1
|
The dichotomous effects of caffeine on homologous recombination in mammalian cells. DNA Repair (Amst) 2020; 88:102805. [PMID: 32062581 DOI: 10.1016/j.dnarep.2020.102805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 11/23/2022]
Abstract
This study was initiated to examine the effects of caffeine on the DNA damage response (DDR) and homologous recombination (HR) in mammalian cells. A 5 mM caffeine treatment caused the cell cycle to stall at G2/M and cells eventually underwent apoptosis. Caffeine exposure also induced a strong DDR along with subsequent activation of wildtype p53 protein. An unexpected observation was the caffeine-induced depletion of Rad51 (and Brca2) proteins. Consequently, caffeine-treated cells were expected to be inefficient in HR. However, a dichotomy in the HR response of cells to caffeine treatment was revealed. Caffeine treatment rendered cells significantly better at performing the nascent DNA synthesis that accompanies the early strand invasion steps of HR. Additionally, caffeine treatment increased chromatin accessibility and elevated the efficiency of illegitimate recombination. Conversely, the increase in nascent DNA synthesis did not translate into a higher number of gene targeting events. Thus, prolonged caffeine exposure stalls the cell cycle, induces a p53-mediated apoptotic response and a down-regulation of critical HR proteins, and for reasons discussed, stimulates early steps of HR, but not the formation of complete recombination products.
Collapse
|
2
|
Kostyrko K, Neuenschwander S, Junier T, Regamey A, Iseli C, Schmid-Siegert E, Bosshard S, Majocchi S, Le Fourn V, Girod PA, Xenarios I, Mermod N. MAR-Mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering. Biotechnol Bioeng 2016; 114:384-396. [PMID: 27575535 PMCID: PMC5215416 DOI: 10.1002/bit.26086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 12/27/2022]
Abstract
Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non-homologous end-joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis-dependent microhomology-mediated end-joining (SD-MMEJ) activities. Genome-wide analysis of the integration loci and junction sequences validated the prevalent use of the SD-MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD-MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384-396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kaja Kostyrko
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | - Thomas Junier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | - Sandra Bosshard
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Stefano Majocchi
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| |
Collapse
|
3
|
Genome Engineering Using Adeno-associated Virus: Basic and Clinical Research Applications. Mol Ther 2015; 24:458-64. [PMID: 26373345 DOI: 10.1038/mt.2015.151] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022] Open
Abstract
In addition to their broad potential for therapeutic gene delivery, adeno-associated virus (AAV) vectors possess the innate ability to stimulate homologous recombination in mammalian cells at high efficiencies. This process--referred to as AAV-mediated gene targeting--has enabled the introduction of a diverse array of genomic modifications both in vitro and in vivo. With the recent emergence of targeted nucleases, AAV-mediated genome engineering is poised for clinical translation. Here, we review key properties of AAV vectors that underscore its unique utility in genome editing. We highlight the broad range of genome engineering applications facilitated by this technology and discuss the strong potential for unifying AAV with targeted nucleases for next-generation gene therapy.
Collapse
|
4
|
Li N, Parrish M, Chan TK, Yin L, Rai P, Yoshiyuki Y, Abolhassani N, Tan KB, Kiraly O, Chow VTK, Engelward BP. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cell Mol Life Sci 2015; 72:2973-88. [PMID: 25809161 PMCID: PMC4802977 DOI: 10.1007/s00018-015-1879-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.
Collapse
Affiliation(s)
- Na Li
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Marcus Parrish
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-743, Cambridge, MA 02139 USA
| | - Tze Khee Chan
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Clinical Research Center, MD11, 10 Medical Drive, Level 5, #05-09, Singapore, 117597 Singapore
| | - Lu Yin
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
| | - Prashant Rai
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Yamada Yoshiyuki
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
| | - Nona Abolhassani
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-743, Cambridge, MA 02139 USA
| | - Kong Bing Tan
- Department of Pathology, Yong loo Lin School of Medicine, National University Health System and National University of Singapore, Lower Kent Ridge Road, Singapore, 119074 Singapore
| | - Orsolya Kiraly
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-10/11 Innovation Wing, #03-12/13/14 Enterprise Wing, Singapore, 138602 Singapore
| | - Vincent T. K. Chow
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-743, Cambridge, MA 02139 USA
| |
Collapse
|
5
|
Alexander IE, Russell DW. The Potential of AAV-Mediated Gene Targeting for Gene and Cell Therapy Applications. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-014-0001-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mortensen R. Production of a heterozygous mutant cell line by homologous recombination (single knockout). CURRENT PROTOCOLS IN NEUROSCIENCE 2011; Chapter 4:Unit 4.30. [PMID: 21462160 DOI: 10.1002/0471142301.ns0430s55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gene targeting by homologous recombination is a powerful and widely used technique for introduction of specific gene mutations (frequently a gene inactivation) in transgenic animals. The basic method detailed in this unit uses sequences homologous to the endogenous gene flanking the mutation. While methods using bacterial artificial chromosomes (BACs) and recombineering may be used, in most cases simpler bacterial plasmid clones with several kb of homology are sufficient. This protocol details the strategic factors in designing the constructs for selection and screening for homologous recombination.
Collapse
|
7
|
Abstract
Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types, with targeting frequencies ranging from 10(-5) to 10(-2) per infected cell. These targeting frequencies are 1-4 logs higher than those obtained by conventional transfection or electroporation approaches. A wide variety of different types of mutations can be introduced into chromosomal loci with high fidelity and without genotoxicity. Here we provide a detailed protocol for gene targeting in human cells with AAV vectors. We describe methods for vector design, stock preparation and titration. Optimized transduction protocols are provided for human pluripotent stem cells, mesenchymal stem cells, fibroblasts and transformed cell lines, as well as a method for identifying targeted clones by Southern blots. This protocol (from vector design through a single round of targeting and screening) can be completed in ∼10 weeks; each subsequent round of targeting and screening should take an additional 7 weeks.
Collapse
Affiliation(s)
- Iram F Khan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
8
|
Hall B, Limaye A, Kulkarni AB. Overview: generation of gene knockout mice. ACTA ACUST UNITED AC 2009; Chapter 19:Unit 19.12 19.12.1-17. [PMID: 19731224 DOI: 10.1002/0471143030.cb1912s44] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The technique of gene targeting allows for the introduction of engineered genetic mutations into a mouse at a determined genomic locus. The process of generating mouse models with targeted mutations was developed through both the discovery of homologous recombination and the isolation of murine embryonic stem cells (ES cells). Homologous recombination is a DNA repair mechanism that is employed in gene targeting to insert a designed mutation into the homologous genetic locus. Targeted homologous recombination can be performed in murine ES cells through electroporation of a targeting construct. These ES cells are totipotent and, when injected into a mouse blastocyst, they can differentiate into all cell types of a chimeric mouse. A chimeric mouse harboring cells derived from the targeted ES cell clone can then generate a whole mouse containing the desired targeted mutation. The initial step for the generation of a mouse with a targeted mutation is the construction of an efficient targeting vector that will be introduced into the ES cells.
Collapse
Affiliation(s)
- Bradford Hall
- Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
9
|
A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair. BMC Biotechnol 2009; 9:35. [PMID: 19379497 PMCID: PMC2676283 DOI: 10.1186/1472-6750-9-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 04/20/2009] [Indexed: 12/14/2022] Open
Abstract
Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.
Collapse
|
10
|
Affiliation(s)
- Mario R Capecchi
- Howard Hughes Medical Institute, University of Utah School of Medicine, 15 North 2030 East, Room 5440, Salt Lake City, UT 84112-5331, USA
| |
Collapse
|
11
|
Mortensen R. Production of a heterozygous mutant cell line by homologous recombination (single knockout). CURRENT PROTOCOLS IN NEUROSCIENCE 2008; Chapter 4:Unit 4.30. [PMID: 18428579 DOI: 10.1002/0471142301.ns0430s21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene targeting by homologous recombination allows the introduction of specific mutations into any cloned gene. This unit provides a protocol in which the gene of interest is inactivated by interrupting its coding sequence with a positive selectable marker. A negative selectable marker is included in the construct outside the region of target gene homology in order to enrich for clones in which the target gene has undergone homologous recombination. The altered target gene is then expressed in embryonic stem cells. A support protocol describes a method for transient expression of Cre recombinase to remove sequences between lox sites, which can also be used as a selection method.
Collapse
|
12
|
Mortensen R. Production of a Heterozygous Mutant Cell Line by Homologous Recombination (Single Knockout). ACTA ACUST UNITED AC 2008; Chapter 23:Unit 23.5. [DOI: 10.1002/0471142727.mb2305s82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Mortensen R. Production of a heterozygous mutant cell line by homologous recombination (single knockout). CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2008; Chapter 23:Unit 23.5. [PMID: 18265206 DOI: 10.1002/0471142727.mb2305s52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Formerly UNIT 9.16, this unit takes a more appropriate place in Chapter 23, and has been updated and revised for this publication. Gene targeting by homologous recombination allows the introduction of specific mutations into any cloned gene. In this unit, the gene of interest is inactivated by interrupting its coding sequence with a positive selectable marker (e.g., neo). Expression of neo is obtained by including the phosphoglycerate kinase (PGK) promoter in the construct. To enrich for clones in which the target gene has undergone homologous recombination over those in which random integration of the construct has occurred, a negative selectable marker, herpes simplex virus thymidine kinase (HSV-TK), is included in the construct outside the region of homology to the target gene. Depending upon the target gene, it may be easier to assemble the construct by adding the neo and TK genes to the cloned target gene or by adding two fragments of the target gene to a plasmid containing the neo and TK genes.
Collapse
Affiliation(s)
- R Mortensen
- University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Trobridge G, Hirata RK, Russell DW. Gene targeting by adeno-associated virus vectors is cell-cycle dependent. Hum Gene Ther 2005; 16:522-6. [PMID: 15871683 DOI: 10.1089/hum.2005.16.522] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adeno-associated virus (AAV) vectors can be used to introduce site-specific mutations into homologous chromosomal sequences. There are many potential applications of this technique, but the process of AAV-mediated gene targeting and factors that influence targeting efficiency are not completely understood. We investigated the dependence of AAV-mediated gene targeting on the host cell-cycle status. The frequency of gene targeting by AAV vectors was compared in dividing and serum-arrested normal human fibroblast cultures. Gene targeting occurred in arrested fibroblast cultures at 0.15 to 1.1% the frequency of dividing cultures, and only took place in cells that had undergone DNA synthesis. Gene targeting was also reduced when DNA synthesis was inhibited by hydroxyurea.
Collapse
Affiliation(s)
- Grant Trobridge
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
15
|
Adelman ZN, Jasinskiene N, Vally KJM, Peek C, Travanty EA, Olson KE, Brown SE, Stephens JL, Knudson DL, Coates CJ, James AA. Formation and loss of large, unstable tandem arrays of the piggyBac transposable element in the yellow fever mosquito, Aedes aegypti. Transgenic Res 2005; 13:411-25. [PMID: 15587266 DOI: 10.1007/s11248-004-6067-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Class II transposable element, piggyBac, was used to transform the yellow fever mosquito, Aedes aegypti. In two transformed lines only 15-30% of progeny inherited the transgene, with these individuals displaying mosaic expression of the EGFP marker gene. Southern analyses, gene amplification of genomic DNA, and plasmid rescue experiments provided evidence that these lines contained a high copy number of piggyBac transformation constructs and that much of this DNA consisted of both donor and helper plasmids. A detailed analysis of one line showed that the majority of piggyBac sequences were unit-length donor or helper plasmids arranged in a large tandem array that could be lost en masse in a single generation. Despite the presence of a transposase source and many intact donor elements, no conservative (cut and paste) transposition of piggyBac was observed in these lines. These results reveal one possible outcome of uncontrolled and/or unexpected recombination in this mosquito, and support the conclusion that further investigation is necessary before transposable elements such as piggyBac can be used as genetic drive mechanisms to move pathogen-resistance genes into mosquito populations.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Foreign DNA integration is one of the most widely exploited cellular processes in molecular biology. Its technical use permits us to alter a cellular genome by incorporating a fragment of foreign DNA into the chromosomal DNA. This process employs the cell's own endogenous DNA modification and repair machinery. Two main classes of integration mechanisms exist: those that draw on sequence similarity between the foreign and genomic sequences to carry out homology-directed modifications, and the nonhomologous or 'illegitimate' insertion of foreign DNA into the genome. Gene therapy procedures can result in illegitimate integration of introduced sequences and thus pose a risk of unforeseeable genomic alterations. The choice of insertion site, the degree to which the foreign DNA and endogenous locus are modified before or during integration, and the resulting impact on structure, expression, and stability of the genome are all factors of illegitimate DNA integration that must be considered, in particular when designing genetic therapies.
Collapse
Affiliation(s)
- H Würtele
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Canada
| | | | | |
Collapse
|
17
|
Affiliation(s)
- O Smithies
- Department of Pathology, Brinkhous-Bullitt Building, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Affiliation(s)
- M R Capecchi
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
19
|
Affiliation(s)
- M J Evans
- Cardiff University, Biomedical Sciences Building, Museum Avenue, Cardiff, UK
| |
Collapse
|
20
|
Shammas MA, Shmookler Reis RJ. Recombination and its roles in DNA repair, cellular immortalization and cancer. AGE 1999; 22:71-88. [PMID: 23604399 PMCID: PMC3455241 DOI: 10.1007/s11357-999-0009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genetic recombination is the creation of new gene combinations in a cell or gamete, which differ from those of progenitor cells or parental gametes. In eukaryotes, recombination may occur at mitosis or meiosis. Mitotic recombination plays an indispensable role in DNA repair, which presumably directed its early evolution; the multiplicity of recombination genes and pathways may be best understood in this context, although they have acquired important additional functions in generating diversity, both somatically (increasing the immune repertoire) and in germ line (facilitating evolution). Chromosomal homologous recombination and HsRad51 recombinase expression are increased in both immortal and preimmortal transformed cells, and may favor the occurrence of multiple oncogenic mutations. Tumorigenesis in vivo is frequently associated with karyotypic instability, locus-specific gene rearrangements, and loss of heterozygosity at tumor suppressor loci - all of which can be recombinationally mediated. Genetic defects which increase the rate of somatic mutation (several of which feature elevated recombination) are associated with early incidence and high risk for a variety of cancers. Moreover, carcinogenic agents appear to quite consistently stimulate homologous recombination. If cells with high recombination arise, either spontaneously or in response to "recombinogens," and predispose to the development of cancer, what selective advantage could favor these cells prior to the occurrence of growth-promoting mutations? We propose that the augmentation of telomere-telomere recombination may provide just such an advantage, to hyper-recombinant cells within a population of telomerase-negative cells nearing their replicative (Hayflick) limit, by extending telomeres in some progeny cells and thus allowing their continued proliferation.
Collapse
Affiliation(s)
- Masood A. Shammas
- />Dept. of Geriatrics, University of Arkansas for Medical Sciences, USA
- />J.L. McClellan Veterans Medical Center — Research 151, 4300 West 7th Street, Little Rock, AR 72205
| | - Robert J. Shmookler Reis
- />Dept. of Geriatrics, University of Arkansas for Medical Sciences, USA
- />Dept. of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, USA
- />Dept. of Medicine, University of Arkansas for Medical Sciences, USA
- />J.L. McClellan Veterans Medical Center — Research 151, 4300 West 7th Street, Little Rock, AR 72205
| |
Collapse
|
21
|
Kren BT, Bandyopadhyay P, Steer CJ. In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides. Nat Med 1998; 4:285-90. [PMID: 9500600 DOI: 10.1038/nm0398-285] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A chimeric RNA/DNA oligonucleotide was constructed to induce a sequence mutation in the rat factor IX gene, resulting in prolonged coagulation. Oligonucleotides were targeted to hepatocytes in cell culture or in vivo by intravenous injection. Nucleotide conversion was both site-specific and dose-dependent. The mutated gene was associated in vivo with significantly reduced factor IX coagulant activity and a marked prolongation of the activated partial thromboplastin time. The results demonstrate that single base-pair alterations can be introduced in hepatocytes in situ by RNA/DNA oligonucleotides, suggesting a potentially powerful strategy for hepatic gene repair without the use of viral vectors.
Collapse
Affiliation(s)
- B T Kren
- Department of Medicine, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
22
|
Papadopoulou B, Dumas C. Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania. Nucleic Acids Res 1997; 25:4278-86. [PMID: 9336458 PMCID: PMC147044 DOI: 10.1093/nar/25.21.4278] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study we investigated the role of several parameters governing the efficiency of gene targeting mediated by homologous recombination in the protozoan parasite Leishmania. We evaluated the relative targeting frequencies of different replacement vectors designed to target several sequences within the parasite genome. We found that a decrease in the length of homologous sequences <1 kb on one arm of the vector linearly influences the targeting frequency. No homologous recombination was detected, however, when the flanking homologous regions were <180 bp. A requirement for a very high degree of homology between donor and target sequences was found necessary for efficient gene targeting in Leishmania , as targeted recombination was strongly affected by base pair mismatches. Targeting frequency increased proportionally with copy number of the target only when the target was part of a linear amplicon, but remained unchanged when it was present on circles. Different chromosomal locations were found to be targeted with significantly variable levels of efficiency. Finally, different strains of the same species showed differences in gene targeting frequency. Overall, gene targeting mediated by homologous recombination in Leishmania shares similarities to both the yeast and the mammalian recombination systems.
Collapse
Affiliation(s)
- B Papadopoulou
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval and Département de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | |
Collapse
|
23
|
Shammas MA, Xia SJ, Shmookler Reis RJ. Induction of duplication reversion in human fibroblasts, by wild-type and mutated SV40 T antigen, covaries with the ability to induce host DNA synthesis. Genetics 1997; 146:1417-28. [PMID: 9258684 PMCID: PMC1208085 DOI: 10.1093/genetics/146.4.1417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Intrachromosomal homologous recombination, manifest as reversion of a 14-kbp duplication in the hypoxanthine phosphoribosyl transferase (HPRT) gene, is elevated in human cells either stably transformed or transiently transfected by the SV40 (simian virus 40) large T antigen gene. Following introduction of wild-type SV40, or any of several T-antigen point mutations in a constant SV40 background, we observed a strong correlation between the stimulation of chromosomal recombination and induction of host-cell DNA synthesis. Moreover, inhibitors of DNA replication (aphidicolin and hydroxyurea) suppress SV40-induced homologous recombination to the extent that they suppress DNA synthesis. Stable integration of plasmids encoding T antigen also augments homologous recombination, which is suppressed by aphidicolin. We infer that the mechanism by which T antigen stimulates homologous recombination in human fibroblasts involves DNA replicative synthesis.
Collapse
Affiliation(s)
- M A Shammas
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | |
Collapse
|
24
|
Gerenday A, Blauwkamp TS, Fallon AM. Synchronization of Aedes albopictus mosquito cells using hydroxyurea. INSECT MOLECULAR BIOLOGY 1997; 6:191-196. [PMID: 9099583 DOI: 10.1111/j.1365-2583.1997.tb00087.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have established conditions for use of hydroxyurea, a reversible inhibitor of DNA synthesis, to synchronize the division cycle of a continuous cell line from the mosquito, Aedes albopictus. In the range of 0.15-0.25 mM hydroxyurea, an 18 h treatment, followed by removal of the drug, results in effective synchronization. When combined with the partial synchronization that occurs within 10 h of dilution and plating, more than 80% of cells treated with hydroxyurea could be recovered in the synthesis (S) phase of the cell cycle during the 4 h period after removal of the drug. The degree of synchrony was enhanced when cells were exposed to two consecutive hydroxyurea treatments spaced 10 h apart. Synchronized cells expressed maximal levels of a reporter gene when transfected immediately after removal of hydroxyurea. This is the first description of effective chemical synchronization of an insect cell line using hydroxyurea.
Collapse
Affiliation(s)
- A Gerenday
- Department of Entomology, University of Minnesota, St Paul 55108, USA
| | | | | |
Collapse
|
25
|
Cao J, DePrimo SE, Stringer JR. Cell cycle dependence of radiation-induced homologous recombination in cultured monkey cells. Mutat Res 1997; 374:233-43. [PMID: 9100846 DOI: 10.1016/s0027-5107(96)00237-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A lacZ transgene recombination system that reports homologous recombination events involving duplicated lacZ segments was used to study recombination in monkey cells exposed to ionizing radiation at different points in the cell cycle. With this system, recombination events can be detected in single cells by histochemical staining soon after exposure of cells to DNA-damaging treatment. Ionizing radiation rapidly induced recombination 5-10-fold in cells that were at the mitosis stage of the cell cycle. Irradiation either of cells at other points in the cell cycle or of nonsynchronized cells had less of an effect on recombination between lacZ segments.
Collapse
Affiliation(s)
- J Cao
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati Medical Center, OH 45267-0524, USA
| | | | | |
Collapse
|
26
|
Abstract
We have investigated the gene targeting frequency at the hprt locus in a range of embryonic stem cell lines selected for variations in cell cycle parameters. Our results show that targeting frequency varies with cell line by as much as 12-fold between nonisogenic lines and 3-fold between isogenic lines and that a nonisogenic line can support homologous recombination events by up to 21-fold more frequently than an isogenic line. This variation is consistent with both insertion and replacement vectors. These results can be explained by an inverse linear correlation of targeting frequencies with cell doubling times. Additionally, by reducing serum concentration in the culture medium the mean cell doubling time for R1 ES cells can be increased from 11.4 to 15.7 h, with a subsequent 15-fold decrease in gene targeting frequency. This change fits the correlation found for the different nonisogenic cell lines. Our observations have important implications when performing gene targeting experiments and explain some of the variation noted between experiments.
Collapse
Affiliation(s)
- G B Udy
- Molecular Embryology Group, AgResearch, Ruakura Research Centre, Hamilton, New Zealand.
| | | | | |
Collapse
|
27
|
Yamamoto A, Taki T, Yagi H, Habu T, Yoshida K, Yoshimura Y, Yamamoto K, Matsushiro A, Nishimune Y, Morita T. Cell cycle-dependent expression of the mouse Rad51 gene in proliferating cells. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:1-12. [PMID: 8628240 DOI: 10.1007/bf02174338] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mouse Rad51 gene is a mammalian homologue of the Escherichia coli recA and yeast RAD51 genes, both of which are involved in homologous recombination and DNA repair in mitosis and meiosis. The expression of mouse Rad51 mRNA was examined in synchronized mouse m5S cells. The Rad51 transcript was observed from late G1 phase through to M phase. During the period of late G1-S-G2, the RAD51 proteins were observed exclusively in nuclei. Activation by mitogens of T cell and B cell proliferation in spleen induced the expression of Rad51 mRNA. By immunohistochemical analyses, in mouse RAD51 protein was detected in proliferating cells: spermatogonia in testis, immature T cells in thymus, germinal center cells of the secondary lymphatic nodules of spleen and intestine, follicle cells in ovary and epithelial cells in uterus and intestine. It was also expressed in spermatocytes during early and mid-prophase of meiosis and in resting oocytes before maturation. Thus, mouse Rad51 expression is closely related to the state of cell proliferation and is presumably involved in DNA repair coupled with DNA replication, as well as in meiotic DNA recombination in spermatocytes.
Collapse
Affiliation(s)
- A Yamamoto
- Department of Molecular Embryology, Research Institute of Microbial Diseases, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thyagarajan B, Cruise JL, Campbell C. Elevated levels of homologous DNA recombination activity in the regenerating rat liver. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:31-9. [PMID: 8643992 DOI: 10.1007/bf02374374] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have characterized homologous DNA recombination activity in nuclear protein extracts prepared from quiescent and regenerating rat livers. Activity measured in regenerating liver extracts was elevated approximately 35-fold above control, and its appearance closely mirrored the first wave of DNA synthesis, peaking 24 hours after a regenerative stimulus, and returning fairly rapidly to basal levels. We also identified a strand-transferase protein of approximately 100 kDa whose presence in these extracts correlates with homologous recombination activity. Recent evidence suggests that mammalian somatic cells possess a recombinational DNA repair mechanism analogous to that described in the yeast Saccharomyces cerevisiae. Our results indicate that this recombinational repair process may be regulated in vivo by, or play a role in, progression through the cell division cycle.
Collapse
Affiliation(s)
- B Thyagarajan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
29
|
Gagné M, Pothier F, Sirard MA. Effect of microinjection time during postfertilization S-phase on bovine embryonic development. Mol Reprod Dev 1995; 41:184-94. [PMID: 7654372 DOI: 10.1002/mrd.1080410209] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microinjection into bovine zygotes was performed to evaluate the effects of the timing of injection during the phase of DNA replication on the subsequent in vitro development of embryos and expression of injected chicken beta-actin promoter-lac Z gene construct. The period of DNA replication of bovine zygotes, determined by 3H-thymidine incorporation, begins between 12 hr and 13 hr postinsemination (hpi) of in vitro matured oocytes, reaches a maximum from 17 hpi to 19 hpi, and is complete by 21-22 hpi. Aphidicolin, an inhibitor of DNA polymerase alpha, was used to synchronize the pronuclei and the zygote population. Treatment with aphidicolin at 9-18 hpi arrested DNA replication without affecting formation of the pronuclei or embryo development. Cycloheximide, an inhibitor of protein synthesis, was used for nucleocytoplasmic resynchronization of the aphidicolin-treated zygotes. Microinjection was performed at 15 (early), 18 (mid), and 21 (late S phase) hpi. Embryonic development was affected following each of the three microinjection times. The development of zygotes injected at 18 hpi was significantly higher (P < 0.01) after 5 days of culture than those injected at 15 hpi or 21 hpi. Expression of the marker gene was observed in the higher stage of development (> 16 cells) only in the zygotes injected at 18 hpi. At the earlier stages of development, the proportions of embryos showing expression of the foreign gene were the same for all microinjection times. In aphidicolin- and cycloheximide-treated zygotes, expression of the marker gene followed the same curve as development, i.e., expression was low when injected early or late and higher (P < 0.005) when injected in the middle of zygotic S phase. The ability of the embryos to survive microinjection and to express the marker gene as a function of hpi seems to be influenced mostly in the cytoplasm processing stage rather than the pronuclei processing stage.
Collapse
Affiliation(s)
- M Gagné
- Unité de recherche en Ontogénie et Reproduction, Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | |
Collapse
|
30
|
Reston JT, Gould-Fogerite S, Mannino RJ. Aspects of cellular physiology that influence DNA-mediate gene transfer in NIH3T3 cells. Mol Cell Biochem 1995; 145:169-75. [PMID: 7675036 DOI: 10.1007/bf00935489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cellular physiology has a significant influence on the efficiency of various gene transfer procedures, as shown by the fact that transfection efficiency varies dramatically among different cell lines. However, the aspects of cellular physiology which influence the transfection process remain substantially uncharacterized. In this study, NIH3T3 cells were treated with inhibitors of protein synthesis, DNA synthesis, and RNA synthesis to determine the importance of these processes in the calcium-phosphate transfection process. The results suggest that protein synthesis during the first 4 h after DNA addition enhances transfection. In contrast, inhibition of RNA synthesis has no effect on transfection during the first 24 h post-DNA addition. The DNA synthesis inhibitor results remain inconclusive due to a secondary inhibition of an unknown cellular factor. Secondly, agents that destabilize microtubules, microfilaments, and the golgi apparatus were used to determine whether these elements play a role in the transfection process. The results suggest that microtubules are not involved in the transfection process, microfilaments are important but not necessary for the transfection process, and a functional golgi apparatus is essential early in the transfection process. These studies provide a foundation from which further investigations into the cellular processes involved in the uptake and expression of exogenous DNA can proceed.
Collapse
Affiliation(s)
- J T Reston
- Department of Biomedical Sciences, School of Public Health, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | |
Collapse
|
31
|
[8] Site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome using a cell-free cre-lox recombination system. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1067-2389(06)80040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Kotani H, Kmiec EB. DNA cruciforms facilitate in vitro strand transfer on nucleosomal templates. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:681-90. [PMID: 8028585 DOI: 10.1007/bf00279578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A single, phased nucleosome assembled on a 240 bp DNA duplex molecule blocked Escherichia coli RecA protein-promoted strand transfer of the complementary strand of the duplex onto a homologous single-stranded circle. However, when a four-armed cruciform structure was coupled to either end of the duplex the barrier to strand transfer was overcome and joint molecules were efficiently formed. Micrococcal nuclease digestion indicated that the nucleosome was dissociated by the juxtaposition of the cruciform. We interpret these results to mean that cruciform structures can act over a distance to destabilize adjacent nucleosomes and suggest that, as a consequence, the chromatin structure surrounding a crossed strand recombination intermediate might be disrupted, enabling other recombination events to initiate or the process of branch migration to proceed.
Collapse
Affiliation(s)
- H Kotani
- Department of Molecular Pharmacology, Jefferson Cancer Institute, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107
| | | |
Collapse
|
33
|
Trudel M, Chrétien N, D'Agati V. Disappearance of polycystic kidney disease in revertant c-myc transgenic mice. Mamm Genome 1994; 5:149-52. [PMID: 8199402 DOI: 10.1007/bf00352345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nineteen SBM transgenic mouse lines specifically expressing the c-myc protooncogene in renal epithelium Transgene expression is completely penetrant, leading to death from renal failure. In the course of continuous breeding of eight transgenic lines, all lines underwent spontaneous transgene mutations characterized by partial deletion and probable rearrangement of the transgene insert. Revertant mice and their progeny have no evidence of renal disease. This constitutes the first report of spontaneous mutations occurring within transgene inserts. The high spontaneous mutation frequency of 10(-2) to 10(-3) greatly exceeds that of naturally occurring mutations and is probably favored by the transgene's multiple tandem insertion. These spontaneous mutations demonstrate that the intact transgene is necessary and sufficient to produce the SBM phenotype. Further, these results implicate deregulation of factor(s) governing epithelial cell proliferation in the pathogenesis of PKD in SBM mice.
Collapse
Affiliation(s)
- M Trudel
- Institut de Recherches Cliniques de Montréal, Faculté de Médicine de l'Université de Montréal, Quebec, Canada
| | | | | |
Collapse
|
34
|
Abstract
Genetic recombination systems are present in all living cells and viruses and generally contribute to their hosts' flexibility with respect to changing environmental conditions. Recombination systems not only help highly developed organisms to protect themselves from microbial attack via an elaborate immune system, but conversely, recombination systems also enable microorganisms to escape from such an immune system. Recombination enzymes act with a high specificity on DNA sequences that either exhibit extended stretches of homology or contain characteristic signal sequences. However, recombination enzymes may rarely act on incorrect alternative target sequences, which may result in the formation of chromosomal deletions, inversions, translocations, or amplifications of defined DNA regions. This review describes the characteristics of several recombination systems and focuses on the implication of aberrant recombination in carcinogenesis. The consequences of mitotic recombination on the inappropriate activation of protooncogenes and on the loss of tumor suppressor genes is discussed. Cases are reported where mitotic recombination clearly has been associated with carcinogenesis in rodents as well as humans. Several test systems able to detect recombinagenic activities of chemical compounds are described.
Collapse
Affiliation(s)
- C Sengstag
- Institute of Toxicology, Swiss Federal Institute of Technology, Schwerzenbach
| |
Collapse
|
35
|
Abstract
It is now clear from in vitro studies that mutagens induce recombination in the cell, both homologous and nonhomologous exchanges. The recombination events induced are extrachromosomal events, exchanges between extrachromosomal DNA and chromosomes, and inter- as well as intrachromosomal exchanges. However, not all types of DNA damage can induce recombination. The mechanisms involved in the induction process are not known but may involve activation of DNA repair systems. In addition, stimulation of mRNA transcription by mutagens, different recombination pathways and how the assay system is constructed may affect the frequency and characteristics of the observed recombination events.
Collapse
Affiliation(s)
- D Hellgren
- Department of Clinical Genetics, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
36
|
Shen MR, Deininger PL. An in vivo assay for measuring the recombination potential between DNA sequences in mammalian cells. Anal Biochem 1992; 205:83-9. [PMID: 1443563 DOI: 10.1016/0003-2697(92)90582-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mammalian intermolecular recombination vectors that place the recombination junction within the intron of a selectable marker gene are presented. Many of the previously reported recombination assays require that recombination occur homologously and that they occur within the coding region of the selectable marker. This vector system involves the use of a human thymidine kinase (tk) minigene and measures the recombination frequency between any chosen DNA sequences, in mammalian thymidine kinase negative cells. The tk minigene is divided into a 5' vector and a 3' vector. In the 5' vector, the DNA sequence of interest is inserted in the proximal portion of tk intron 2. In the 3' vector, the DNA sequence of interest is inserted in the intron sequence between the proteolipid protein exon 2 and tk exons 3-7. Recombination through the DNA sequences of interest, either homologous or illegitimate, will reconstruct a functional tk minigene. The recombination junction is spliced out of the transcribed mRNA and thymidine kinase positive cells can be selected in hypoxanthine-aminopterin-thymidine medium. We have tested these vectors to measure the recombination potential of two Alu repetitive sequences (BLUR 8 and BLUR 11) against a control DNA sequence. BLUR 8 and BLUR 11 do not seem to recombine at a significantly higher frequency over that of the control DNA sequence. These recombination vectors display similar sensitivity to previous recombination systems, but allow tremendous flexibility in the choice of potentially recombinogenic sequences.
Collapse
Affiliation(s)
- M R Shen
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112
| | | |
Collapse
|
37
|
Abstract
This article presents a review of recent progress in the field of targeted homologous recombination in mammalian cells. Beginning with an introduction of basic terminology and why 'gene targeting' is potentially such a powerful genetic tool, the article explores some of the obstacles that must be overcome in order for targeting to be generally useful. In particular, the different ways in which investigators have been able to work around the great inefficiency of gene targeting is covered in some detail. When possible, insights into the mechanisms(s) of gene targeting are extracted from the published literature. The use of targeted gene 'knockout' in mouse embryonic stems cells to create animal disease models is discussed. The need for systematic studies into the mechanisms(s) of targeting to make gene targeting useful for human gene therapy is recognized, and some suggestions are made.
Collapse
Affiliation(s)
- A S Waldman
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202
| |
Collapse
|
38
|
Buerstedde JM, Takeda S. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 1991; 67:179-88. [PMID: 1913816 DOI: 10.1016/0092-8674(91)90581-i] [Citation(s) in RCA: 429] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Constructs of four different genetic loci were transfected into the avian leukosis virus-induced chicken B cell line DT40, which continues diversification of its rearranged light chain immunoglobulin gene by gene conversion. Analysis of stable transfectants revealed an unexpectedly high frequency of targeted integration into the homologous gene loci of DT40. Transcriptional activity of the target gene locus is not required, since a construct of the untranscribed ovalbumin gene also integrated predominantly by homologous recombination. A construct derived from the beta-actin locus was transfected into other chicken cell lines to determine the cell type specificity of the phenomenon. Targeted integration still occurred at high frequency in two other B cell lines that do not have the gene conversion activity. However, the ratios of targeted to random integration were reduced by at least one order of magnitude in three non-B cell lines.
Collapse
|
39
|
Mishina Y, Ayusawa D, Seno T, Koyama H. Thymidylate stress induces homologous recombination activity in mammalian cells. Mutat Res 1991; 246:215-20. [PMID: 1824719 DOI: 10.1016/0027-5107(91)90124-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We studied whether homologous recombination activity in mammalian cells could be induced by thymidylate stress (thymidylate deprivation). In vitro recombination activity in cell extracts was measured with pSV2neo-derived plasmids. When prior to the preparation of extracts, mouse FM3A cells were grown in 5-fluorodeoxyuridine (FdUrd), an inducer of thymidylate stress, the homologous recombination activity was significantly induced, as judged from an increase in the number of neomycin-resistant bacterial colonies. Maximum induction was observed in cells treated with 1 microM FUdR for 16 h. However, 3-8 h of treatment of FM3A cells with the drug followed by an additional 8-16-h incubation in its absence was sufficient to induce the recombination activity while slightly reducing their growth rates. These results indicate that thymidylate stress induces homologous recombination activity in mammalian cells as observed in Escherichia coli and in yeast.
Collapse
Affiliation(s)
- Y Mishina
- Kihara Institute for Biological Research, Yokohama City University, Japan
| | | | | | | |
Collapse
|
40
|
Jenab S, Johnson EM. A dual-circular plasmid structure dependent on DNA replication generated in monkey COS7 cells and cell extracts. Biochem Biophys Res Commun 1989; 160:53-9. [PMID: 2540753 DOI: 10.1016/0006-291x(89)91619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
When monkey COS7 cells are transfected with plasmids pSVod or pSV2-neo, a DNA structure can be detected consisting of two circular forms linked by a duplex bridge. Generation of this structure is enhanced by camptothecin, an inhibitor of DNA topoisomerase I. Generation of dual-circles in vitro, using a DNA replication system with added T-antigen, requires template DNA with an SV40 origin. Heterogeneous dual-circles can be visualized involving two initially independent molecules of different size. Implications for in vitro studies of certain types of recombination are discussed.
Collapse
Affiliation(s)
- S Jenab
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
41
|
Abstract
Gene targeting (homologous recombination between DNA sequences residing in the chromosome and newly introduced DNA sequences) in pluripotent, mouse embryo-derived stem (ES) cells promises to provide the means to generate mice of any desired genotype. This review describes some of the background and current advances of gene targeting in mouse ES cells.
Collapse
|
42
|
Affiliation(s)
- A De Lozanne
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235
| |
Collapse
|