursor-product relationship between full-length mRNA and the smaller RNAs. In vivo, about 50% of the full-length species that undergo decay are degraded to the smaller RNAs and the rest are degraded to undetectable products. Exposure of erythroid cells that expressed a normal human beta-globin transgene to either cycloheximide or puromycin did not result in the generation of the smaller RNAs. Therefore, a drug-induced reduction in cellular protein synthesis does not reproduce this aspect of cytoplasmic mRNA metabolism. These data suggest that the premature termination of beta-globin mRNA translation in either exon I or exon II results in the cytoplasmic generation of discrete mRNA degradation products that are missing sequences from exon I or exons I and II. Since these degradation products appear to be the same for all nonsense codons tested, there is no correlation between the position of translation termination and the sites of nucleolytic cleavage.
Collapse
Affiliation(s)
- S K Lim
- Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | | |
Collapse
|
11
|
Lewis W, Lee JD, Dodgson JB. Adult chicken alpha-globin gene expression in transfected QT6 quail cells: evidence for a negative regulatory element in the alpha D gene region. Nucleic Acids Res 1991; 19:5321-9. [PMID: 1656392 PMCID: PMC328894 DOI: 10.1093/nar/19.19.5321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The chicken adult alpha-globin genes, alpha A and alpha D, are closely linked in chromosomal DNA and are coordinately expressed in vivo in an approximate 3:1 ratio, respectively. When subcloned DNAs containing one or the other gene are stably transfected into QT6 quail fibroblasts, the alpha A-globin gene is expressed at measurable RNA levels, but the alpha D gene is not. The alpha A gene expression can be considerably increased by the presence of a linked Rous sarcoma virus long terminal repeat enhancer, but that of the alpha D gene remains undetectable. Transfection with subclones containing both genes, either in cis or in trans, leads to considerably reduced alpha A RNA levels and still no observable alpha D gene expression. Transfection with deleted subclones suggests that maximal expression levels in this system require the alpha A-globin gene promoter, as opposed to that of the alpha D gene, but that such expression is greatly reduced by one or more DNA sequences which lie approximately 2,000 base pairs upstream of the alpha A gene, within the body of the alpha D gene.
Collapse
Affiliation(s)
- W Lewis
- Department of Microbiology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
12
|
Lavelle D, Ducksworth J, Eves E, Gomes G, Keller M, Heller P, DeSimone J. A homeodomain protein binds to gamma-globin gene regulatory sequences. Proc Natl Acad Sci U S A 1991; 88:7318-22. [PMID: 1871139 PMCID: PMC52286 DOI: 10.1073/pnas.88.16.7318] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Developmental regulation of gamma-globin gene expression probably occurs through developmental-stage-specific trans-acting factors able to promote the interaction of enhancer elements located in the far upstream locus control region with regulatory elements in the gamma gene promoters and 3' A gamma enhancer located in close proximity to the genes. We have detected a nuclear protein in K562 and baboon fetal bone marrow nuclear extracts capable of binding to A+T-rich sequences in the locus control region, gamma gene promoter, and 3' A gamma enhancer. SDS/polyacrylamide gel analysis of the purified K562 binding activity revealed a single protein of 87 kDa. A K562 cDNA clone was isolated encoding a beta-galactosidase fusion protein with a DNA binding specificity identical to that of the K562/fetal bone marrow nuclear protein. The cDNA clone encodes a homeodomain homologous to the Drosophila antennapedia protein.
Collapse
Affiliation(s)
- D Lavelle
- Department of Medicine, University of Illinois, Chicago
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
We have examined the expression of human alpha- and beta-like globin genes in transient heterokaryons formed by fusion of human nonerythroid cells with terminally differentiating mouse erythroleukemia (MEL) cells or with a MEL cell variant (GM979) in which the endogenous mouse embryonic beta-globin genes are activated. In both the parental MEL cells and the heterokaryons, the alpha-globin genes were activated at least 12 h earlier than the embryonic, fetal, and adult beta-globin genes. These results suggest that kinetic differences in the activation of alpha- and beta-like globin genes are not simply the result of different rates of accumulation of erythroid-specific regulatory factors but may reflect differences in the mechanisms governing the transcriptional activation of these genes during erythroid cell differentiation. In mouse GM979 x human nonerythroid heterokaryons, the human embryonic beta-globin gene was activated, consistent with our previous demonstration that erythroid cells contain stage-specific trans-acting regulators of globin gene expression. Moreover, a dramatic increase in the ratio of human fetal to adult beta-globin transcription was observed compared with that seen in MEL-human nonerythroid hybrids. This ratio change may reflect competition between the fetal and adult beta-globin genes for productive interactions with erythroid cell-specific regulatory elements. Finally, we demonstrate that the behavior of naturally occurring mutations that lead to aberrant hemoglobin switching in humans also leads to aberrant expression in transient heterokaryons. Therefore, erythroid cells must contain trans-acting factors that interact with mutated regulatory elements to induce high-level expression of the human fetal globin genes.
Collapse
|
14
|
Baron MH, Maniatis T. Regulated expression of human alpha- and beta-globin genes in transient heterokaryons. Mol Cell Biol 1991; 11:1239-47. [PMID: 1705003 PMCID: PMC369395 DOI: 10.1128/mcb.11.3.1239-1247.1991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have examined the expression of human alpha- and beta-like globin genes in transient heterokaryons formed by fusion of human nonerythroid cells with terminally differentiating mouse erythroleukemia (MEL) cells or with a MEL cell variant (GM979) in which the endogenous mouse embryonic beta-globin genes are activated. In both the parental MEL cells and the heterokaryons, the alpha-globin genes were activated at least 12 h earlier than the embryonic, fetal, and adult beta-globin genes. These results suggest that kinetic differences in the activation of alpha- and beta-like globin genes are not simply the result of different rates of accumulation of erythroid-specific regulatory factors but may reflect differences in the mechanisms governing the transcriptional activation of these genes during erythroid cell differentiation. In mouse GM979 x human nonerythroid heterokaryons, the human embryonic beta-globin gene was activated, consistent with our previous demonstration that erythroid cells contain stage-specific trans-acting regulators of globin gene expression. Moreover, a dramatic increase in the ratio of human fetal to adult beta-globin transcription was observed compared with that seen in MEL-human nonerythroid hybrids. This ratio change may reflect competition between the fetal and adult beta-globin genes for productive interactions with erythroid cell-specific regulatory elements. Finally, we demonstrate that the behavior of naturally occurring mutations that lead to aberrant hemoglobin switching in humans also leads to aberrant expression in transient heterokaryons. Therefore, erythroid cells must contain trans-acting factors that interact with mutated regulatory elements to induce high-level expression of the human fetal globin genes.
Collapse
Affiliation(s)
- M H Baron
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
15
|
Purucker M, Bodine D, Lin H, McDonagh K, Nienhuis AW. Structure and function of the enhancer 3' to the human A gamma globin gene. Nucleic Acids Res 1990; 18:7407-15. [PMID: 2259631 PMCID: PMC332879 DOI: 10.1093/nar/18.24.7407] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An enhancer is located immediately 3' to the A gamma globin gene. We have used DNase I footprinting to map the sites of interaction of nuclear proteins with the DNA sequences of this enhancer. Eight footprints were discovered, distributed over 600 base pairs of DNA. Three of these contain a consensus binding site for the erythroid specific factor GATA-I. Each of these GATA-1 sites had an enhancer activity when inserted into a reporter plasmid and tested in human erythroleukemia cells. Other footprints within the enhancer contained consensus binding sequences for the ubiquitous, positive regulatory proteins AP2 and CBP-1. An Sp1-like recognition sequence was also identified. Synthetic oligonucleotides encompassing two of the footprints generated a slowly migrating complex in gel mobility shift assays. The same complex forms on a fragment of the human gamma globin gene promoter extending from -260 to -200. The DNaseI footprint of this protein complex with the enhancer overlapped a sequence, AGGAGGA, found within the binding site for a protein that interacts with the chicken beta globin promoter and enhancer, termed the stage selector element. We propose that this complex of proteins may be involved in the human gamma globin promoter-enhancer interaction.
Collapse
Affiliation(s)
- M Purucker
- Clinical Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
16
|
Fraser P, Hurst J, Collis P, Grosveld F. DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression. Nucleic Acids Res 1990; 18:3503-8. [PMID: 2362805 PMCID: PMC331003 DOI: 10.1093/nar/18.12.3503] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human beta-globin dominant control region (DCR) which flanks the multigene beta-globin locus directs high level, site of integration independent, copy number dependent expression on a linked human beta-globin gene in transgenic mice and stably transfected mouse erythroleukemia (MEL) cells. We have assayed each of the individual DNaseI hypersensitive regions present in the full 15kb DCR for position independence and copy number dependence of a linked beta-globin gene in transgenic mice. The results show that at least three of the individual DNaseI hypersensitive site regions (sites 1, 2 and 3), though expressing at lower levels than the full DCR, are capable of position independent, copy number dependent expression. Site 2 alone directs the highest level of expression of the single site constructs, producing nearly 70% of the level of the full DCR. Sites 1 and 3 each provide 30% of the full activity. Deletion of either site 2 or 3 from the complete set significantly reduces the level of expression, but does not effect position independence or copy number dependence. This demonstrates that sites 2 and 3 are required for full expression and suggests that all the sites are required for the full expression of even a single gene from this multigene locus.
Collapse
Affiliation(s)
- P Fraser
- Laboratory of Gene Structure and Expression, National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | |
Collapse
|
17
|
Roles of fetal G gamma-globin promoter elements and the adult beta-globin 3' enhancer in the stage-specific expression of globin genes. Mol Cell Biol 1990. [PMID: 2304460 DOI: 10.1128/mcb.10.3.1116] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human fetal G gamma-globin and adult beta-globin genes are expressed in a tissue- and developmental stage-specific pattern in transgenic mice: the G gamma gene in embryonic cells and the beta gene in fetal and adult erythroid cells. Several of the cis-acting DNA sequences thought to be responsible for these patterns of expression are located 5' to the G gamma-globin gene and 3' to the beta-globin gene. To further define the locations and functional roles of these elements, we examined the effects of 5' truncations on the expression of the G gamma-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene. We found that sequences between -201 and -136 are essential for expression of the G gamma-globin gene, whereas those upstream of -201 have little effect on the level or tissue or stage specificity of G gamma-globin expression. The G gamma-globin upstream sequences from -201 to -136 were, furthermore, capable of activating a linked beta-globin gene in embryonic blood cells; however, a G gamma-globin fragment from -383 to -206 was similarly active in this assay, and the complete fragment from -383 to -136 was considerably more active than either of the smaller fragments, suggesting the presence of multiple cis-acting elements for embryonic blood cells. Our data also suggested the possibility of a negative regulatory element between -201 and -136. These results are discussed in relation to several DNA elements in the G gamma-globin upstream region, which have been shown to bind nuclear factors in erythroid cells. Finally, we observed that removal of the beta-globin 3'-flanking sequences, including the 3' enhancer, from the G gamma-globin upstream-beta-globin hybrid gene resulted in a 25-fold reduction in expression in embryonic blood cells. This suggests that the beta-globin 3' enhancer is potentially active at the embryonic stage and thus cannot be solely responsible for the fetal or adult specificity of the beta-globin gene.
Collapse
|
18
|
Perez-Stable C, Costantini F. Roles of fetal G gamma-globin promoter elements and the adult beta-globin 3' enhancer in the stage-specific expression of globin genes. Mol Cell Biol 1990; 10:1116-25. [PMID: 2304460 PMCID: PMC360977 DOI: 10.1128/mcb.10.3.1116-1125.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human fetal G gamma-globin and adult beta-globin genes are expressed in a tissue- and developmental stage-specific pattern in transgenic mice: the G gamma gene in embryonic cells and the beta gene in fetal and adult erythroid cells. Several of the cis-acting DNA sequences thought to be responsible for these patterns of expression are located 5' to the G gamma-globin gene and 3' to the beta-globin gene. To further define the locations and functional roles of these elements, we examined the effects of 5' truncations on the expression of the G gamma-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene. We found that sequences between -201 and -136 are essential for expression of the G gamma-globin gene, whereas those upstream of -201 have little effect on the level or tissue or stage specificity of G gamma-globin expression. The G gamma-globin upstream sequences from -201 to -136 were, furthermore, capable of activating a linked beta-globin gene in embryonic blood cells; however, a G gamma-globin fragment from -383 to -206 was similarly active in this assay, and the complete fragment from -383 to -136 was considerably more active than either of the smaller fragments, suggesting the presence of multiple cis-acting elements for embryonic blood cells. Our data also suggested the possibility of a negative regulatory element between -201 and -136. These results are discussed in relation to several DNA elements in the G gamma-globin upstream region, which have been shown to bind nuclear factors in erythroid cells. Finally, we observed that removal of the beta-globin 3'-flanking sequences, including the 3' enhancer, from the G gamma-globin upstream-beta-globin hybrid gene resulted in a 25-fold reduction in expression in embryonic blood cells. This suggests that the beta-globin 3' enhancer is potentially active at the embryonic stage and thus cannot be solely responsible for the fetal or adult specificity of the beta-globin gene.
Collapse
Affiliation(s)
- C Perez-Stable
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | |
Collapse
|
19
|
Abstract
Transcription of the human fetal globin genes in erythroid cells is tightly regulated during different stages of development and differentiation. Two naturally occurring mutations 202 base pairs upstream of the duplicated gamma globin genes are associated with incorrectly regulated gamma globin gene gene expression; elevated levels of fetal globin are synthesized during adult life. A C-to-G base substitution upstream of the G gamma-globin gene is highly correlated with a dramatic increase in gene expression. It increases the similarity of the region to the consensus Sp1 recognition site. We determined that the mutated DNA had a 5- to 10-fold-higher affinity for Sp1 than did normal gamma globin gene sequence. We also observed a reduction in normal factor-binding activity. A different substitution at -202, C to T, upstream of the A gamma-globin gene was associated with a more moderate increase in fetal globin expression. This mutation decreased the similarity of the sequence to an Sp1 recognition site. We determined that it did not result in enhanced Sp1 binding but did alter normal factor binding. We suggest that these changes in nuclear protein-binding properties detected in vitro are responsible for the enhanced gamma globin gene expression found in -202 G gamma beta + patients with hereditary persistence of fetal hemoglobin.
Collapse
|
20
|
Sykes K, Kaufman R. A naturally occurring gamma globin gene mutation enhances SP1 binding activity. Mol Cell Biol 1990; 10:95-102. [PMID: 1688466 PMCID: PMC360716 DOI: 10.1128/mcb.10.1.95-102.1990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription of the human fetal globin genes in erythroid cells is tightly regulated during different stages of development and differentiation. Two naturally occurring mutations 202 base pairs upstream of the duplicated gamma globin genes are associated with incorrectly regulated gamma globin gene gene expression; elevated levels of fetal globin are synthesized during adult life. A C-to-G base substitution upstream of the G gamma-globin gene is highly correlated with a dramatic increase in gene expression. It increases the similarity of the region to the consensus Sp1 recognition site. We determined that the mutated DNA had a 5- to 10-fold-higher affinity for Sp1 than did normal gamma globin gene sequence. We also observed a reduction in normal factor-binding activity. A different substitution at -202, C to T, upstream of the A gamma-globin gene was associated with a more moderate increase in fetal globin expression. This mutation decreased the similarity of the sequence to an Sp1 recognition site. We determined that it did not result in enhanced Sp1 binding but did alter normal factor binding. We suggest that these changes in nuclear protein-binding properties detected in vitro are responsible for the enhanced gamma globin gene expression found in -202 G gamma beta + patients with hereditary persistence of fetal hemoglobin.
Collapse
Affiliation(s)
- K Sykes
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | | |
Collapse
|
21
|
Beta-globin enhancers target expression of a heterologous gene to erythroid tissues of transgenic mice. Mol Cell Biol 1989. [PMID: 2555696 DOI: 10.1128/mcb.9.10.4581] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the role of human beta-globin enhancers in tissue-specific and developmental regulation, a hybrid beta-globin-simian virus 40 gene was analyzed in transgenic mice. A beta-globin DNA fragment containing two previously defined enhancers stimulated transcription from the simian virus 40 promoter in a tissue- and stage-specific pattern similar to that of the normal beta-globin gene. These results help to define the functions of beta-globin regulatory elements and suggest an approach for targeted expression of heterologous genes in erythroid cells in vivo.
Collapse
|
22
|
Berg PE, Williams DM, Qian RL, Cohen RB, Cao SX, Mittelman M, Schechter AN. A common protein binds to two silencers 5' to the human beta-globin gene. Nucleic Acids Res 1989; 17:8833-52. [PMID: 2587218 PMCID: PMC335046 DOI: 10.1093/nar/17.21.8833] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The temporal sequence of expression of human globin genes during development suggests precise regulation of these genes. Recent studies have characterized a number of DNA sequences within or flanking the human beta-globin gene which are important in its regulation and several proteins which bind to these sequences have been identified. We have found two proteins which bind 5' to the human beta-globin gene. One of these proteins, which we designate BP1, binds to two sequences, one between -550 and -527 bp relative to the cap site, the other between -302 and -294 bp. A second protein, BP2, binds to sequences between -275 and -263 bp. The binding sites for both BP1 and BP2 are in two regions which function as silencers in a transient expression assay using the human erythroleukemia cell line K562. These results and others presented here suggest that BP1 may act as a repressor protein. Negative regulation seems to be an important component of tissue and developmental specific globin gene regulation.
Collapse
Affiliation(s)
- P E Berg
- Laboratory of Chemical Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
23
|
Magram J, Niederreither K, Costantini F. Beta-globin enhancers target expression of a heterologous gene to erythroid tissues of transgenic mice. Mol Cell Biol 1989; 9:4581-4. [PMID: 2555696 PMCID: PMC362549 DOI: 10.1128/mcb.9.10.4581-4584.1989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To examine the role of human beta-globin enhancers in tissue-specific and developmental regulation, a hybrid beta-globin-simian virus 40 gene was analyzed in transgenic mice. A beta-globin DNA fragment containing two previously defined enhancers stimulated transcription from the simian virus 40 promoter in a tissue- and stage-specific pattern similar to that of the normal beta-globin gene. These results help to define the functions of beta-globin regulatory elements and suggest an approach for targeted expression of heterologous genes in erythroid cells in vivo.
Collapse
Affiliation(s)
- J Magram
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
24
|
Rosenthal N, Kornhauser JM, Donoghue M, Rosen KM, Merlie JP. Myosin light chain enhancer activates muscle-specific, developmentally regulated gene expression in transgenic mice. Proc Natl Acad Sci U S A 1989; 86:7780-4. [PMID: 2813357 PMCID: PMC298154 DOI: 10.1073/pnas.86.20.7780] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The rat myosin light chain (MLC)1/3 gene locus contains a potent muscle-specific enhancer, located downstream of the coding region, greater than 24 kilobases away from the MLC1 transcription start site. To assess the role of this enhancer in the activation of MLC expression during development, transgenic mice were generated carrying multiple copies of a MLC1 promoter-chloramphenicol acetyltransferase (CAT) transcription unit linked to a genomic fragment including the enhancer. CAT expression was detected in four mouse lines, up to 1000-fold higher in skeletal muscles than in other tissues. Activation of endogenous MLC1 transcription in these animals 4 days before birth was reflected in the onset of CAT transgene expression. This study identifies the transcriptional control elements necessary to activate the 21-kilobase MLC1/3 locus at the appropriate fetal stage and indicates that the MLC enhancer is sufficient to induce developmentally regulated expression from the MLC1 promoter exclusively in skeletal muscle cells.
Collapse
Affiliation(s)
- N Rosenthal
- Department of Biochemistry, Boston University School of Medicine, MA 02118
| | | | | | | | | |
Collapse
|
25
|
Yee SP, Mock D, Maltby V, Silver M, Rossant J, Bernstein A, Pawson T. Cardiac and neurological abnormalities in v-fps transgenic mice. Proc Natl Acad Sci U S A 1989; 86:5873-7. [PMID: 2788278 PMCID: PMC297733 DOI: 10.1073/pnas.86.15.5873] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transgenic mice that widely express the v-fps protein-tyrosine kinase develop several independent pathological conditions, in addition to a high tumor incidence. v-fps expression and protein-tyrosine kinase activity in the heart were directly correlated with cardiac enlargement. This cardiomegaly was accompanied by severe myocardial and endocardial damage, which was concentrated in the left ventricular wall, and characterized by a progressive atrophy and necrosis of cardiac muscle fibers with concomitant fibrosis. This pathology was associated with congestive heart failure. Mice from five lines developed a marked trembling, correlated with expression of the v-fps transgene in the brain, and two lines showed a striking bilateral enlargement of the trigeminal nerves. Unlike tumor formation, these cardiac and neurological phenotypes were evident shortly after birth and showed 100% penetrance. The pleiotropic effects of the v-fps transgene suggest the involvement of protein-tyrosine kinases in mammalian neural development and cardiac function.
Collapse
Affiliation(s)
- S P Yee
- Division of Molecular and Developmental Biology, Mount Sinai Hospital Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
We have studied the cis and trans interactions of the alpha- and beta-globin genes in a transient expression system. We found that the alpha-globin gene inhibited beta-globin expression in cis but not in trans. The silencer element responsible for this inhibition was localized to a 259-base-pair fragment at the 5' end of the alpha-globin gene.
Collapse
|
27
|
Mignotte V, Wall L, deBoer E, Grosveld F, Romeo PH. Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucleic Acids Res 1989; 17:37-54. [PMID: 2911469 PMCID: PMC331534 DOI: 10.1093/nar/17.1.37] [Citation(s) in RCA: 270] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have studied the erythroid-specific promoter of the human gene coding for Porphobilinogen Deaminase (PBGD) by DNaseI footprinting, gel retardation and methylation interference assays. We show that this promoter, which is inducible during MEL cell differentiation, contains three binding sites for the erythroid-specific factor NF-E1 and one site for a second erythroid-specific factor, which we name NF-E2. NF-E1 is a factor that also binds the promoter and the enhancer (present in the 3' flanking region) of the human beta-globin gene. NF-E2 has not yet been described and although it binds to a sequence containing the Ap1 consensus, it appears to be different from Ap1.
Collapse
Affiliation(s)
- V Mignotte
- Laboratory of Gene Structure and Expression, National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
28
|
Atweh GF, Liu JM, Brickner HE, Zhu XX. A silencer element from the alpha-globin gene inhibits expression of beta-like genes. Mol Cell Biol 1988; 8:5047-51. [PMID: 2850473 PMCID: PMC365600 DOI: 10.1128/mcb.8.11.5047-5051.1988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have studied the cis and trans interactions of the alpha- and beta-globin genes in a transient expression system. We found that the alpha-globin gene inhibited beta-globin expression in cis but not in trans. The silencer element responsible for this inhibition was localized to a 259-base-pair fragment at the 5' end of the alpha-globin gene.
Collapse
Affiliation(s)
- G F Atweh
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor
| | | | | | | |
Collapse
|
29
|
Evans T, Reitman M, Felsenfeld G. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci U S A 1988; 85:5976-80. [PMID: 3413070 PMCID: PMC281888 DOI: 10.1073/pnas.85.16.5976] [Citation(s) in RCA: 405] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have identified a protein present only in erythroid cells that binds to two adjacent sites within an enhancer region of the chicken beta-globin locus. Mutation of the sites, so that binding by the factor can no longer be detected in vitro, leads to a loss of enhancing ability, assayed by transient expression in primary erythrocytes. Binding sites for the erythroid-specific factor (Eryf1) are found within regulatory regions for all chicken globin genes. A strong Eryf1 binding site is also present within the enhancer of at least one human globin gene, and proteins from human erythroid cells (but not HeLa cells) bind to both the chicken and the human sites.
Collapse
Affiliation(s)
- T Evans
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| | | | | |
Collapse
|
30
|
Trudel M, Costantini F. A 3' enhancer contributes to the stage-specific expression of the human beta-globin gene. Genes Dev 1987; 1:954-61. [PMID: 2828176 DOI: 10.1101/gad.1.9.954] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human beta-globin and G gamma-globin genes are expressed at different stages of human development and also show distinct temporal patterns of expression when transferred into the mouse germ line. In transgenic mice, the beta-globin gene is expressed only in fetal and adult erythroid cells, whereas the G gamma-globin gene is active only in embryonic erythroid cells. Previous experiments suggested that beta-globin 3' sequences were important for expression in mouse fetal and adult erythroid cells, and in this paper we directly demonstrate the presence of an enhancer in the 3'-flanking region of the gene. First, deletion of sequences between 605 and 895 bp, 3' to the poly(A) site, results in a 10-fold reduction in the average level of expression of the beta-globin gene in transgenic mouse fetal livers. Second, a DNA fragment including beta-globin 3'-flanking sequences [425-1480 bp from the poly(A) site], in either orientation, activates transcription from the otherwise silent G gamma-globin promoter in the mouse fetal liver; DNA sequences between 150 and 730 bp or between 920 and 1680 bp, 3' to the beta-globin gene, are inactive by this assay. Together, these experiments identify an enhancer, in the region approximately 600-900 bp, 3' to the beta-globin poly(A) site, which contributes to the differential stage-specific expression of the beta-globin and G gamma-globin genes.
Collapse
Affiliation(s)
- M Trudel
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | |
Collapse
|