1
|
Mukherjee N, Wessels HH, Lebedeva S, Sajek M, Ghanbari M, Garzia A, Munteanu A, Yusuf D, Farazi T, Hoell JI, Akat KM, Akalin A, Tuschl T, Ohler U. Deciphering human ribonucleoprotein regulatory networks. Nucleic Acids Res 2019; 47:570-581. [PMID: 30517751 PMCID: PMC6344852 DOI: 10.1093/nar/gky1185] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023] Open
Abstract
RNA-binding proteins (RBPs) control and coordinate each stage in the life cycle of RNAs. Although in vivo binding sites of RBPs can now be determined genome-wide, most studies typically focused on individual RBPs. Here, we examined a large compendium of 114 high-quality transcriptome-wide in vivo RBP-RNA cross-linking interaction datasets generated by the same protocol in the same cell line and representing 64 distinct RBPs. Comparative analysis of categories of target RNA binding preference, sequence preference, and transcript region specificity was performed, and identified potential posttranscriptional regulatory modules, i.e. specific combinations of RBPs that bind to specific sets of RNAs and targeted regions. These regulatory modules represented functionally related proteins and exhibited distinct differences in RNA metabolism, expression variance, as well as subcellular localization. This integrative investigation of experimental RBP-RNA interaction evidence and RBP regulatory function in a human cell line will be a valuable resource for understanding the complexity of post-transcriptional regulation.
Collapse
Affiliation(s)
- Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hans-Hermann Wessels
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Biology, Humboldt University, 10099 Berlin, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marcin Sajek
- lnstitute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Mahsa Ghanbari
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Aitor Garzia
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Alina Munteanu
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Computer Science, Humboldt University, 10099 Berlin, Germany
| | - Dilmurat Yusuf
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thalia Farazi
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Jessica I Hoell
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA.,Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University of Dusseldorf, Dusseldorf, Germany
| | - Kemal M Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Biology, Humboldt University, 10099 Berlin, Germany.,Institute of Computer Science, Humboldt University, 10099 Berlin, Germany
| |
Collapse
|
2
|
Gruber AJ, Schmidt R, Gruber AR, Martin G, Ghosh S, Belmadani M, Keller W, Zavolan M. A comprehensive analysis of 3' end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res 2016; 26:1145-59. [PMID: 27382025 PMCID: PMC4971764 DOI: 10.1101/gr.202432.115] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
Alternative polyadenylation (APA) is a general mechanism of transcript diversification in mammals, which has been recently linked to proliferative states and cancer. Different 3′ untranslated region (3′ UTR) isoforms interact with different RNA-binding proteins (RBPs), which modify the stability, translation, and subcellular localization of the corresponding transcripts. Although the heterogeneity of pre-mRNA 3′ end processing has been established with high-throughput approaches, the mechanisms that underlie systematic changes in 3′ UTR lengths remain to be characterized. Through a uniform analysis of a large number of 3′ end sequencing data sets, we have uncovered 18 signals, six of which are novel, whose positioning with respect to pre-mRNA cleavage sites indicates a role in pre-mRNA 3′ end processing in both mouse and human. With 3′ end sequencing we have demonstrated that the heterogeneous ribonucleoprotein C (HNRNPC), which binds the poly(U) motif whose frequency also peaks in the vicinity of polyadenylation (poly(A)) sites, has a genome-wide effect on poly(A) site usage. HNRNPC-regulated 3′ UTRs are enriched in ELAV-like RBP 1 (ELAVL1) binding sites and include those of the CD47 gene, which participate in the recently discovered mechanism of 3′ UTR–dependent protein localization (UDPL). Our study thus establishes an up-to-date, high-confidence catalog of 3′ end processing sites and poly(A) signals, and it uncovers an important role of HNRNPC in regulating 3′ end processing. It further suggests that U-rich elements mediate interactions with multiple RBPs that regulate different stages in a transcript's life cycle.
Collapse
Affiliation(s)
- Andreas J Gruber
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ralf Schmidt
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Andreas R Gruber
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Manuel Belmadani
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Walter Keller
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Spriggs KA, Bushell M, Willis AE. Translational regulation of gene expression during conditions of cell stress. Mol Cell 2010; 40:228-37. [PMID: 20965418 DOI: 10.1016/j.molcel.2010.09.028] [Citation(s) in RCA: 547] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/10/2010] [Accepted: 09/28/2010] [Indexed: 01/17/2023]
Abstract
A number of stresses, including nutrient stress, temperature shock, DNA damage, and hypoxia, can lead to changes in gene expression patterns caused by a general shutdown and reprogramming of protein synthesis. Each of these stress conditions results in selective recruitment of ribosomes to mRNAs whose protein products are required for responding to stress. This recruitment is regulated by elements within the 5' and 3' untranslated regions of mRNAs, including internal ribosome entry segments, upstream open reading frames, and microRNA target sites. These elements can act singly or in combination and are themselves regulated by trans-acting factors. Translational reprogramming can result in increased life span, and conversely, deregulation of these translation pathways is associated with disease including cancer and diabetes.
Collapse
Affiliation(s)
- Keith A Spriggs
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | |
Collapse
|
4
|
Liang S, Lutz CS. p54nrb is a component of the snRNP-free U1A (SF-A) complex that promotes pre-mRNA cleavage during polyadenylation. RNA (NEW YORK, N.Y.) 2006; 12:111-21. [PMID: 16373496 PMCID: PMC1370891 DOI: 10.1261/rna.2213506] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/12/2005] [Indexed: 05/05/2023]
Abstract
The U1 snRNP-A (U1A) protein has been known for many years as a component of the U1 snRNP. We have previously described a form of U1A present in human cells in significant amounts that is not associated with the U1 snRNP or U1 RNA but instead is part of a novel complex of non-snRNP proteins that we have termed snRNP-free U1A, or SF-A. Antibodies that specifically recognize this complex inhibit in vitro splicing and polyadenylation of pre-mRNA, suggesting that this complex may play an important functional role in these mRNA-processing activities. This finding was underscored by the determination that one of the components of this complex is the polypyrimidine-tract-binding protein-associated splicing factor, PSF. In order to further our studies on this complex and to determine the rest of the components of the SF-A complex, we prepared several stable HeLa cell lines that overexpress a tandem-affinity-purification-tagged version of U1A (TAP-tagged U1A). Nuclear extract was prepared from one of these cell lines, line 107, and affinity purification was performed along with RNase treatment. We have used mass spectrometry analysis to identify the candidate factors that associate with U1A. We have now identified and characterized PSF, p54(nrb), and p68 as novel components of the SF-A complex. We have explored the function of this complex in RNA processing, specifically cleavage and polyadenylation, by performing immunodepletions followed by reconstitution experiments, and have found that p54(nrb) is critical.
Collapse
Affiliation(s)
- Songchun Liang
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School MSB E671, 185 S. Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
5
|
Soret J, Tazi J. Phosphorylation-dependent control of the pre-mRNA splicing machinery. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 31:89-126. [PMID: 12494764 DOI: 10.1007/978-3-662-09728-1_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- J Soret
- Institut de Génétique Moléculaire, UMR5535 du CNRS, IFR 24, 1919 Route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
6
|
Natalizio BJ, Muniz LC, Arhin GK, Wilusz J, Lutz CS. Upstream elements present in the 3'-untranslated region of collagen genes influence the processing efficiency of overlapping polyadenylation signals. J Biol Chem 2002; 277:42733-40. [PMID: 12200454 DOI: 10.1074/jbc.m208070200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3'-Untranslated regions (UTRs) of genes often contain key regulatory elements involved in gene expression control. A high degree of evolutionary conservation in regions of the 3'-UTR suggests important, conserved elements. In particular, we are interested in those elements involved in regulation of 3' end formation. In addition to canonical sequence elements, auxiliary sequences likely play an important role in determining the polyadenylation efficiency of mammalian pre-mRNAs. We identified highly conserved sequence elements upstream of the AAUAAA in three human collagen genes, COL1A1, COL1A2, and COL2A1, and demonstrate that these upstream sequence elements (USEs) influence polyadenylation efficiency. Mutation of the USEs decreases polyadenylation efficiency both in vitro and in vivo, and inclusion of competitor oligoribonucleotides representing the USEs specifically inhibit polyadenylation. We have also shown that insertion of a USE into a weak polyadenylation signal can enhance 3' end formation. Close inspection of the COL1A2 3'-UTR reveals an unusual feature of two closely spaced, competing polyadenylation signals. Taken together, these data demonstrate that USEs are important auxiliary polyadenylation elements in mammalian genes.
Collapse
Affiliation(s)
- Barbara J Natalizio
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
7
|
Koloteva-Levine N, Amichay M, Elroy-Stein O. Interaction of hnRNP-C1/C2 proteins with RNA: analysis using the yeast three-hybrid system. FEBS Lett 2002; 523:73-8. [PMID: 12123807 DOI: 10.1016/s0014-5793(02)02938-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three-hybrid assays for the analysis of RNA-protein interactions in vivo are usually used, due to technical limitations, only for RNA baits that do not contain runs of four or more consecutive uridines. The present study provides the first example of a three-hybrid analysis of synthetic and natural uridine-rich RNA sequences. The use of the three-hybrid assay enabled us to demonstrate a functional difference between two closely related proteins, heterogeneous nuclear ribonucleoprotein C1 (hnRNP-C1) and hnRNP-C2. The hnRNP-C2 protein, an alternatively spliced variant of hnRNP-C1, contains an additional 13 amino acids between an RNA binding domain (RBD) and a basic leucine zipper-like motif (bZLM), also implied in RNA binding. This study shows that (i) for efficient binding of hnRNP-C1/C2 to RNA, the context of the U-stretch is more important than the stretch itself; (ii) both the RBD and the bZLM bind RNA independently; and (iii) the C2-related 13-amino acid insert enhances the specificity of either the RBD, the bZLM, or the full-length protein towards its ligand, allowing it to bind only the most high-affinity sequences while discriminating against those that do not perfectly match this category. The three-hybrid system is a powerful tool to work out the functional significance of peptide 'modules' within RNA binding proteins generated by alternative splicing.
Collapse
Affiliation(s)
- Nadejda Koloteva-Levine
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | | | | |
Collapse
|
8
|
Wan L, Kim JK, Pollard VW, Dreyfuss G. Mutational definition of RNA-binding and protein-protein interaction domains of heterogeneous nuclear RNP C1. J Biol Chem 2001; 276:7681-8. [PMID: 11113151 DOI: 10.1074/jbc.m010207200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein (hn- RNP) C proteins, among the most abundant pre-mRNA-binding proteins in the eukaryotic nucleus, have a single RNP motif RNA-binding domain. The RNA-binding domain (RBD) is comprised of approximately 80-100 amino acids, and its structure has been determined. However, relatively little is known about the role of specific amino acids of the RBD in the binding to RNA. We have devised a phage display-based screening method for the rapid identification of amino acids in hnRNP C1 that are essential for its binding to RNA. The identified mutants were further tested for binding to poly(U)-Sepharose, a substrate to which wild type hnRNP C1 binds with high affinity. We found both previously predicted, highly conserved residues as well as additional residues in the RBD to be essential for C1 RNA binding. We also identified three mutations in the leucine-rich C1-C1 interaction domain near the carboxyl terminus of the protein that both abolished C1 oligomerization and reduced RNA binding. These results demonstrate that although the RBD is the primary determinant of C1 RNA binding, residues in the C1-C1 interaction domain also influence the RNA binding activity of the protein. The experimental approach we described should be generally applicable for the screening and identification of amino acids that play a role in the binding of proteins to nucleic acid substrates.
Collapse
Affiliation(s)
- L Wan
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | |
Collapse
|
9
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999. [PMID: 10357856 DOI: 10.1007/s13146-011-0050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
10
|
Bagga PS, Arhin GK, Wilusz J. DSEF-1 is a member of the hnRNP H family of RNA-binding proteins and stimulates pre-mRNA cleavage and polyadenylation in vitro. Nucleic Acids Res 1998; 26:5343-50. [PMID: 9826757 PMCID: PMC147992 DOI: 10.1093/nar/26.23.5343] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DSEF-1 protein selectively binds to a G-rich auxiliary sequence element which influences the efficiency of processing of the SV40 late polyadenylation signal. We have obtained cDNA clones of DSEF-1 using sequence information from tryptic peptides isolated from DSEF-1 protein purified from HeLa cells. DSEF-1 protein contains three RNA-binding motifs and is a member of the hnRNP H family of RNA-binding proteins. Recombinant DSEF-1 protein stimulated the efficiency of cleavage and polyadenylation in an AAUAAA-dependent manner in in vitro reconstitution assays. DSEF-1 protein was shown to be able to interact with several poly(A) signals that lacked a G-rich binding site using a less stringent, low ionic strength gel band shift assay. Recombinant DSEF-1 protein specifically stimulated the processing of all of the poly(A) signals tested that contained a high affinity G-rich or low affinity binding site. DSEF-1 specifically increased the level of cross-linking of the 64 kDa protein of CstF to polyadenylation substrate RNAs. These observations suggest that DSEF-1 is an auxiliary factor that assists in the assembly of the general 3'-end processing factors onto the core elements of the polyadenylation signal.
Collapse
Affiliation(s)
- P S Bagga
- UMDNJ-New Jersey Medical School, Department of Microbiology and Molecular Genetics, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
11
|
Shahied-Milam L, Soltaninassab SR, Iyer GV, LeStourgeon WM. The heterogeneous nuclear ribonucleoprotein C protein tetramer binds U1, U2, and U6 snRNAs through its high affinity RNA binding domain (the bZIP-like motif). J Biol Chem 1998; 273:21359-67. [PMID: 9694897 DOI: 10.1074/jbc.273.33.21359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on UV cross-linking experiments, it has been reported that the C protein tetramer of 40 S heterogeneous nuclear ribonucleoprotein complexes specifically interacts with stem-loop I of U2 small nuclear RNA (snRNA) (Temsamani, J., and Pederson, T. (1996) J. Biol. Chem. 271, 24922-24926), that C protein disrupts U4:U6 snRNA complexes (Forne, T., Rossi, F., Labourier, E., Antoine, E., Cathala, G., Brunel, C., and Tazi, J. (1995) J. Biol. Chem. 270, 16476-16481), that U6 snRNA may modulate C protein phosphorylation (Mayrand, S. H., Fung, P. A., and Pederson, T. (1996) Mol. Cell. Biol. 16, 1241-1246), and that hyperphosphorylated C protein lacks pre-mRNA binding activity. These findings suggest that snRNA-C protein interactions may function to recruit snRNA to, or displace C protein from, splice junctions. In this study, both equilibrium and non-equilibrium RNA binding assays reveal that purified native C protein binds U1, U2, and U6 snRNA with significant affinity ( approximately 7.5-50 nM) although nonspecifically. Competition binding assays reveal that U2 snRNA (the highest affinity snRNA substrate) is ineffective in C protein displacement from branch-point/splice junctions or as a competitor of C protein's self-cooperative RNA binding mode. Additionally, C protein binds snRNA through its high affinity bZLM and mutations in the RNA recognition motif at suggested RNA binding sites primarily affect protein oligomerization.
Collapse
Affiliation(s)
- L Shahied-Milam
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
12
|
Greeve J, Lellek H, Rautenberg P, Greten H. Inhibition of the apolipoprotein B mRNA editing enzyme-complex by hnRNP C1 protein and 40S hnRNP complexes. Biol Chem 1998; 379:1063-73. [PMID: 9792439 DOI: 10.1515/bchm.1998.379.8-9.1063] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The apolipoprotein (apo) B mRNA can be modified by a posttranscriptional base change from cytidine to uridine at nucleotide position 6666. This editing of apo B mRNA is mediated by a specific enzyme-complex of which only the catalytic subunit APOBEC-1 (apo B mRNA editing enzyme component 1) has been cloned and extensively characterized. In this study, two-hybrid selection in yeast identified hnRNP C1 protein to interact with APOBEC-1. Recombinant hnRNP C1 protein inhibited partially purified apo B mRNA editing activity from rat small intestine and bound specifically to apo B sense RNA around the editing site. The inhibition of apo B mRNA editing by hnRNP C1 protein was not due to masking of the RNA substrate as the mutant protein M104 spanning the RNA-binding domain of hnRNP C1 protein bound strongly to the apo B RNA, but did not inhibit the editing reaction. The apo B mRNA editing enzyme-complex of rat liver nuclear extracts sedimented in sucrose density gradients around 22-27S, but did not contain hnRNP C1 protein that was found exclusively within 40S hnRNP complexes. The removal of 40S hnRNP complexes increased the activity of the 22-27S editing enzyme-complex. Adding back 40S hnRNP complexes with hnRNP C1 protein resulted in an inhibition of the 22-27S apo B mRNA editing enzyme-complex, while addition of 18S fractions had no effect. In conclusion, hnRNP C1 protein identified by two-hybrid selection in yeast is a potent inhibitor of the apo B mRNA editing enzyme-complex. The abundant hnRNP C1 protein, which is contiguously deposited on nascent pre-mRNA during transcription and is involved in spliceosome assembly and mRNA splicing, is a likely regulator of the editing of apo B mRNA which restricts the activity of APOBEC-1 to limited and specific editing events.
Collapse
Affiliation(s)
- J Greeve
- Medizinische Klinik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
13
|
Soltaninassab SR, McAfee JG, Shahied-Milam L, LeStourgeon WM. Oligonucleotide binding specificities of the hnRNP C protein tetramer. Nucleic Acids Res 1998; 26:3410-7. [PMID: 9649627 PMCID: PMC147712 DOI: 10.1093/nar/26.14.3410] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Through the use of various non-equilibrium RNA binding techniques, the C protein tetramer of mammalian40S hnRNP particles has been characterized previously as a poly(U) binding protein with specificity for the pyrimidine-rich sequences that often precede 3' intron-exon junctions. C protein has also been characterized as a sequence-independent RNA chaperonin that is distributed along nascent transcripts through cooperative binding and as a protein ruler that defines the length of RNA packaged in 40S monoparticles. In this study fluorescence spectroscopy was used to monitor C protein-oligonucleotide binding in a competition binding assay under equilibrium conditions. Twenty nucleotide substrates corresponding to polypyrimidine tracts from IVS1 of the adenovirus-2 major late transcript, the adenovirus-2 oncoprotein E1A 3' splice site, IVS2 of human alpha-tropomyosin, the consensus polypyrimidine tract for U2AF65, AUUUA repeats and r(U)20were used as competitors. A 20 nt beta-globin intronic sequence and a randomly generated oligo were used as competitor controls. These studies reveal that native C protein possesses no enhanced affinity for uridine-rich oligonucleotides, but they confirm the enhanced affinity of C protein for an oligonucleotide identified as a high affinity substrate through selection and amplification. Evidence that the affinity of C protein for the winner sequence is due primarily to its unique structure or to a unique context is seen in its retained substrate affinity when contiguous uridines are replaced with contiguous guanosines.
Collapse
Affiliation(s)
- S R Soltaninassab
- Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
14
|
Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 1997; 137:899-908. [PMID: 9151692 PMCID: PMC2139845 DOI: 10.1083/jcb.137.4.899] [Citation(s) in RCA: 292] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In response to low ambient temperature, mammalian cells as well as microorganisms change various physiological functions, but the molecular mechanisms underlying these adaptations are just beginning to be understood. We report here the isolation of a mouse cold-inducible RNA-binding protein (cirp) cDNA and investigation of its role in cold-stress response of mammalian cells. The cirp cDNA encoded an 18-kD protein consisting of an amino-terminal RNAbinding domain and a carboxyl-terminal glycine-rich domain and exhibited structural similarity to a class of stress-induced RNA-binding proteins found in plants. Immunofluorescence microscopy showed that CIRP was localized in the nucleoplasm of BALB/3T3 mouse fibroblasts. When the culture temperature was lowered from 37 to 32 degrees C, expression of CIRP was induced and growth of BALB/3T3 cells was impaired as compared with that at 37 degrees C. By suppressing the induction of CIRP with antisense oligodeoxynucleotides, this impairment was alleviated, while overexpression of CIRP resulted in impaired growth at 37 degrees C with prolongation of G1 phase of the cell cycle. These results indicate that CIRP plays an essential role in cold-induced growth suppression of mouse fibroblasts. Identification of CIRP may provide a clue to the regulatory mechanisms of cold responses in mammalian cells.
Collapse
Affiliation(s)
- H Nishiyama
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University, Kyoto 606, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Raffalli-Mathieu F, Geneste O, Lang MA. Characterization of two nuclear proteins that interact with cytochrome P-450 1A2 mRNA. Regulation of RNA binding and possible role in the expression of the Cyp1a2 gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:17-24. [PMID: 9128719 DOI: 10.1111/j.1432-1033.1997.00017.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulation of the expression of the cytochrome P-450 la2 gene (cyp1a2) occurs mainly at the transcriptional level, but the molecular events involved in the induction process are partly unknown. Some reports have proposed involvement of post-transcriptional mechanisms [Adesnik, M. & Atchison, M. (1986) Crit. Rev. Biochem. 19, 247-305; Silver, G. & Krauter, K. S. (1990) Mol. Cell. Biol. 10, 6765-6768]. Here we report the identification of two proteins in the nuclear fraction of mouse liver, with specific binding characteristics towards CYP1A2 mRNA. The proteins have apparent molecular masses of 37 kDa and 46 kDa and exhibit a high affinity for a poly(U) motif in the 3' untranslated region of CYP1A2 mRNA. This motif seems to be important for their specific and apparently competitive binding to CYP1A2 mRNA. Treatment of mice with an inducer of CYP1A2, 3-methylcholanthrene, increases the binding of the 46-kDa protein and decreases the binding of the 37-kDa protein to the mRNA, suggesting that changes in the binding of the proteins to the mRNA could play a role in the upregulation of CYP1A2 mRNA by 3-methylcholanthrene. Phosphorylation of the 46-kDa protein, or of an intermediary factor, may play a role in its binding activity. Furthermore, the 46-kDa but not the 37-kDa protein is recognized by a monoclonal antibody against the heterogeneous nuclear ribonucleoprotein C, a nuclear protein probably involved in pre-mRNA processing. While more work is needed to understand the function of the proteins that bind to the 3' untranslated region of CYP1A2, it is possible that the 37-kDa protein has a role in the maintenance of uninduced levels of CYP1A2 mRNA, while the 46-kDa protein could be important in the maturation of elevated levels of CYP1A2 pre-mRNA, during induction.
Collapse
|
16
|
Zaidi SH, Malter JS. Nucleolin and heterogeneous nuclear ribonucleoprotein C proteins specifically interact with the 3'-untranslated region of amyloid protein precursor mRNA. J Biol Chem 1995; 270:17292-8. [PMID: 7615529 DOI: 10.1074/jbc.270.29.17292] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The central nervous system deposition by neurons and glia of beta A4 amyloid protein is an important contributing factor to the development of Alzheimer's disease. Amyloidogenic cells overexpress amyloid precursor protein (APP) mRNAs suggesting a transcriptional or post-transcriptional defect may contribute to this process. We have previously shown that APP mRNAs display regulated stability which is dependent on a 29-base element within the 3'-untranslated region (UTR). This domain specifically interacted with several cytoplasmic RNA-binding proteins. We have purified these APP RNA-binding proteins from a human T-cell leukemia and demonstrate that five cytoplasmic proteins of 70, 48, 47, 39, and 38 kDa form the previously observed APP RNA protein complexes. Amino acid sequence analyses showed that the 70-, 48-, and 47-kDa proteins were fragments of nucleolin and that the 39- and 38-kDa proteins were heterogeneous nuclear ribonucleoprotein (hnRNP) C protein. Northwestern and Western blot analyses of purified material further confirmed these data. Nucleolin protein is known to shuttle between the nucleus and cytoplasm but hnRNP C has not been reported within the cytoplasm. This report of sequence specific, mRNA binding by nucleolin and hnRNP C suggests that these proteins participate in the post-transcriptional regulation of APP mRNA through 3'-UTR, site-specific interactions.
Collapse
Affiliation(s)
- S H Zaidi
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison 53792, USA
| | | |
Collapse
|
17
|
Forné T, Rossi F, Labourier E, Antoine E, Cathala G, Brunel C, Tazi J. Disruption of base-paired U4.U6 small nuclear RNAs induced by mammalian heterogeneous nuclear ribonucleoprotein C protein. J Biol Chem 1995; 270:16476-81. [PMID: 7608220 DOI: 10.1074/jbc.270.27.16476] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Due to 3' end modifications, mammalian U6 small nuclear RNA (snRNA) is heterogeneous in size. The major form terminates with five U residues and a 2',3'-cyclic phosphate, but multiple RNAs containing up to 12 U residues have a 3'-OH end. They are labeled in the presence of [alpha-32P]UTP by the terminal uridylyl transferase activity present in HeLa cell nuclear extracts. That these forms all enter the U6 snRNA-containing particles, U4.U6, U4.U5.U6, and the spliceosome, has been demonstrated previously. Here, we report an interaction between the heterogeneous nuclear ribonucleoprotein (hnRNP) C protein, an abundant nuclear pre-mRNA binding protein, and the U6 snRNAs that have the longest uridylate stretches. This U6 snRNA subset is free of any one of the other snRNPs, since anti-Sm antibodies failed to immunoprecipitate hnRNP C protein. Furthermore, isolated U4.U6 snRNPs containing U6 snRNAs with long oligouridylate stretches are disrupted upon binding of hnRNP C protein either purified from HeLa cells or produced as recombinant protein from Escherichia coli. In view of these data and our previous proposal that the U6 snRNA active in splicing has 3'-OH end, we discuss a model where the hnRNP C protein has a decisive function in the catalytic activation of the spliceosome by allowing the release of U4 snRNP.
Collapse
Affiliation(s)
- T Forné
- Institut de Génétique Moléculaire Unité Mixte de Recherche 9942 CNRS, Universités de Montpellier I et II, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Görlach M, Burd C, Dreyfuss G. The determinants of RNA-binding specificity of the heterogeneous nuclear ribonucleoprotein C proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31621-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
|
20
|
Olsen HS, Cochrane AW, Rosen C. Interaction of cellular factors with intragenic cis-acting repressive sequences within the HIV genome. Virology 1992; 191:709-15. [PMID: 1448921 DOI: 10.1016/0042-6822(92)90246-l] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of the human immunodeficiency virus (HIV) structural gene products is suppressed in the absence of the Rev protein. The block to expression reflects, in part, nuclear retention of those mRNAs which encode the structural proteins. The presence of intragenic cis-acting repressive sequences (CRS) and inefficient splicing of the primary viral transcript are thought to contribute to nuclear entrapment of viral RNA. To elucidate the mechanism for repression of HIV gene expression, the ability of a 270-bp segment of the pol gene shown previously to repress gene expression to interact with cellular factors was investigated. Incubation of RNA corresponding to the 270-bp CRS element with nuclear extract prepared from human T-cells revealed a strong and specific interaction with several cellular factors. Covalent cross-linking of the RNA-protein complex demonstrated the presence of at least three proteins, the predominant one having a molecular weight of approximately 42 kDa. A monoclonal antibody raised against hnRNP C, a component of the splicing machinery, recognized the CRS-protein complex, suggesting that hnRNP C or a closely related gene product interacts with CRS-containing RNA. Consistent with this conclusion, addition of RNA corresponding to a beta-globin intron sequence in the binding reaction completely blocked formation of the CRS-protein complex. These findings raise the possibility that the CRS elements elicit nuclear entrapment of viral RNA through formation of RNA-protein complexes that are not accessible to nuclear export pathways.
Collapse
Affiliation(s)
- H S Olsen
- Department of Gene Regulation, Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey
| | | | | |
Collapse
|
21
|
Murthy K, Manley J. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42111-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Prescott J, Falck-Pedersen E. Varied poly(A) site efficiency in the adenovirus major late transcription unit. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42423-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Cullen BR, Malim MH. The HIV-1 Rev protein: prototype of a novel class of eukaryotic post-transcriptional regulators. Trends Biochem Sci 1991; 16:346-50. [PMID: 1949157 DOI: 10.1016/0968-0004(91)90141-h] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Complex retroviruses, including Human Immunodeficiency Virus Type 1 (HIV-1), are characterized by the ordered temporal expression of the various viral gene products in infected cells. This effect is mediated by a novel class of RNA-sequence-specific regulatory proteins typified by the Rev trans-activator of HIV-1. Evidence suggests that Rev regulates HIV-1 gene expression by intervening in the normal pathway of eukaryotic mRNA processing and transport.
Collapse
Affiliation(s)
- B R Cullen
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
24
|
Keene JD, Query CC. Nuclear RNA-binding proteins. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 41:179-202. [PMID: 1715588 DOI: 10.1016/s0079-6603(08)60009-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- J D Keene
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
25
|
Andersen J, Delihas N. micF RNA binds to the 5' end of ompF mRNA and to a protein from Escherichia coli. Biochemistry 1990; 29:9249-56. [PMID: 1702997 DOI: 10.1021/bi00491a020] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
micF RNA regulates the levels of outer membrane protein F (OmpF) in Escherichia coli in response to temperature increase and other stress conditions by decreasing the levels of ompF mRNA (Andersen et al., 1989). A 93-nucleotide micF RNA was synthesized in vitro directly from polymerase chain reaction generated DNA which was designed to contain a functional T7 RNA polymerase promoter upstream of the micF RNA gene and an appropriate restriction site for transcription termination. A transcript (150 nucleotides) containing the ribosomal binding domain of ompF mRNA messenger was synthesized in vitro from the ompF gene cloned into a T7 expression vector. A stable duplex was formed between micF RNA and the 150-nucleotide 5' transcript of ompF mRNA after incubation at 37 degrees C in a physiological buffer. The melting curve of the duplex formed by micF RNA and 150-nucleotide transcript revealed a Tm of 56 degrees C and a delta Tm that spans about 20 degrees C; both are consistent with the proposed structure for the micF/ompF duplex. In addition, as determined by competition studies and UV cross-linking/label-transfer analyses, an E. coli protein was found to bind specifically to micF RNA. The protein also bound weakly to the 150-nucleotide ompF transcript. The data are the first to demonstrate the complex between micF RNA and the 5' end of ompF mRNA and suggest that in vivo a micF ribonucleoprotein (RNP) particle may participate in the destabilization ompF mRNA during thermoregulation of OmpF porin.
Collapse
Affiliation(s)
- J Andersen
- Department of Microbiology, School of Medicine, State University of New York, Stony Brook 11794
| | | |
Collapse
|
26
|
|
27
|
Affiliation(s)
- M S Swanson
- Department of Immunology & Medical Microbiology, J. Hillis Miller Health Center, College of Medicine, University of Florida, Gainesville 32610-0266
| |
Collapse
|
28
|
|
29
|
Affiliation(s)
- I W Mattaj
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| |
Collapse
|