1
|
Martins VP, Morais SB, Pinheiro CS, Assis NRG, Figueiredo BCP, Ricci ND, Alves-Silva J, Caliari MV, Oliveira SC. Sm10.3, a member of the micro-exon gene 4 (MEG-4) family, induces erythrocyte agglutination in vitro and partially protects vaccinated mice against Schistosoma mansoni infection. PLoS Negl Trop Dis 2014; 8:e2750. [PMID: 24651069 PMCID: PMC3961193 DOI: 10.1371/journal.pntd.0002750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/04/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The parasitic flatworm Schistosoma mansoni is a blood fluke that causes schistosomiasis. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control disease is a combination of drug treatment and immunization with an anti-schistosome vaccine. Numerous antigens that are expressed at the interface between the parasite and the mammalian host have been assessed. Among the most promising molecules are the proteins present in the tegument and digestive tract of the parasite. METHODOLOGY/PRINCIPAL FINDINGS In this study, we evaluated the potential of Sm10.3, a member of the micro-exon gene 4 (MEG-4) family, for use as part of a recombinant vaccine. We confirmed by real-time PCR that Sm10.3 was expressed at all stages of the parasite life cycle. The localization of Sm10.3 on the surface and lumen of the esophageal and intestinal tract in adult worms and lung-stage schistosomula was confirmed by confocal microscopy. We also show preliminary evidence that rSm10.3 induces erythrocyte agglutination in vitro. Immunization of mice with rSm10.3 induced a mixed Th1/Th2-type response, as IFN-γ, TNF-α, and low levels of IL-5 were detected in the supernatant of cultured splenocytes. The protective effect conferred by vaccination with rSm10.3 was demonstrated by 25.5-32% reduction in the worm burden, 32.9-43.6% reduction in the number of eggs per gram of hepatic tissue, a 23.8% reduction in the number of granulomas, an 11.8% reduction in the area of the granulomas and a 39.8% reduction in granuloma fibrosis. CONCLUSIONS/SIGNIFICANCE Our data suggest that Sm10.3 is a potential candidate for use in developing a multi-antigen vaccine to control schistosomiasis and provide the first evidence for a possible role for Sm10.3 in the blood feeding process.
Collapse
MESH Headings
- Agglutination
- Animal Structures/chemistry
- Animals
- Antigens, Helminth/analysis
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Erythrocytes/parasitology
- Female
- Gene Expression Profiling
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred C57BL
- Parasite Load
- Schistosoma mansoni/immunology
- Schistosomiasis mansoni/immunology
- Schistosomiasis mansoni/prevention & control
- Vaccination/methods
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Vicente P. Martins
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Bahia, Brazil
- Departamento de Biologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Biologia Celular do Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Suellen B. Morais
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Bahia, Brazil
| | - Carina S. Pinheiro
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Bahia, Brazil
- Departamento de Biointeração do Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Natan R. G. Assis
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Bahia, Brazil
| | - Barbara C. P. Figueiredo
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Bahia, Brazil
| | - Natasha D. Ricci
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Bahia, Brazil
| | - Juliana Alves-Silva
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo V. Caliari
- Departamento de Patologia Geral do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C. Oliveira
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Bahia, Brazil
| |
Collapse
|
2
|
Hull R, Dlamini Z. The role played by alternative splicing in antigenic variability in human endo-parasites. Parasit Vectors 2014; 7:53. [PMID: 24472559 PMCID: PMC4015677 DOI: 10.1186/1756-3305-7-53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/17/2014] [Indexed: 01/03/2023] Open
Abstract
Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host’s immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites.
Collapse
Affiliation(s)
| | - Zodwa Dlamini
- University of South Africa, College of Agriculture and Environmental Sciences, College of Agriculture and Environmental Sciences, C/o Christiaan de Wet and Pioneer Avenue, Private Bag X6, Florida Science Campus, Florida, Johannesburg 1710, South Africa.
| |
Collapse
|
3
|
Li XH, de Castro-Borges W, Parker-Manuel S, Vance GM, Demarco R, Neves LX, Evans GJO, Wilson RA. The schistosome oesophageal gland: initiator of blood processing. PLoS Negl Trop Dis 2013; 7:e2337. [PMID: 23936568 PMCID: PMC3723592 DOI: 10.1371/journal.pntd.0002337] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/15/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although the ultrastructure of the schistosome esophageal gland was described >35 years ago, its role in the processing of ingested blood has never been established. The current study was prompted by our identification of MEG-4.1 expression in the gland and the observation of erythrocyte uncoating in the posterior esophagus. METHODOLOGY/PRINCIPAL FINDINGS The salient feature of the posterior esophagus, characterized by confocal and electron microscopy, is the enormous increase in membrane surface area provided by the plate-like extensions and basal invaginations of the lining syncytium, with unique crystalloid vesicles releasing their contents between the plates. The feeding process was shown by video microscopy to be divided into two phases, blood first accumulating in the anterior lumen before passing as a bolus to the posterior. There it streamed around a plug of material revealed by confocal microscopy as tethered leucocytes. These were present in far larger numbers than predicted from the volume of the lumen, and in varying states of damage and destruction. Intact erythrocytes were detected in the anterior esophagus but not observed thereafter, implying that their lysis occurred rapidly as they enter the posterior. Two further genes, MEGs 4.2 and 14, were shown to be expressed exclusively in the esophageal gland. Bioinformatics predicted that MEGs 4.1 and 4.2 possessed a common hydrophobic region with a shared motif, while antibodies to SjMEG-4.1 showed it was bound to leucocytes in the esophageal lumen. It was also predicted that MEGs 4.1 and 14 were heavily O-glycosylated and this was confirmed for the former by 2D-electrophoresis and Western blotting. CONCLUSIONS/SIGNIFICANCE The esophageal gland and its products play a central role in the processing of ingested blood. The binding of host antibodies in the esophageal lumen shows that some constituents are antibody targets and could provide a new source of vaccine candidates.
Collapse
Affiliation(s)
- Xiao-Hong Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasitology and Vector Biology, Ministry of Health, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
DeMarco R, Mathieson W, Manuel SJ, Dillon GP, Curwen RS, Ashton PD, Ivens AC, Berriman M, Verjovski-Almeida S, Wilson RA. Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts. Genome Res 2010; 20:1112-21. [PMID: 20606017 PMCID: PMC2909574 DOI: 10.1101/gr.100099.109] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 05/14/2010] [Indexed: 11/24/2022]
Abstract
Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (< or =36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.
Collapse
Affiliation(s)
- Ricardo DeMarco
- Department of Biology, University of York, York YO10 5YW, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wilson RA, Coulson PS. Immune effector mechanisms against schistosomiasis: looking for a chink in the parasite's armour. Trends Parasitol 2009; 25:423-31. [PMID: 19717340 DOI: 10.1016/j.pt.2009.05.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 05/15/2009] [Accepted: 05/22/2009] [Indexed: 11/19/2022]
Abstract
A recombinant antigen vaccine against Schistosoma mansoni remains elusive, in part because the parasite deploys complex defensive and offensive strategies to combat immune attack. Nevertheless, research on rodent and primate models has shown that schistosomes can be defeated when appropriate responses are elicited. Acquired protection appears to involve protracted inhibition of larval migration or key molecular processes at the adult surfaces, not rapid cytolytic killing mechanisms. A successful vaccine will likely require a cocktail of antigens rather than a single recombinant protein. In addition, ways need to be found of keeping the immune system on permanent alert, either to achieve adequate inhibition of protein function in adults, or because a trickle of incoming parasites does not amplify the secondary response.
Collapse
Affiliation(s)
- R Alan Wilson
- Department of Biology, University of York, PO Box 373,York YO10 5YW, UK.
| | | |
Collapse
|
6
|
Rajkovic A, Davis RE, Simonsen JN, Rottman FM. A spliced leader is present on a subset of mRNAs from the human parasite Schistosoma mansoni. Proc Natl Acad Sci U S A 1990; 87:8879-83. [PMID: 2247461 PMCID: PMC55063 DOI: 10.1073/pnas.87.22.8879] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present evidence that a subset of mRNAs in the human parasitic trematode Schistosoma mansoni contain an identical 36-nucleotide spliced leader (SL) sequence at their 5' termini. The SL is derived from a 90-nucleotide nonpolyadenylylated RNA (SL RNA), presumably by trans-splicing. Neither the SL nor the SL RNA share significant sequence identity with previously described trans-spliced leaders and SL RNAs in trypanosomatid protozoans or nematodes. However, several features, such as predicted secondary structure, trimethylguanosine cap, and potential Sm binding site, suggest similarities among SL RNAs in widely divergent organisms. Our evidence also indicates that the exon 3 acceptor site of the 3-hydroxy-3-methylglutaryl-CoA reductase gene can be spliced either to the SL by trans-splicing or to an upstream exon, 2, by cis-splicing. The presence of a SL sequence in S. mansoni, a member of the phylum Platyhelminthes, suggests that transplicing may be a common feature of other lower invertebrates.
Collapse
Affiliation(s)
- A Rajkovic
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | | | |
Collapse
|
7
|
Rajkovic A, Simonsen JN, Davis RE, Rottman FM. Molecular cloning and sequence analysis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase from the human parasite Schistosoma mansoni. Proc Natl Acad Sci U S A 1989; 86:8217-21. [PMID: 2813388 PMCID: PMC298251 DOI: 10.1073/pnas.86.21.8217] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
cDNA clones encoding the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase [(S)-mevalonate:NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34] from the human parasite Schistosoma mansoni have been isolated and characterized. The composite 3459 base pairs of cDNA sequence contains a 2844-base-pair open reading frame corresponding to a protein of 948 amino acids. The predicted S. mansoni HMG-CoA reductase protein contains a hydrophobic amino terminus consisting of seven potential transmembrane domains that are structurally conservative but are not identical in amino acid sequence with HMG-CoA reductases from other species. The hydrophilic carboxyl terminus of the S. mansoni HMG-CoA reductase protein, however, shares 48-52% sequence identity with the carboxyl termini of other HMG-CoA reductases in a region that contains the catalytic domain. When expressed as a fusion protein in Escherichia coli, the carboxyl-terminal domain of the schistosome protein exhibits HMG-CoA reductase enzyme activity.
Collapse
Affiliation(s)
- A Rajkovic
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | | | |
Collapse
|
8
|
Ransohoff RM, Denker JA, Takacs AM, Hannon GJ, Nilsen TW. Organization and expression of 5S rRNA genes in the parasitic nematode, Brugia malayi. Nucleic Acids Res 1989; 17:3773-82. [PMID: 2734103 PMCID: PMC317858 DOI: 10.1093/nar/17.10.3773] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA sequence analysis of genes encoding 5S rRNA in the human parasitic nematode Brugia malayi (B. malayi) indicates a surprising degree of heterogeneity. This variation in coding sequence is not accompanied by corresponding heterogeneity in flanking regions which are highly conserved. Six out of eight potential 5S coding regions differed; of these sequence variants, two were abundant in the B. malayi genome. Direct RNA sequence analysis indicated that one of these abundant variants accounts for most if not all of expressed 5S RNA at two stages of development.
Collapse
Affiliation(s)
- R M Ransohoff
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | | | | | |
Collapse
|