1
|
Clinkenbeard EL, Turpin C, Jiang J, Peterson ML, Spear BT. Liver size and lipid content differences between BALB/c and BALB/cJ mice on a high-fat diet are due, in part, to Zhx2. Mamm Genome 2019; 30:226-236. [PMID: 31321500 DOI: 10.1007/s00335-019-09811-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022]
Abstract
BALB/cJ mice exhibit considerable phenotypic differences with other BALB/c substrains. Some of these traits involve the liver, including persistent postnatal expression of genes that are normally expressed only in the fetal liver and reduced expression of major urinary proteins. These traits are due to a mutation that dramatically reduces expression of the gene encoding the transcription factor Zinc fingers and homeoboxes 2 (Zhx2). BALB/cJ mice also exhibit reduced serum lipid levels and resistance to atherosclerosis compared to other mouse strains when placed on a high-fat diet. This trait is also due, at least in part, to the Zhx2 mutation. Microarray analysis identified many genes affecting lipid homeostasis, including Lipoprotein lipase, that are dysregulated in BALB/cJ liver. This led us to investigate whether hepatic lipid levels would be different between BALB/cJ and BALB/c mice when placed on a normal chow or a high-fat chow diet. On the high-fat chow, BALB/cJ mice had increased weight gain, increased liver:body weight ratio, elevated hepatic lipid accumulation and markers of liver damage when compared to BALB/c mice. These traits in BALB/cJ mice were only partially reversed by a hepatocyte-specific Zhx2 transgene. These data indicate that Zhx2 reduces liver lipid levels and is hepatoprotective in mice on a high-fat diet, but the partial rescue by the Zhx2 transgene suggests a contribution by both parenchymal and non-parenchymal cells. A model to account for the cardiovascular and liver phenotype in mice with reduced Zhx2 levels is provided.
Collapse
Affiliation(s)
- Erica L Clinkenbeard
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Courtney Turpin
- Department of Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jieyun Jiang
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Martha L Peterson
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Brett T Spear
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
2
|
Timm DE, Baker LJ, Mueller H, Zidek L, Novotny MV. Structural basis of pheromone binding to mouse major urinary protein (MUP-I). Protein Sci 2001; 10:997-1004. [PMID: 11316880 PMCID: PMC2374202 DOI: 10.1110/ps.52201] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Revised: 02/16/2001] [Accepted: 02/21/2001] [Indexed: 10/14/2022]
Abstract
The mouse major urinary proteins are pheromone-binding proteins that function as carriers of volatile effectors of mouse physiology and behavior. Crystal structures of recombinant mouse major urinary protein-I (MUP-I) complexed with the synthetic pheromones, 2-sec-butyl-4,5-dihydrothiazole and 6-hydroxy-6-methyl-3-heptanone, have been determined at high resolution. The purification of MUP-I from mouse liver and a high-resolution structure of the natural isolate are also reported. These results show the binding of 6-hydroxy-6-methyl-3-heptanone to MUP-I, unambiguously define ligand orientations for two pheromones within the MUP-I binding site, and suggest how different chemical classes of pheromones can be accommodated within the MUP-I beta-barrel.
Collapse
Affiliation(s)
- D E Timm
- Department of Biochemistry, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
3
|
Cavaggioni A, Mucignat-Caretta C. Major urinary proteins, alpha(2U)-globulins and aphrodisin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:218-28. [PMID: 11058763 DOI: 10.1016/s0167-4838(00)00149-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The major urinary proteins (MUPs) are proteins secreted by the liver and filtered by the kidneys into the urine of adult male mice and rats, the MUPs of rats being also referred to as alpha(2U)-globulins. The MUP family also comprises closely related proteins excreted by exocrine glands of rodents, independently of their sex. The MUP family is an expression of a multi-gene family. There is complex hormonal and tissue-specific regulation of MUP gene expression. The multi-gene family and its outflow are characterized by a polymorphism which extends over species, strains, sexes, and individuals. There is evidence of evolutionary conservation of the genes and their outflow within the species and evidence of change between species. MUPs share the eight-stranded beta-barrel structure lining a hydrophobic pocket, common to lipocalins. There is also a high degree of structural conservation between mouse and rat MUPs. MUPs bind small natural odorant molecules in the hydrophobic pocket with medium affinity in the 10(4)-10(5) M(-1) range, and are excreted in the field, with bound odorants. The odorants are then released slowly in air giving a long lasting olfactory trace to the spot. MUPs seem to play complex roles in chemosensory signalling among rodents, functioning as odorant carriers as well as proteins that prime endocrine reactions in female conspecifics. Aphrodisin is a lipocalin, found in hamster vaginal discharge, which stimulates male copulatory behaviour. Aphrodisin does not seem to bind odorants and no polymorphism has been shown. Both MUPs and aphrodisin stimulate the vomeronasal organ of conspecifics.
Collapse
Affiliation(s)
- A Cavaggioni
- Dipartimento di Anatomia e Fisiologia Umana, Università di Padova, Via Marzolo 3, 35131 Padova, Italy
| | | |
Collapse
|
4
|
Mechref Y, Zidek L, Ma W, Novotny MV. Glycosylated major urinary protein of the house mouse: characterization of its N-linked oligosaccharides. Glycobiology 2000; 10:231-5. [PMID: 10704521 DOI: 10.1093/glycob/10.3.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A minor component of the major urinary protein complex of the house mouse was chromatographically isolated and ascertained to be a previously suspected glycoprotein. Using highly sensitive mass-spectrometric techniques for sequencing and linkage analysis, the N-linked oligosaccharides of this glycoprotein were characterized. They were determined to be of the complex type with a wide heterogeneity. The heterogeneity was due to both the degree of sialylation and the presence of galactose residues in either beta(1-3) or beta(1-4) linkages. The biantennary structures were the most pronounced glycans, while tri- and tetraantennary entities were minor.
Collapse
Affiliation(s)
- Y Mechref
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
5
|
Lücke C, Franzoni L, Abbate F, Löhr F, Ferrari E, Sorbi RT, Rüterjans H, Spisni A. Solution structure of a recombinant mouse major urinary protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1210-8. [PMID: 10583419 DOI: 10.1046/j.1432-1327.1999.00984.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Major urinary proteins (MUPs) form an ensemble of protein isoforms which are expressed and secreted by sexually mature male mice only. They belong to the lipocalin superfamily and share with other members of this family the capacity to bind hydrophobic molecules, some of which are odorants. MUPs, either associated with or free of their natural ligands, play an important role in the reproductive cycle of these rodents by acting as pheromones. In fact, they are able to interact with receptors in the vomeronasal organ of the female mice, inducing hormonal and physiological responses by an as yet unknown mechanism. In order to investigate the structural and dynamical features of these proteins in solution, one of the various wild-type isoforms (rMUP: 162 residues) was cloned and subsequently isotopically labeled. The complete 1H, 13C and 15N resonance assignment of that isoform, achieved by using a variety of multidimensional heteronuclear NMR experiments, has been reported recently. Here, we describe the refined high-resolution three-dimensional solution structure of rMUP in the native state, obtained by a combination of distance geometry and energy minimization calculations based on 2362 NOE-derived distance restraints. A comparison with the crystal structure of the wild-type MUPs reveals, aside from minor differences, a close resemblance in both secondary structure and overall topology. The secondary structure of the protein consists of eight antiparallel beta-strands forming a single beta-sheet and an alpha-helix in the C-terminal region. In addition, there are several helical and hairpin turns distributed throughout the protein sequence, mostly connecting the beta-strands. The tertiary fold of the beta-sheet creates a beta-barrel, common to all members of the lipocalin superfamily. The shape of the beta-barrel resembles a calyx, lined inside by mostly hydrophobic residues that are instrumental for the binding and transport of small nonpolar ligand molecules.
Collapse
Affiliation(s)
- C Lücke
- Institute of Biophysical Chemistry, J.W. Goethe-University of Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Robertson DHL, Beynon RJ, Evershed RP. Extraction, characterization, and binding analysis of two pheromonally active ligands associated with major urinary protein of house mouse (Mus musculus). J Chem Ecol 1993; 19:1405-16. [DOI: 10.1007/bf00984885] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/1992] [Accepted: 02/09/1993] [Indexed: 11/24/2022]
|
7
|
O'Brien SJ, Womack JE, Lyons LA, Moore KJ, Jenkins NA, Copeland NG. Anchored reference loci for comparative genome mapping in mammals. Nat Genet 1993; 3:103-12. [PMID: 8499943 DOI: 10.1038/ng0293-103] [Citation(s) in RCA: 336] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent advances in gene mapping technologies have led to increased emphasis in developing representative genetic maps for several species, particularly domestic plants and animals. These maps are being compiled with two distinct goals: to provide a resource for genetic analysis, and to help dissect the evolution of genome organization by comparing linkage relationships of homologous genes. We propose here a list of 321 reference anchor loci suitable for comparative gene mapping in mammals and other vertebrate classes. We selected cloned mouse and human functional genes spaced an average of 5-10 centiMorgans throughout their respective genomes. We also attempted to include loci that are evolutionarily conserved and represented in comparative gene maps in other mammalian orders, particularly cattle and the domestic cat. We believe that the map may provide the basis for a unified approach to comparative analysis of mammalian species genomes.
Collapse
Affiliation(s)
- S J O'Brien
- Laboratory of Viral Carcinogenesis, National Cancer Institute, Frederick, Maryland 21702-1201
| | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- B A Mock
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- B Mock
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, ME 04609
| | | |
Collapse
|
11
|
Decreased major urinary protein in male Bar Harbor 129 REJ dystrophic mice indicates a hormonal deficiency. J Neurol Sci 1990; 97:173-81. [PMID: 2401895 DOI: 10.1016/0022-510x(90)90216-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A significant decrease in major urinary protein (MUP) in adult male Bar Harbor 129REJ dystrophic mice correlated with a marked decrease in the amount of translatable MUPmRNA in the liver. Previous investigations have shown that MUP synthesis is under complex multihormonal regulation suggesting that the dystrophic mouse may have a hormonal deficiency.
Collapse
|
12
|
Potter M, Sanford KK, Parshad R, Tarone RE, Price FM, Mock B, Huppi K. Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage. Genomics 1988; 2:257-62. [PMID: 3165083 DOI: 10.1016/0888-7543(88)90010-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Early-passage skin fibroblasts from different inbred and congenic strains of mice were X-irradiated (1 Gy), and the number of chromatid breaks was determined at 2.0 h after irradiation. The cells from DBA/2N, C3H/HeN, STS/A, C57BL/6N, BALB/cJ, and AKR/N had 25 to 42 chromatid breaks per 100 metaphase cells (efficient repair phenotype). NZB/NJ had greater than 78 and BALB/cAn had 87 to 110 chromatid breaks per 100 cells (inefficient repair phenotype). Differences between BALB/cAn and BALB/c. DBA/2 congenic strains which carry less than 1% of the DBA/2 genome indicate that two genes, one on chromosome 1 linked to bcl-2-Pep-3 and the other on chromosome 4 closely linked to Fv-1, affect the efficiency with which the cells repair radiation-induced chromatin damage.
Collapse
Affiliation(s)
- M Potter
- Laboratory of Genetics, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | |
Collapse
|