1
|
Bhattacharjee P, Wang D, Anderson D, Buckler JN, de Geus E, Yan F, Polekhina G, Schittenhelm R, Creek DJ, Harris LD, Sadler AJ. The immune response to RNA suppresses nucleic acid synthesis by limiting ribose 5-phosphate. EMBO J 2024; 43:2636-2660. [PMID: 38778156 PMCID: PMC11217295 DOI: 10.1038/s44318-024-00100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
During infection viruses hijack host cell metabolism to promote their replication. Here, analysis of metabolite alterations in macrophages exposed to poly I:C recognises that the antiviral effector Protein Kinase RNA-activated (PKR) suppresses glucose breakdown within the pentose phosphate pathway (PPP). This pathway runs parallel to central glycolysis and is critical to producing NADPH and pentose precursors for nucleotides. Changes in metabolite levels between wild-type and PKR-ablated macrophages show that PKR controls the generation of ribose 5-phosphate, in a manner distinct from its established function in gene expression but dependent on its kinase activity. PKR phosphorylates and inhibits the Ribose 5-Phosphate Isomerase A (RPIA), thereby preventing interconversion of ribulose- to ribose 5-phosphate. This activity preserves redox control but decreases production of ribose 5-phosphate for nucleotide biosynthesis. Accordingly, the PKR-mediated immune response to RNA suppresses nucleic acid production. In line, pharmacological targeting of the PPP during infection decreases the replication of the Herpes simplex virus. These results identify an immune response-mediated control of host cell metabolism and suggest targeting the RPIA as a potential innovative antiviral treatment.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Die Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua N Buckler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Eveline de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Department of Clinical Hematology, Monash University, Clayton, VIC, 3004, Australia
| | - Galina Polekhina
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ralf Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Anthony J Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
2
|
Yan H, Hales BF. Effects of an Environmentally Relevant Mixture of Organophosphate Esters Derived From House Dust on Endochondral Ossification in Murine Limb Bud Cultures. Toxicol Sci 2021; 180:62-75. [PMID: 33367866 PMCID: PMC7916738 DOI: 10.1093/toxsci/kfaa180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Organophosphate esters (OPEs) are used widely as flame retardants and plasticizers but much remains unknown about their potential toxicity. Previously, we reported that 4 individual OPEs suppress endochondral ossification in murine limb bud cultures. However, real-life exposure is to complex OPE mixtures. In the present study, we tested the hypothesis that a Canadian household dust-based OPE mixture will affect endochondral ossification in gestation day 13 CD1 mouse embryo limb buds expressing fluorescent markers for the major cell populations involved in the process: collagen type II alpha 1-enhanced cyan fluorescent protein (proliferative chondrocytes), collagen type X alpha 1-mCherry (hypertrophic chondrocytes), and collagen type I alpha 1-yellow fluorescent protein (osteoblasts). Limbs were cultured for 6 days in the presence of vehicle or dilutions of the OPE mixture (1/1 000 000, 1/600 000, and 1/300 000). All 3 OPE mixture dilutions affected cartilage template development and the progression of endochondral ossification, as indicated by the fluorescent markers. The expression of Sox9, the master regulator of chondrogenesis, was unchanged, but the expression of Runx2 and Sp7, which drive chondrocyte hypertrophy and osteoblastogenesis, was dilution-dependently suppressed. RNA-seq revealed that exposure to the 1/300 000 dilution of the OPE mixture for 24 h downregulated 153 transcripts and upregulated 48 others by at least 1.5-fold. Downregulated transcripts were enriched for those related to the immune system and bone formation. In contrast, upregulated transcripts were enriched for those with stress response functions known to be regulated by ATF4 activation. Thus, exposure to the mixture of OPEs commonly found in house dust may have adverse effects on bone formation.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
3
|
Kanno A, Asahara SI, Furubayashi A, Masuda K, Yoshitomi R, Suzuki E, Takai T, Kimura-Koyanagi M, Matsuda T, Bartolome A, Hirota Y, Yokoi N, Inaba Y, Inoue H, Matsumoto M, Inoue K, Abe T, Wei FY, Tomizawa K, Ogawa W, Seino S, Kasuga M, Kido Y. GCN2 regulates pancreatic β cell mass by sensing intracellular amino acid levels. JCI Insight 2020; 5:128820. [PMID: 32376799 DOI: 10.1172/jci.insight.128820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/01/2020] [Indexed: 01/09/2023] Open
Abstract
EIF2AK4, which encodes the amino acid deficiency-sensing protein GCN2, has been implicated as a susceptibility gene for type 2 diabetes in the Japanese population. However, the mechanism by which GCN2 affects glucose homeostasis is unclear. Here, we show that insulin secretion is reduced in individuals harboring the risk allele of EIF2AK4 and that maintenance of GCN2-deficient mice on a high-fat diet results in a loss of pancreatic β cell mass. Our data suggest that GCN2 senses amino acid deficiency in β cells and limits signaling by mechanistic target of rapamycin complex 1 to prevent β cell failure during the consumption of a high-fat diet.
Collapse
Affiliation(s)
- Ayumi Kanno
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Ayuko Furubayashi
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Katsuhisa Masuda
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Risa Yoshitomi
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Emi Suzuki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Tomoko Takai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | | | - Tomokazu Matsuda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Alberto Bartolome
- Naomi Berrie Diabetes Center and Department of Medicine, Columbia University, New York, New York, USA
| | - Yushi Hirota
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Takaya Abe
- Laboratory for Animal Resource Development and.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Kasuga
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and.,Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| |
Collapse
|
4
|
Lacerda R, Menezes J, Candeias MM. Alternative Mechanisms of mRNA Translation Initiation in Cellular Stress Response and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:117-132. [PMID: 31342440 DOI: 10.1007/978-3-030-19966-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout evolution, eukaryotic cells have devised different mechanisms to cope with stressful environments. When eukaryotic cells are exposed to stress stimuli, they activate adaptive pathways that allow them to restore cellular homeostasis. Most types of stress stimuli have been reported to induce a decrease in overall protein synthesis accompanied by induction of alternative mechanisms of mRNA translation initiation. Here, we present well-studied and recent examples of such stress responses and the alternative translation initiation mechanisms they induce, and discuss the consequences of such regulation for cell homeostasis and oncogenic transformation.
Collapse
Affiliation(s)
- Rafaela Lacerda
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Juliane Menezes
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Marco M Candeias
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal. .,MaRCU - Molecular and RNA Cancer Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Holcik M. Could the eIF2α-Independent Translation Be the Achilles Heel of Cancer? Front Oncol 2015; 5:264. [PMID: 26636041 PMCID: PMC4659918 DOI: 10.3389/fonc.2015.00264] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/12/2015] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic initiation factor eIF2 is a key component of the ternary complex whose role is to deliver initiator tRNA into the ribosome. A variety of stimuli, both physiologic and pathophysiologic activate eIF2 kinases that phosphorylate the α subunit of eIF2, preventing it from forming the ternary complex, thus attenuating cellular protein synthesis. Paradoxically, in cancer cells, the phosphorylation of eIF2α is associated with activation of survival pathways. This review explores the recently emerged novel mechanism of eIF2α-independent translation initiation. This mechanism, which appears to be shared by some RNA viruses and Internal Ribosome Entry Site-containing cellular mRNAs and utilizes auxiliary proteins, such as eIF5B, eIF2D, and MCT-1, is responsible for the selective translation of cancer-associated genes and could represent a weak point amenable to specific targeting for the treatment of cancer.
Collapse
Affiliation(s)
- Martin Holcik
- Department of Pediatrics, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
6
|
Kepp O, Semeraro M, Bravo-San Pedro JM, Bloy N, Buqué A, Huang X, Zhou H, Senovilla L, Kroemer G, Galluzzi L. eIF2α phosphorylation as a biomarker of immunogenic cell death. Semin Cancer Biol 2015; 33:86-92. [PMID: 25749194 DOI: 10.1016/j.semcancer.2015.02.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
Cancer cells exposed to some forms of chemotherapy and radiotherapy die while eliciting an adaptive immune response. Such a functionally peculiar variant of apoptosis has been dubbed immunogenic cell death (ICD). One of the central events in the course of ICD is the activation of an endoplasmic reticulum (ER) stress response. This is instrumental for cells undergoing ICD to emit all the signals that are required for their demise to be perceived as immunogenic by the host, and culminates with the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). In particular, eIF2α phosphorylation is required for the pre-apoptotic exposure of the ER chaperone calreticulin (CALR) on the cell surface, which is a central determinant of ICD. Importantly, phosphorylated eIF2α can be quantified in both preclinical and clinical samples by immunoblotting or immunohistochemistry using phosphoneoepitope-specific monoclonal antibodies. Of note, the phosphorylation of eIF2α and CALR exposure do not necessarily correlate with each other, and neither of these parameters is sufficient for cell death to be perceived as immunogenic. Nonetheless, accumulating data indicate that assessing the degree of phosphorylation of eIF2α provides a convenient parameter to monitor ICD. Here, we discuss the role of the ER stress response in ICD and the potential value of eIF2α phosphorylation as a biomarker for this clinically relevant variant of apoptosis.
Collapse
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Michaela Semeraro
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, Paris, France
| | - José Manuel Bravo-San Pedro
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Xing Huang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Heng Zhou
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Laura Senovilla
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
7
|
Keeping the eIF2 alpha kinase Gcn2 in check. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1948-68. [PMID: 24732012 DOI: 10.1016/j.bbamcr.2014.04.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 12/31/2022]
Abstract
The protein kinase Gcn2 is present in virtually all eukaryotes and is of increasing interest due to its involvement in a large array of crucial biological processes. Some of these are universally conserved from yeast to humans, such as coping with nutrient starvation and oxidative stress. In mammals, Gcn2 is important for e.g. long-term memory formation, feeding behaviour and immune system regulation. Gcn2 has been also implicated in diseases such as cancer and Alzheimer's disease. Studies on Gcn2 have been conducted most extensively in Saccharomyces cerevisiae, where the mechanism of its activation by amino acid starvation has been revealed in most detail. Uncharged tRNAs stimulate Gcn2 which subsequently phosphorylates its substrate, eIF2α, leading to reduced global protein synthesis and simultaneously to increased translation of specific mRNAs, e.g. those coding for Gcn4 in yeast and ATF4 in mammals. Both proteins are transcription factors that regulate the expression of a myriad of genes, thereby enabling the cell to initiate a survival response to the initial activating cue. Given that Gcn2 participates in many diverse processes, Gcn2 itself must be tightly controlled. Indeed, Gcn2 is regulated by a vast network of proteins and RNAs, the list of which is still growing. Deciphering molecular mechanisms underlying Gcn2 regulation by effectors and inhibitors is fundamental for understanding how the cell keeps Gcn2 in check ensuring normal organismal function, and how Gcn2-associated diseases may develop or may be treated. This review provides a critical evaluation of the current knowledge on mechanisms controlling Gcn2 activation or activity.
Collapse
|
8
|
Singleton CK, Xiong Y, Kirsten JH, Pendleton KP. eIF2α kinases regulate development through the BzpR transcription factor in Dictyostelium discoideum. PLoS One 2012; 7:e32500. [PMID: 22403666 PMCID: PMC3293825 DOI: 10.1371/journal.pone.0032500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/27/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A major mechanism of translational regulation in response to a variety of stresses is mediated by phosphorylation of eIF2α to reduce delivery of initiator tRNAs to scanning ribosomes. For some mRNAs, often encoding a bZIP transcription factor, eIF2α phosphorylation leads to enhanced translation due to delayed reinitiation at upstream open reading frames. Dictyostelium cells possess at least three eIF2α kinases that regulate various portions of the starvation-induced developmental program. Cells possessing an eIF2α that cannot be phosphorylated (BS167) show abnormalities in growth and development. We sought to identify a bZIP protein in Dictyostelium whose production is controlled by the eIF2α regulatory system. PRINCIPAL FINDINGS Cells disrupted in the bzpR gene had similar developmental defects as BS167 cells, including small entities, stalk defects, and reduced spore viability. β-galactosidase production was used to examine translation from mRNA containing the bzpR 5' UTR. While protein production was readily apparent and regulated temporally and spatially in wild type cells, essentially no β-galactosidase was produced in developing BS167 cells even though the lacZ mRNA levels were the same as those in wild type cells. Also, no protein production was observed in strains lacking IfkA or IfkB eIF2α kinases. GFP fusions, with appropriate internal controls, were used to directly demonstrate that the bzpR 5' UTR, possessing 7 uORFs, suppressed translation by 12 fold. Suppression occurred even when all but one uORF was deleted, and translational suppression was removed when the ATG of the single uORF was mutated. CONCLUSIONS The findings indicate that BzpR regulates aspects of the development program in Dictyostelium, serving as a downstream effector of eIF2α phosphorylation. Its production is temporally and spatially regulated by eIF2α phosphorylation by IfkA and IfkB and through the use of uORFs within the bzpR 5' UTR.
Collapse
Affiliation(s)
- Charles K Singleton
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.
| | | | | | | |
Collapse
|
9
|
Hartmann T, Sasse C, Schedler A, Hasenberg M, Gunzer M, Krappmann S. Shaping the fungal adaptome--stress responses of Aspergillus fumigatus. Int J Med Microbiol 2011; 301:408-16. [PMID: 21565548 DOI: 10.1016/j.ijmm.2011.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aspergillus fumigatus as prime pathogen to cause aspergillosis has evolved as a saprophyte, but is also able to infect and colonise immunocompromised hosts. Based on the 'dual use' hypothesis of fungal pathogenicity, general characteristics have to be considered as unspecific virulence determinants, among them stress adaptation capacities. The susceptible, warm-blooded mammalian host represents a specific ecological niche that poses several kinds of stress conditions to the fungus during the course of infection. Detailed knowledge about the cellular pathways and adaptive traits that have evolved in A. fumigatus to counteract situations of stress and varying environmental conditions is crucial for the identification of novel and specific antifungal targets. Comprehensive profiling data accompanied by mutant analyses have shed light on such stressors, and nutritional deprivation, oxidative stress, hypoxia, elevated temperature, alkaline pH, extensive secretion, and, in particular during treatment with antifungals, cell membrane perturbations appear to represent the major hazards A. fumigatus has to cope with during infection. Further efforts employing innovative approaches and advanced technologies will have to be made to expand our knowledge about the scope of the A. fumigatus adaptome that is relevant for disease.
Collapse
Affiliation(s)
- Thomas Hartmann
- Research Center for Infectious Diseases, Julius-Maximilians-University Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation. Appl Microbiol Biotechnol 2009; 84:937-54. [PMID: 19711068 DOI: 10.1007/s00253-009-2204-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/12/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
System-wide "omics" approaches have been widely applied to study a limited number of laboratory strains of Saccharomyces cerevisiae. More recently, industrial S. cerevisiae strains have become the target of such analyses, mainly to improve our understanding of biotechnologically relevant phenotypes that cannot be adequately studied in laboratory strains. Most of these studies have investigated single strains in a single medium. This experimental layout cannot differentiate between generally relevant molecular responses and strain- or media-specific features. Here we analyzed the transcriptomes of two phenotypically diverging wine yeast strains in two different fermentation media at three stages of wine fermentation. The data show that the intersection of transcriptome datasets from fermentations using either synthetic MS300 (simulated wine must) or real grape must (Colombard) can help to delineate relevant from "noisy" changes in gene expression in response to experimental factors such as fermentation stage and strain identity. The differences in the expression profiles of strains in the different environments also provide relevant insights into the transcriptional responses toward specific compositional features of the media. The data also suggest that MS300 is a representative environment for conducting research on wine fermentation and industrially relevant properties of wine yeast strains.
Collapse
|
11
|
Krappmann S, Braus GH. Nitrogen metabolism of Aspergillus and its role in pathogenicity. Med Mycol 2005; 43 Suppl 1:S31-40. [PMID: 16110790 DOI: 10.1080/13693780400024271] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Aspergilli represent unique pathogens. Based on their saprophytic life style they are able to colonize a variety of ecological niches, among them the immunocompromised individual. Distinct fungal attributes that play a role in pathogenicity of aspergilli have been described, and primary metabolism indisputably has to be taken into account for contributing to the virulence potential of this fungal genus. Here we present an overview of studies that focus on this aspect of nutritional versatility. In the predominant pathogenic representative Aspergillus fumigatus regulation of nitrogen utilization and sensing of nitrogen sources have been scrutinized with respect to pathogenicity. The impact of distinct metabolic pathways on virulence capacities could be evaluated by inspection of auxotrophic mutant strains. Among them, para-aminobenzoic acid-requiring mutants revealed that this biosynthetic route is strictly required for pathogenicity. For amino acid anabolism only lysine biosynthesis has been investigated in this regard. Fungal amino acid biosynthesis is generally subject to strict regulation mediated by the Cross-Pathway Control system, a conserved regulatory circuit evolved to counteract conditions of nutritional stress. A clear influence of the system on pathogenicity could be observed by targeting its transcriptional activator CpcA. However, additional metabolic characteristics as well as regulatory instruments that compensate environmental challenges need to be addressed in future research with the aim to assess the significance of fungal primary metabolism for pathogenicity of aspergillus species.
Collapse
Affiliation(s)
- S Krappmann
- Institute of Microbiology & Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Göttingen, Germany.
| | | |
Collapse
|
12
|
Kimball SR. Regulation of translation initiation by amino acids in eukaryotic cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:155-84. [PMID: 11575165 DOI: 10.1007/978-3-642-56688-2_6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translation of mRNA in eukaryotic cells is regulated by amino acids through multiple mechanisms. One such mechanism involves activation of mTOR (Fig. 1). mTOR controls a myriad of downstream effectors, including RNA polymerase I, S6K1, 4E-BP1, and eEF2 kinase. In yeast, and probably in higher eukaryotes, mTOR signals through Tap42p/alpha 4 to regulate protein phosphatases. Through phosphorylation of Tap42p/alpha 4, mTOR abrogates dephosphorylation of the downstream effectors by PP2 A and/or PP6, resulting in their increased phosphorylation. Although at this time still speculative, in vitro results using mTOR immunoprecipitates suggest that mTOR, or an associated kinase, may also be directly involved in phosphorylating some effectors. Enhanced RNA polymerase I activity results in increased transcription of rDNA genes, whereas increased S6K1 activity promotes preferential translation of TOP mRNAs, such as those encoding ribosomal proteins. Together, stimulated RNA polymerase I and S6K1 activities enhance ribosome biogenesis, increasing the translational capacity of the cell. Phosphorylation of 4E-BP1 prohibits its association with eIF4E, allowing eIF4E to bind to eIF4G and form the active eIF4F complex. Increased eIF4F formation preferentially stimulates translation of mRNAs containing long, highly-structured 5' UTRs. Finally, amino acids cause inhibition of the eEF2 kinase, resulting in an increase in the proportion of eEF2 in the active, dephosphorylated form. By inhibiting eEF2 phosphorylation, amino acids may not only stimulate translation elongation, but may also prevent activation of GCN2 by enhancing the rate of removal of deacylated tRNA from the P-site on the ribosome; a potential activator of GCN2. GCN2 may also be regulated directly by the accumulation of deacylated-tRNA caused by treatment with inhibitors of tRNA synthetases or in cells incubated in the absence of essential amino acids. However, because the Km of the tRNA synthetases for amino acids is well above the amino acid concentrations found in plasma of fasted animals, such a mechanism may not be operative in mammals in vivo. Activation of GCN2 results in increased phosphorylation of the alpha-subunit of eIF2, which in turn causes inhibition of eIF2B. Thus, by preventing activation of GCN2, amino acids preserve eIF2B activity, which promotes translation of all mRNAs, i.e., global protein synthesis is enhanced.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acids, Essential/metabolism
- Animals
- Carrier Proteins/metabolism
- Cell Cycle Proteins
- DNA-Binding Proteins
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2B/metabolism
- Fungal Proteins/genetics
- Humans
- Models, Biological
- Peptide Chain Initiation, Translational/physiology
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/metabolism
- Ribosomal Protein S6 Kinases/metabolism
- Ribosomes/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Signal Transduction
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
13
|
Grundmann O, Mösch HU, Braus GH. Repression of GCN4 mRNA Translation by Nitrogen Starvation in Saccharomyces cerevisiae. J Biol Chem 2001; 276:25661-71. [PMID: 11356835 DOI: 10.1074/jbc.m101068200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae activates a regulatory network called "general control" that provides the cell with sufficient amounts of protein precursors during amino acid starvation. We investigated how starvation for nitrogen affects the general control regulatory system, because amino acid biosynthesis is part of nitrogen metabolism. Amino acid limitation results in the synthesis of the central transcription factor Gcn4p, which binds to specific DNA-binding motif sequences called Gcn4-protein-responsive elements (GCREs) that are present in the promoter regions of its target genes. Nitrogen starvation increases GCN4 transcription but efficiently represses expression of both a synthetic GCRE6::lacZ reporter gene and the natural amino acid biosynthetic gene ARO4. Repression of Gcn4p-regulated transcription by nitrogen starvation is independent of the ammonium sensing systems that include Mep2p and Gpa2p or Ure2p and Gln3p but depends on the four upstream open reading frames in the GCN4 mRNA leader sequence. Efficient translation of GCN4 mRNA is completely blocked by nitrogen starvation, even when cells are simultaneously starved for amino acids and eukaryotic initiation factor-2 alpha is fully phosphorylated by Gcn2p. Our data suggest that nitrogen starvation regulates translation of GCN4 by a novel mechanism that involves the four upstream open reading frames but that still acts independently of eukaryotic initiation factor-2 alpha phosphorylation by Gcn2p.
Collapse
Affiliation(s)
- O Grundmann
- Institute for Microbiology and Genetics, Georg-August-University, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
14
|
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 2001; 21:4347-4368. [PMID: 11390663 DOI: 10.1128/mcb.21.13.4347-4368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Starvation for amino acids induces Gcn4p, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. In an effort to identify all genes regulated by Gcn4p during amino acid starvation, we performed cDNA microarray analysis. Data from 21 pairs of hybridization experiments using two different strains derived from S288c revealed that more than 1,000 genes were induced, and a similar number were repressed, by a factor of 2 or more in response to histidine starvation imposed by 3-aminotriazole (3AT). Profiling of a gcn4Delta strain and a constitutively induced mutant showed that Gcn4p is required for the full induction by 3AT of at least 539 genes, termed Gcn4p targets. Genes in every amino acid biosynthetic pathway except cysteine and genes encoding amino acid precursors, vitamin biosynthetic enzymes, peroxisomal components, mitochondrial carrier proteins, and autophagy proteins were all identified as Gcn4p targets. Unexpectedly, genes involved in amino acid biosynthesis represent only a quarter of the Gcn4p target genes. Gcn4p also activates genes involved in glycogen homeostasis, and mutant analysis showed that Gcn4p suppresses glycogen levels in amino acid-starved cells. Numerous genes encoding protein kinases and transcription factors were identified as targets, suggesting that Gcn4p is a master regulator of gene expression. Interestingly, expression profiles for 3AT and the alkylating agent methyl methanesulfonate (MMS) overlapped extensively, and MMS induced GCN4 translation. Thus, the broad transcriptional response evoked by Gcn4p is produced by diverse stress conditions. Finally, profiling of a gcn4Delta mutant uncovered an alternative induction pathway operating at many Gcn4p target genes in histidine-starved cells.
Collapse
Affiliation(s)
- K Natarajan
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Shi Y, An J, Liang J, Hayes SE, Sandusky GE, Stramm LE, Yang NN. Characterization of a mutant pancreatic eIF-2alpha kinase, PEK, and co-localization with somatostatin in islet delta cells. J Biol Chem 1999; 274:5723-30. [PMID: 10026192 DOI: 10.1074/jbc.274.9.5723] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of eukaryotic translation initiation factor-2alpha (eIF-2alpha) is one of the key steps where protein synthesis is regulated in response to changes in environmental conditions. The phosphorylation is carried out in part by three distinct eIF-2alpha kinases including mammalian double-stranded RNA-dependent eIF-2alpha kinase (PKR) and heme-regulated inhibitor kinase (HRI), and yeast GCN2. We report the identification and characterization of a related kinase, PEK, which shares common features with other eIF-2alpha kinases including phosphorylation of eIF-2alpha in vitro. We show that human PEK is regulated by different mechanisms than PKR or HRI. In contrast to PKR or HRI, which are dependent on autophosphorylation for their kinase activity, a point mutation that replaced the conserved Lys-614 with an alanine completely abolished the eIF-2alpha kinase activity, whereas the mutant PEK was still autophosphorylated when expressed in Sf-9 cells. Northern blot analysis indicates that PEK mRNA was predominantly expressed in pancreas, though low expression was also present in several tissues. Consistent with the high levels of mRNA in pancreas, the PEK protein was only detected in human pancreatic islets, and the kinase co-localized with somatostatin, a pancreatic delta cell-specific hormone. Thus PEK is believed to play an important role in regulating protein synthesis in the pancreatic islet, especially in islet delta cells.
Collapse
Affiliation(s)
- Y Shi
- Diabetes Research, DC 0545, Endocrine Division, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hoffmann B, Mösch HU, Sattlegger E, Barthelmess IB, Hinnebusch A, Braus GH. The WD protein Cpc2p is required for repression of Gcn4 protein activity in yeast in the absence of amino-acid starvation. Mol Microbiol 1999; 31:807-22. [PMID: 10048025 DOI: 10.1046/j.1365-2958.1999.01219.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CPC2 gene of the budding yeast Saccharomyces cerevisiae encodes a G beta-like WD protein which is involved in regulating the activity of the general control activator Gcn4p. The CPC2 gene encodes a premRNA which is spliced and constitutively expressed in the presence or absence of amino acids. Loss of CPC2 gene function suppresses a deletion of the GCN2 gene encoding the general control sensor kinase, but not a deletion in the GCN4 gene. The resulting phenotype has resistance against amino-acid analogues. The Neurospora crassa cpc-2 and the rat RACK1 genes are homologues of CPC2 that complement the yeast cpc2 deletion. The cpc2 delta mutation leads to increased transcription of Gcn4p-dependent genes under non-starvation conditions without increasing GCN4 expression or the DNA binding activity of Gcn4p. Cpc2p-mediated transcriptional repression requires the Gcn4p transcriptional activator and a Gcn4p recognition element in the target promoter. Frameshift mutations resulting in a shortened G beta-like protein cause a different phenotype that has sensitivity against amino-acid analogues similar to a gcn2 deletion. Cpc2p seems to be part of an additional control of Gcn4p activity, independent of its translational regulation.
Collapse
Affiliation(s)
- B Hoffmann
- Institute for Microbiology and Genetics, Georg August University, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Sattlegger E, Hinnebusch AG, Barthelmess IB. cpc-3, the Neurospora crassa homologue of yeast GCN2, encodes a polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains required for general amino acid control. J Biol Chem 1998; 273:20404-16. [PMID: 9685394 DOI: 10.1074/jbc.273.32.20404] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on characteristic amino acid sequences of kinases that phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha kinases), degenerate oligonucleotide primers were constructed and used to polymerase chain reaction-amplify from genomic DNA of Neurospora crassa a sequence encoding part of a putative protein kinase. With this sequence an open reading frame was identified encoding a predicted polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains. The 1646 amino acid sequence of this gene, called cpc-3, showed 35% positional identity over almost the entire sequence with GCN2 of yeast, which stimulates translation of the transcriptional activator of amino acid biosynthetic genes encoded by GCN4. Strains disrupted for cpc-3 were unable to induce increased transcription and derepression of amino acid biosynthetic enzymes in amino acid-deprived cells. The cpc-3 mutation did not affect the ability to up-regulate mRNA levels of cpc-1, encoding the GCN4 homologue and transcriptional activator of amino acid biosynthetic genes in N. crassa, but the mutation abolished the dramatic increase of CPC1 protein level in response to amino acid deprivation. These findings suggest that cpc-3 is the functional homologue of GCN2, being required for increased translation of cpc-1 mRNA in amino acid-starved cells.
Collapse
Affiliation(s)
- E Sattlegger
- Institute of Applied Genetics, University of Hannover, Herrenhäuser Strasse 2, D-30419 Hannover, Germany.
| | | | | |
Collapse
|
18
|
Xiong WC, Macklem M, Parsons JT. Expression and characterization of splice variants of PYK2, a focal adhesion kinase-related protein. J Cell Sci 1998; 111 ( Pt 14):1981-91. [PMID: 9645946 DOI: 10.1242/jcs.111.14.1981] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesion kinase and the recently identified proline-rich tyrosine kinase 2 (PYK2), also known as cell adhesion kinase β, related adhesion focal tyrosine kinase or calcium-dependent protein tyrosine kinase, define a new family of non-receptor protein tyrosine kinases. Activation of PYK2 has been implicated in multiple signaling events, including modulation of ion channels, T- and B-cell receptor signaling and cell death. Mechanisms underlying the functional diversity of PYK2 are unclear. Here, we provide evidence for two novel alternatively expressed isoforms of PYK2. One isoform, designated PYK2s (PYK2 splice form), appears to be a splice variant of PYK2 lacking 42 amino acids within the C-terminal domain. A second isoform, referred to as PRNK (PYK2-related non-kinase), appears to be specified by mRNAs that encode only part of the C-terminal domain of PYK2. Northern blot analysis indicates that the unspliced PYK2 is expressed at high levels in the brain and poorly expressed in the spleen, whereas PYK2s and PRNK are expressed in the spleen. In situ hybridization studies of rat brain demonstrate that the unspliced PYK2 is selectively expressed at high levels in hippocampus, cerebral cortex and olfactory bulb, whereas PYK2s and PRNK are expressed at low levels in all regions of rat brain examined. Immunofluorescence analysis of ectopically expressed PRNK protein shows that PRNK, in contrast to full-length PYK2, is localized to focal adhesions by sequences within the focal adhesion targeting domain. In addition, PYK2, but not PRNK, interacts with p130(cas)and Graf. These results imply that PRNK may selectively regulate PYK2 function in certain cells by binding to some but not all PYK2 binding partners, and the functional diversity mediated by PYK2 may be due in part to complex alternative splicing.
Collapse
Affiliation(s)
- W C Xiong
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
19
|
Bischoff KM, Shi L, Kennelly PJ. The detection of enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 1998; 260:1-17. [PMID: 9648646 DOI: 10.1006/abio.1998.2680] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
More than a hundred different enzymes impinging on aspects of cell function ranging from carbohydrate and lipid metabolism to signal transduction and gene expression to biomolecule degradation have been detected by the assay of their enzymatic activities following SDS-PAGE. The strategies by which this has been accomplished are as varied as the enzymes themselves and offer testimony to the creativeness and ingenuity of life scientists. Assay of enzyme activity following SDS-PAGE is well adapted to identifying the source of catalytic activity in a heterogeneous protein mixture or a heterooligomeric protein (20), or determining if multiple catalytic activities reside in a single polypeptide (60). The alliance of versatile enzyme assay techniques with the molecular resolution of SDS-PAGE offers a powerful means for meeting the increasing demand for the high-throughput screening arising from protein engineering, combinatorial chemistry, and functional genomics.
Collapse
Affiliation(s)
- K M Bischoff
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
20
|
Tavernarakis N, Alexandraki D, Liodis P, Tzamarias D, Thireos G. Gene overexpression reveals alternative mechanisms that induce GCN4 mRNA translation. Gene 1996; 179:271-7. [PMID: 8972911 DOI: 10.1016/s0378-1119(96)00379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Saccharomyces cerevisiae GCN4 gene which encodes the transcription activator Gcn4, is under translational regulation. Derepression of GCN4 mRNA translation is mediated by the Gcn2 protein kinase which phosphorylates the alpha subunit of eIF-2, upon amino-acid starvation. Here, we report that overexpression of certain Saccharomyces cerevisiae genes generates intracellular conditions that alleviate the requirement for a functional Gcn2 kinase to induce GCN4 mRNA translation. Our findings, combined with the fact that Gcn2 kinase is dispensable during the initiation phase of the cellular response to amino-acid limitation, provide the grounds to further elucidate the mechanisms underlying the physiology of this homeostatic response.
Collapse
Affiliation(s)
- N Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece.
| | | | | | | | | |
Collapse
|
21
|
Tavernarakis N, Thireos G. Genetic evidence for functional specificity of the yeast GCN2 kinase. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:613-8. [PMID: 8709969 DOI: 10.1007/bf02173652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In yeast the GCN2 kinase mediates translational control of GCN4 by phosphorylating the alpha subunit of eIF-2 in response to extracellular amino acid limitation. Although phosphorylation of eIF-2 alpha has been shown to inhibit global protein synthesis, amino acid starvation results in a specific activation effect on GCN4 mRNA translation. Under the same conditions, translation of other mRNAs appears only slightly affected. The mechanism responsible for the observed selectivity of the GCN2 kinase is not clear. Here, we present genetic evidence that suggests that locally restricted action of the GCN2 kinase facilitates GCN4-specific translational regulation.
Collapse
Affiliation(s)
- N Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | |
Collapse
|
22
|
Kyrpides N, Tavernarakis N, Papamatheakis J, Thireos G. A transient GCN4 mRNA destabilization follows GCN4 translational derepression. J Biol Chem 1995; 270:17317-20. [PMID: 7615533 DOI: 10.1074/jbc.270.29.17317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Studies based on experimental strategies that utilized either inhibitors or structural alterations point to the existence of an inverse relationship between translation and stability of a given mRNA. In this study we have investigated the potential link between translation and stability of the yeast GCN4 mRNA whose translational rates change with respect to amino acid availability. We observed that under conditions favoring its translation, the steady state levels of the GCN4 mRNA were decreased, but this was not due to a measurable alternation in its decay rate. We have demonstrated that an extensive destabilization of this message is intimately coupled with its increased access to heavy polysomes, which occurs transiently in the process of translational derepression. This transient change in the stability is what readjusts the steady state levels of the GCN4 mRNA. This study demonstrates in vivo the existence of a mechanism of mRNA degradation that is coupled with the process of translation.
Collapse
Affiliation(s)
- N Kyrpides
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Crete, Greece
| | | | | | | |
Collapse
|
23
|
Tavernarakis N, Thireos G. A recombinatorial method useful for cloning dominant alleles in Saccharomyces cerevisiae. Nucleic Acids Res 1995; 23:537-8. [PMID: 7885852 PMCID: PMC306709 DOI: 10.1093/nar/23.3.537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- N Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Crete, Greece
| | | |
Collapse
|
24
|
Li Y, Miller LK. Expression and functional analysis of a baculovirus gene encoding a truncated protein kinase homolog. Virology 1995; 206:314-23. [PMID: 7831787 DOI: 10.1016/s0042-6822(95)80047-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Autographa californica nuclear polyhedrosis virus (AcMNPV) potentially encodes a 215-amino acid polypeptide containing 6 out of 11 motifs conserved among eukaryotic protein kinases (Morris et al., Virology 200, 360-369, 1994). We examined the expression of this gene, named pk2, at the transcriptional and translational levels and the possible role of the gene during baculovirus replication in cell culture and insect larvae. Northern (RNA) blot analysis revealed that pk2 was transcribed primarily as an early 1.2-kb RNA. Western blot analysis showed that pk2 was expressed as a 25-kDa protein, PK2, which was present both early and late during virus infection. To examine the function(s) of pk2, we constructed a mutant baculovirus, vKINdel, in which one-third of the PK2-coding region was deleted and then compared the characteristics of vKINdel with wild-type AcMNPV and a marker-rescued revertant. The pk2 deletion mutation had no discernable effect on the number, size, or appearance of plaques, the kinetics of protein synthesis or protein phosphorylation profiles during virus infection of cultured SF-21 cells. Deletion of pk2 also had no significant influence on the infectivity or virulence of the baculovirus in larval bioassays and the level of occluded virus production was normal. Thus, pk2 does not appear to have a significant influence on virus replication in the host systems examined.
Collapse
Affiliation(s)
- Y Li
- Department of Genetics, University of Georgia, Athens 30602
| | | |
Collapse
|
25
|
Abstract
Phosphorylation of eukaryotic initiation factor-2 (eIF-2) is an important mechanism regulating general translation initiation. Two mammalian eIF-2 kinases, the double-stranded-RNA-dependent kinase (PKR) and heme-regulated inhibitor kinase (HRI), have been characterized by sequencing, revealing shared sequence and structural features distinct from other eukaryotic protein kinases. Recent work in yeast has shown that a third related kinase, GCN2, also phosphorylates the regulated site in eIF-2. However, unlike the mammalian kinases, this kinase regulates gene-specific translation. Current models are presented for the regulation of each eIF-2 kinase, and the molecular basis for how this general form of regulation is adapted to control expression of a single species of messenger RNA is discussed.
Collapse
Affiliation(s)
- R C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122
| |
Collapse
|
26
|
Diallinas G, Thireos G. Genetic and biochemical evidence for yeast GCN2 protein kinase polymerization. Gene X 1994; 143:21-7. [PMID: 8200534 DOI: 10.1016/0378-1119(94)90599-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The GCN2 (general control kinase 2) protein is an eIF2-alpha (eukaryotic initiation factor alpha) kinase which mediates translational derepression of the yeast general control transcriptional activator, GCN4, upon amino-acid starvation. We isolated and characterized GCN2 mutations differentially affecting GCN2 function. Mutations mapping in, or close to, the ATP-binding site of the kinase moiety result in constitutively activated GCN2 molecules. A C-terminal regulatory mutation dramatically affects translation initiation rates resulting in pleiotropic phenotypes. The effect of mutations in both regions were found to depend on eIF2-alpha phosphorylation. We have demonstrated that GCN2 mutants have altered autophosphorylation activities in vitro, depending on the presence or absence of a wild-type GCN2 gene and that GCN2 elutes in gel-filtration chromatography fractions with high apparent molecular mass. Both these genetic and biochemical findings suggest that GCN2 functioning might involve polymerization to form dimers or tetramers.
Collapse
Affiliation(s)
- G Diallinas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | |
Collapse
|
27
|
Mellor H, Flowers K, Kimball S, Jefferson L. Cloning and characterization of cDNA encoding rat hemin-sensitive initiation factor-2 alpha (eIF-2 alpha) kinase. Evidence for multitissue expression. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34044-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Pantopoulos K, Johansson HE, Hentze MW. The role of the 5' untranslated region of eukaryotic messenger RNAs in translation and its investigation using antisense technologies. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:181-238. [PMID: 7938549 PMCID: PMC7133200 DOI: 10.1016/s0079-6603(08)60856-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter discusses the recent advances in the field of translational control and the possibility of applying the powerful antisense technology to investigate some of the unanswered questions, especially those pertaining to the role of the 5’untranslated region ( UTR) on translation initiation. Translational regulation is predominantly exerted during the initiation phase that is considered to be the rate-limiting step. Two types of translational regulation can be distinguished: global, in which the initiation rate of (nearly) all cellular messenger RNA (mRNA) is controlled and selective, in which the translation rate of specific mRNAs varies in response to the biological stimuli. In most cases of global regulation, control is exerted via the phosphorylation state of certain initiation factors, whereas only a few examples of selective regulation have been characterized well enough to define the underlying molecular events. Interestingly, cis-acting regulatory sequences, affecting translation initiation, have been found not only in the 5’UTRs of selectively regulated mRNAs, but also in the 3’UTRs. Thus, in addition to the protein encoding open reading frames, both the 5’ and 3’UTRs of mRNAs must be considered for their effect on translation.
Collapse
Key Words
- alas, 5-aminolevulinate synthase
- bfgf, basic fibroblast growth factor
- bip, immunoglobulin-binding protein
- cat, chloramphenicol acetyltransferase
- dai, double-stranded rna-activated inhibitor
- ealas, erythroid-specific form of alas
- frp, ferritin repressor protein
- gcd, general control derepressible
- gcn, general control nonderepressible
- gef, guanine-nucleotide exchange factor
- grp, glucose-regulated protein
- hgh, human growth hormone
- icam, intracellular adhesion molecule
- ire, iron-responsive element
- ire-bp, iron-responsive element-binding protein
- ires, internal ribosomal entry site
- irf, iron regulatory factor
- irp, iron regulatory protein
- la, lupus erythematosus antigen
- lap, liver-enriched activating protein
- lip, liver-enriched inhibitory protein
- mep, methyl phosphonate
- pa, phosphoramidate
- pdgf, platelet-derived growth factor
- pest, phosphotriester
- pll, poly(1-lysine)
- po, phosphodiester
- ps, phosphorothioate
- ps2, phosphorodithioate
- ssl, suppressor of stem-loop
- tce, translational control element
- tgf, transforming growth factor
Collapse
Affiliation(s)
- K Pantopoulos
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Mauri I, Maddaloni M, Lohmer S, Motto M, Salamini F, Thompson R, Martegani E. Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yeast. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:319-26. [PMID: 8246886 DOI: 10.1007/bf00284684] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of this research was to determine whether the structural homology between the O2 gene, a maize transcriptional activator, and the GCN4 gene, a yeast transcriptional factor, is reflected at the level of function. The O2 cDNA was cloned in the yeast expression vector pEMBLyex4 under the control of a hybrid inducible promoter, and used to transform the yeast Saccharomyces cerevisiae. Transformed yeast cells produced O2 mRNA and a polypeptide immunoreactive with anti-O2 antibodies during growth in galactose. The heterologous protein was correctly translocated into the yeast nuclei, as demonstrated by immunofluorescence, indicating that the nuclear targeting sequences of maize are recognized by yeast cells. Further experiments demonstrated the ability of O2 to rescue a gcn4 mutant grown in the presence of aminotriazole, an inhibitor of the HIS3 gene product, suggesting that O2 activates the HIS3 gene, gene normally under control of GCN4. It was shown that the O2 protein is able to trans-activate the HIS4 promoter in yeast cells and binds to it in vitro. The sequence protected by O2, TGACTC, is also the binding site for GCN4. Finally, the expression of O2 protein in yeast did not produce alterations during batch growth at 30 degrees C, while transformants expressing O2 protein showed a conditionally lethal phenotype when grown in galactose at 36 degrees C; this phenotype mimics the behaviour of gcd mutants. The results support the idea that basic mechanisms of transcription control have been highly conserved in eukaryotes.
Collapse
Affiliation(s)
- I Mauri
- Instituto Biochimica Comparata, Facoltà di Scienze, Università di Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Hinnebusch AG. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol Microbiol 1993; 10:215-23. [PMID: 7934812 DOI: 10.1111/j.1365-2958.1993.tb01947.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) is one of the best-characterized mechanisms for down-regulating total protein synthesis in mammalian cells in response to various stress conditions. Recent work indicates that regulation of the GCN4 gene of Saccharomyces cerevisiae by amino acid availability represents a gene-specific case of translational control by phosphorylation of eIF-2 alpha. Four short open reading frames in the leader of GCN4 mRNA (uORFs) restrict the flow of scanning ribosomes from the cap site to the GCN4 initiation codon. When amino acids are abundant, ribosomes translate the first uORF and reinitiate at one of the remaining uORFs in the leader, after which they dissociate from the mRNA. Under conditions of amino acid starvation, many ribosomes which have translated uORF1 fail to reinitiate at uORFs 2-4 and utilize the GCN4 start codon instead. Failure to reinitiate at uORFs 2-4 in starved cells results from a reduction in the GTP-bound form of eIF-2 that delivers charged initiator tRNA(iMet) to the ribosome. When the levels of eIF-2.GTP.Met-tRNA(iMet) ternary complexes are low, many ribosomes will not rebind this critical initiation factor following translation of uORF1 until after scanning past uORF4, but before reaching GCN4. Phosphorylation of eIF-2 by the protein kinase GCN2 decreases the concentration of eIF-2.GTP.Met-tRNA(iMet) complexes by inhibiting the guanine nucleotide exchange factor for eIF-2, which is the same mechanism utilized in mammalian cells to inhibit total protein synthesis by phosphorylation of eIF-2.
Collapse
Affiliation(s)
- A G Hinnebusch
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
31
|
Clark MW, Zhong WW, Keng T, Storms RK, Ouellette BF, Barton A, Kaback DB, Bussey H. The YAL017 gene on the left arm of chromosome I of Saccharomyces cerevisiae encodes a putative serine/threonine protein kinase. Yeast 1993; 9:543-9. [PMID: 8322517 DOI: 10.1002/yea.320090511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The DNA sequence of a region between the LTE1 and CYS3 genes on the left arm of chromosome I from Saccharomyces cerevisiae contains an open reading frame (ORF), YAL017, corresponding to the 5.0 kb FUN31 (Function Unknown Now) transcribed region. The predicted protein from this ORF contains 1358 amino acid residues with a molecular weight of 152,531, and an identifiable serine/threonine protein kinase catalytic domain. When compared with other yeast protein kinases, the Yal017p kinase most resembles the SNF1 serine/threonine protein kinase which is involved in regulating sucrose fermentation genes. The Yal017p kinase shows highest amino acid identities with two mammalian carcinoma-related serine/threonine protein kinases; PIM-1, which shows induced expression in T-cell lymphomas; and p78A1, whose expression is lost in human pancreatic carcinomas. Gene disruption of YAL017 indicates that it is non-essential for growth on glucose.
Collapse
Affiliation(s)
- M W Clark
- Biology Department, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52994-x] [Citation(s) in RCA: 297] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Lindahl L, Hinnebusch A. Diversity of mechanisms in the regulation of translation in prokaryotes and lower eukaryotes. Curr Opin Genet Dev 1992; 2:720-6. [PMID: 1281027 DOI: 10.1016/s0959-437x(05)80132-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regulation of translation is used to control the expression of many essential and highly expressed genes. The known repertoire of molecular mechanisms for translational regulation is expanding. Recently elucidated mechanisms involve alterations in mRNA structure and modulation of the activity of translation initiation factors.
Collapse
Affiliation(s)
- L Lindahl
- Department of Biology, University of Rochester, New York 14627
| | | |
Collapse
|
34
|
Nikawa J, Yamashita S. IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae. Mol Microbiol 1992; 6:1441-6. [PMID: 1625574 DOI: 10.1111/j.1365-2958.1992.tb00864.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel gene, IRE1, of Saccharomyces cerevisiae was cloned through genetic complementation of a myoinositol auxotrophic mutant. The predicted amino acid sequence indicated that IRE1 encodes a protein of 126983 Da with two highly hydrophobic regions, probably a signal sequence and a membrane-spanning region. The carboxy-terminal region of IRE1 showed close sequence similarity to the catalytic domains of protein kinases. Disruption of the IRE1 locus caused myo-inositol auxotrophy. The IRE1 product is very likely a protein kinase required for myo-inositol synthesis.
Collapse
Affiliation(s)
- J Nikawa
- Department of Biochemistry, Gunma University School of Medicine, Maebashi, Japan
| | | |
Collapse
|
35
|
Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 1992; 68:585-96. [PMID: 1739968 DOI: 10.1016/0092-8674(92)90193-g] [Citation(s) in RCA: 625] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We show that phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2) by the protein kinase GCN2 mediates translational control of the yeast transcriptional activator GCN4. In vitro, GCN2 specifically phosphorylates the alpha subunit of rabbit or yeast eIF-2. In vivo, phosphorylation of eIF-2 alpha increases in response to amino acid starvation, which is dependent on GCN2. Substitution of Ser-51 with alanine eliminates phosphorylation of eIF-2 alpha by GCN2 in vivo and in vitro and abolishes increased expression of GCN4 and amino acid biosynthetic genes under its control in amino acid-starved cells. The Asp-51 substitution mimics the phosphorylated state and derepresses GCN4 in the absence of GCN2. Thus, an established mechanism for regulating total protein synthesis in mammalian cells mediates gene-specific translational control in yeast.
Collapse
Affiliation(s)
- T E Dever
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- C G Proud
- Department of Biochemistry, School of Medical Sciences, University of Bristol, England
| |
Collapse
|
37
|
Hoekstra MF, Liskay RM, Ou AC, DeMaggio AJ, Burbee DG, Heffron F. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science 1991; 253:1031-4. [PMID: 1887218 DOI: 10.1126/science.1887218] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH2-terminus of HRR25 contains the hallmark features of protein kinases, whereas the COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily.
Collapse
Affiliation(s)
- M F Hoekstra
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92186
| | | | | | | | | | | |
Collapse
|
38
|
Hoekstra MF, Demaggio AJ, Dhillon N. Genetically identified protein kinases in yeast. I: Transcription, translation, transport and mating. Trends Genet 1991; 7:256-61. [PMID: 1771673 DOI: 10.1016/0168-9525(91)90325-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Studies from a wide array of different fields using Saccharomyces cerevisiae as an experimental organism have uncovered protein phosphorylation as a recurrent theme in the regulation of diverse cellular activities. Protein kinases in yeast regulate a variety of processes; this article discusses several genetically identified protein kinases and the roles that these kinases play in cell growth and development.
Collapse
Affiliation(s)
- M F Hoekstra
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92186-5800
| | | | | |
Collapse
|
39
|
|
40
|
Abstract
The molecular events responsible for controlling cell growth and development, as well as their coordinate interaction is only beginning to be revealed. At the basis of these controlling events are hormones, growth factors and mitogens which, through transmembrane signalling trigger an array of cellular responses, initiated by receptor-associated tyrosine kinases, which in turn either directly or indirectly mediate their effects through serine/threonine protein kinases. Utilizing the obligatory response of activation of protein synthesis in cell growth and development, we describe efforts to work backwards along the regulatory pathway to the receptor, identifying those molecular components involved in modulating the rate of translation. We begin by describing the components and steps of protein synthesis and then discuss in detail the regulatory pathways involved in the mitogenic response of eukaryotic cells and during meiotic maturation of oocytes. Finally we discuss possible future work which will further our understanding of these systems.
Collapse
Affiliation(s)
- S J Morley
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
41
|
|
42
|
Abstract
Picornaviruses are small naked icosahedral viruses with a single-stranded RNA genome of positive polarity. According to current taxonomy, the family includes four genera: Enterouirus (polioviruses, coxsackieviruses, echoviruses, and other enteroviruses), Rhinovirus, Curdiouirus [encephalomyocarditis virus (EMCV), mengovirus, Theiler's murine encephalomyelitis virus (TMEV)], and Aphthouirus [foot-and-mouth disease viruses (FMDV)]. There are also some, as yet, unclassified picornaviruses [e.g., hepatitis A virus (HAW] that should certainly be assessed as a separate genus. Studies on the molecular biology of picornaviruses might be divided into two periods: those before and after the first sequencing of the poliovirus genome. The 5'-untranslated region (5-UTR) of the viral genome was one of the unexpected problems. This segment proved to be immensely long: about 750 nucleotides or ∼10% of the genome length. There were also other unusual features (e.g., multiple AUG triplets preceding the single open reading frame (ORF) that encodes the viral polyprotein). This chapter shows that the picornaviral 5-UTRs are not only involved in such essential events as the synthesis of viral proteins and RNAs that could be expected to some extent, although some of the underlying mechanisms appeared to be quite a surprise, but also may determine diverse biological phenotypes from the plaque size or thermosensitivity of reproduction to attenuation of neurovirulence. Furthermore, a close inspection of the 5-UTR structure unravels certain hidden facets of the evolution of the picornaviral genome. Finally, the conclusions drawn from the experiments with the picornaviral5-UTRs provide important clues for understanding the functional capabilities of the eukaryotic ribosomes.
Collapse
Affiliation(s)
- V I Agol
- Institute of Poliomyelitis and Viral Encephalitides, U.S.S.R. Academy of Medical Sciences, Moscow
| |
Collapse
|
43
|
Hannig EM, Williams NP, Wek RC, Hinnebusch AG. The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae. Genetics 1990; 126:549-62. [PMID: 2249755 PMCID: PMC1204211 DOI: 10.1093/genetics/126.3.549] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The GCN4 protein of S. cerevisiae is a transcriptional activator of amino acid biosynthetic genes which are subject to general amino acid control. GCN3, a positive regulator required for increased GCN4 expression in amino acid-starved cells, is thought to function by antagonism of one or more negative regulators encoded by GCD genes. We isolated gcn3c alleles that lead to constitutively derepressed expression of GCN4 and amino acid biosynthetic genes under its control. These mutations map in the protein-coding sequences and, with only one exception, do not increase the steady-state level of GCN3 protein. All of the gcn3c alleles lead to derepression of genes under the general control in the absence of GCN1 and GCN2, two other positive regulators of GCN4 expression. This finding suggests that GCN3 functions downstream from GCN1 and GCN2 in the general control pathway. In accord with this idea, constitutively derepressing alleles of GCN2 are greatly dependent on GCN3 for their derepressed phenotype. The gcn3c alleles that are least dependent on GCN1 and GCN2 for derepression cause slow-growth under nonstarvation conditions. In addition, all of the gcn3c alleles are less effective than wild-type GCN3 in overcoming the temperature-sensitive lethality associated with certain mutations in the negative regulator GCD2. These results suggest that activation of GCN3 positive regulatory function by the gcn3c mutations involves constitutive antagonism of GCD2 function, leading to reduced growth rates and derepression of GCN4 expression in the absence of amino acid starvation.
Collapse
Affiliation(s)
- E M Hannig
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
44
|
Miller PF, Hinnebusch AG. cis-acting sequences involved in the translational control of GCN4 expression. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:151-4. [PMID: 2207139 DOI: 10.1016/0167-4781(90)90157-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Four short upstream open reading frames (uORFs) in the mRNA leader are required for the translational control of GCN4 expression in response to amino acid availability. Data are reviewed demonstrating that the fourth (3' proximal) uORF is sufficient to establish the repressed levels of GCN4 expression, while the first uORF functions as a positive regulatory element under starvation conditions to stimulate GCN4 translation. Furthermore, positive and negative trans-acting regulatory factors, the activities of which appear to be modulated according to amino acid availability, exert their effects on GCN4 expression through the uORFs. Direct comparison of the uORFs indicates that there are important nucleotide sequence differences between uORF1 and 4, and that these are located primarily around the termination codons of these elements. Recent findings suggest that the sequences that mediate repression of GCN4 expression are complex, but can be overcome under starvation conditions by ribosomes that have previously translated uORF1.
Collapse
Affiliation(s)
- P F Miller
- Section of the Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
45
|
Jones DG, Rosamond J. Isolation of a novel protein kinase-encoding gene from yeast by oligodeoxyribonucleotide probing. Gene 1990; 90:87-92. [PMID: 2199332 DOI: 10.1016/0378-1119(90)90442-t] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have identified a novel protein kinase-encoding gene, KIN3, in the genome of the budding yeast Saccharomyces cerevisiae. The gene was isolated from a library of cloned genomic fragments by probing with an oligodeoxyribonucleotide mixture corresponding to part of a highly-conserved region in the catalytic domain of protein serine-threonine kinases. KIN3 is unique in the yeast genome, maps to chromosome VI and is actively expressed in mitotically dividing cells to produce a 1400 nucleotide (nt) message. The nt sequence of KIN3 predicts a protein product of 43.4 kDa which contains all of the conserved elements found in known protein serine-threonine kinases, although the organisation of these elements in the KIN3 gene product differs significantly from the consensus. The function of the KIN3-encoded protein kinase is unclear although it appears not to be essential for growth, conjugation or sporulation.
Collapse
Affiliation(s)
- D G Jones
- Department of Biochemistry and Molecular Biology, University of Manchester, U.K
| | | |
Collapse
|
46
|
Clemens MJ. Does protein phosphorylation play a role in translational control by eukaryotic aminoacyl-tRNA synthetases? Trends Biochem Sci 1990; 15:172-5. [PMID: 2193433 DOI: 10.1016/0968-0004(90)90153-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In addition to their primary role in tRNA charging, aminoacyl-tRNA synthetases can regulate protein synthesis in eukaryotic cells. Although the phosphorylation of these enzymes themselves has little effect on their catalytic activity, there may be a role for protein phosphorylation in mediating their regulatory effects.
Collapse
Affiliation(s)
- M J Clemens
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| |
Collapse
|
47
|
Mueller CR, Maire P, Schibler U. DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell 1990; 61:279-91. [PMID: 2331750 DOI: 10.1016/0092-8674(90)90808-r] [Citation(s) in RCA: 334] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The full-length cDNA for a transcriptional activator, DBP, that binds to the D site of the albumin promoter has been cloned. DBP belongs to a family of related transcription factors including Fos, Jun, CREB, and C/EBP, which share a conserved basic domain. However, unlike most other members of this family, DBP does not contain a "leucine zipper" structure. Among several rat tissues tested, significant levels of its protein are only observed in liver; yet, with the exception of testis, DBP mRNA is present in all of the examined tissues. DBP as well as its mRNA accumulate to significant levels only in adult animals. During chemically induced liver regeneration, DBP expression is rapidly down-regulated, suggesting that DBP may be involved in the proliferation control of hepatocytes. This cell growth-dependent expression of DBP, in contrast to its tissue specificity, appears to be controlled at the level of mRNA accumulation.
Collapse
Affiliation(s)
- C R Mueller
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
48
|
Hinnebusch AG. Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA. Trends Biochem Sci 1990; 15:148-52. [PMID: 2187295 DOI: 10.1016/0968-0004(90)90215-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Regulation of the GCN4 gene of Saccharomyces cerevisiae is one of the best-documented instances of gene-specific translational control in an eukaryote. Upstream open reading frames (uORFs) in GCN4 mRNA modulate the flow of scanning ribosomes to the GCN4 start codon according to the availability of amino acids. Recent results suggest that sequences at the termination codons of the uORFs, a general initiation factor, and a protein kinase all make important contributions to the proper functioning of this interesting translational-control element.
Collapse
Affiliation(s)
- A G Hinnebusch
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
49
|
Hinnebusch AG. Transcriptional and translational regulation of gene expression in the general control of amino-acid biosynthesis in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:195-240. [PMID: 2183294 DOI: 10.1016/s0079-6603(08)60712-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A G Hinnebusch
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
50
|
Tzamarias D, Roussou I, Thireos G. Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain initiation. Cell 1989; 57:947-54. [PMID: 2661015 DOI: 10.1016/0092-8674(89)90333-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The steady-state translational activation of the GCN4 mRNA is based upon an increase in the rate of ribosome initiation at the protein coding AUG following translation of the 5' most proximal open reading frame located in its untranslated region. Such an increase is effected when the cellular amount of the GCN2 protein kinase is increased or when the function of the GCD1 gene product is defective. Here, we report conditions that result in a dramatic transient increase in the rate of GCN4 protein synthesis, which also requires the prior translation of the 5' most proximal open reading frame but is independent of the GCN2 protein. This activation of GCN4 mRNA translation coincides with a decrease in the rate of total cellular protein synthesis. We also observed low rates of protein synthesis in the gcd1 strain and in strains that overexpress the GCN2 protein kinase. The process in protein synthesis that is affected is formation of 43S preinitiation complexes. These results reveal the existence of a coupling between this process in translational initiation and the mechanism that activates translation of GCN4 mRNA.
Collapse
Affiliation(s)
- D Tzamarias
- Foundation of Research and Technology, Institute for Molecular Biology and Biotechnology, Heraklio, Crete, Greece
| | | | | |
Collapse
|