1
|
Clinkenbeard EL, Turpin C, Jiang J, Peterson ML, Spear BT. Liver size and lipid content differences between BALB/c and BALB/cJ mice on a high-fat diet are due, in part, to Zhx2. Mamm Genome 2019; 30:226-236. [PMID: 31321500 DOI: 10.1007/s00335-019-09811-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022]
Abstract
BALB/cJ mice exhibit considerable phenotypic differences with other BALB/c substrains. Some of these traits involve the liver, including persistent postnatal expression of genes that are normally expressed only in the fetal liver and reduced expression of major urinary proteins. These traits are due to a mutation that dramatically reduces expression of the gene encoding the transcription factor Zinc fingers and homeoboxes 2 (Zhx2). BALB/cJ mice also exhibit reduced serum lipid levels and resistance to atherosclerosis compared to other mouse strains when placed on a high-fat diet. This trait is also due, at least in part, to the Zhx2 mutation. Microarray analysis identified many genes affecting lipid homeostasis, including Lipoprotein lipase, that are dysregulated in BALB/cJ liver. This led us to investigate whether hepatic lipid levels would be different between BALB/cJ and BALB/c mice when placed on a normal chow or a high-fat chow diet. On the high-fat chow, BALB/cJ mice had increased weight gain, increased liver:body weight ratio, elevated hepatic lipid accumulation and markers of liver damage when compared to BALB/c mice. These traits in BALB/cJ mice were only partially reversed by a hepatocyte-specific Zhx2 transgene. These data indicate that Zhx2 reduces liver lipid levels and is hepatoprotective in mice on a high-fat diet, but the partial rescue by the Zhx2 transgene suggests a contribution by both parenchymal and non-parenchymal cells. A model to account for the cardiovascular and liver phenotype in mice with reduced Zhx2 levels is provided.
Collapse
Affiliation(s)
- Erica L Clinkenbeard
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Courtney Turpin
- Department of Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jieyun Jiang
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Martha L Peterson
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Brett T Spear
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
2
|
Jiang J, Creasy KT, Purnell J, Peterson ML, Spear BT. Zhx2 (zinc fingers and homeoboxes 2) regulates major urinary protein gene expression in the mouse liver. J Biol Chem 2017; 292:6765-6774. [PMID: 28258223 DOI: 10.1074/jbc.m116.768275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/19/2017] [Indexed: 11/06/2022] Open
Abstract
The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as a regulator of numerous liver-enriched genes. Zhx2 is located on chromosome 15, and a natural hypomorphic mutation in the BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression. Based on these data, we hypothesized that reduced Zhx2 levels are responsible for lower Mup expression in BALB/cJ mice. Using both transgenic and knock-out mice along with in vitro assays, our data show that Zhx2 binds Mup promoters and is required for high levels of Mup expression in the adult liver. In contrast to previously identified Zhx2 targets that appear to be repressed by Zhx2, Mup genes are positively regulated by Zhx2. These data identify Zhx2 as a novel regulator of Mup expression and indicate that Zhx2 activates as well as represses expression of target genes.
Collapse
Affiliation(s)
- Jieyun Jiang
- From the Department of Microbiology, Immunology, and Molecular Genetics,
| | | | - Justin Purnell
- From the Department of Microbiology, Immunology, and Molecular Genetics
| | - Martha L Peterson
- From the Department of Microbiology, Immunology, and Molecular Genetics.,Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Brett T Spear
- From the Department of Microbiology, Immunology, and Molecular Genetics, .,Department of Pharmacology and Nutritional Sciences, and.,Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
3
|
Timm DE, Baker LJ, Mueller H, Zidek L, Novotny MV. Structural basis of pheromone binding to mouse major urinary protein (MUP-I). Protein Sci 2001; 10:997-1004. [PMID: 11316880 PMCID: PMC2374202 DOI: 10.1110/ps.52201] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Revised: 02/16/2001] [Accepted: 02/21/2001] [Indexed: 10/14/2022]
Abstract
The mouse major urinary proteins are pheromone-binding proteins that function as carriers of volatile effectors of mouse physiology and behavior. Crystal structures of recombinant mouse major urinary protein-I (MUP-I) complexed with the synthetic pheromones, 2-sec-butyl-4,5-dihydrothiazole and 6-hydroxy-6-methyl-3-heptanone, have been determined at high resolution. The purification of MUP-I from mouse liver and a high-resolution structure of the natural isolate are also reported. These results show the binding of 6-hydroxy-6-methyl-3-heptanone to MUP-I, unambiguously define ligand orientations for two pheromones within the MUP-I binding site, and suggest how different chemical classes of pheromones can be accommodated within the MUP-I beta-barrel.
Collapse
Affiliation(s)
- D E Timm
- Department of Biochemistry, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
4
|
Robertson DH, Cox KA, Gaskell SJ, Evershed RP, Beynon RJ. Molecular heterogeneity in the Major Urinary Proteins of the house mouse Mus musculus. Biochem J 1996; 316 ( Pt 1):265-72. [PMID: 8645216 PMCID: PMC1217333 DOI: 10.1042/bj3160265] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Major Urinary Proteins (MUPs) from different inbred strains of mouse have been analysed by high-resolution ion-exchange chromatography and mass spectrometry. MUPs from six strains were resolved chromatographically into four major protein peaks which characterized two distinct phenotypes, typified by the profiles obtained from the Balb/c and C57BL/6 inbred strains. A combination of ion-exchange chromatography and electrospray ionization mass spectrometry analysis of the MUPs from each strain identified five proteins, only one of which was common to both strains. The charge and mass data, together with N-terminal sequence analyses, were correlated with the masses of the proteins inferred from published cDNA sequences. Several members of the family of MUP sequences differ in only four positions, and in some circumstances the substitutions elicit a minimal change in protein mass (Lys/Gln; Lys/Glu). Peptide mapping with endopeptidase Lys-C, followed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry permitted identification of new MUPs that were correlated with partial cDNA sequence data. In the two strains there are at least 13 different MUPs, either observed or predicted, indicating the heterogeneity of expression of this group of proteins.
Collapse
Affiliation(s)
- D H Robertson
- Department of Biochemistry and Applied Molecular Biology, UMIST, Manchester, U.K
| | | | | | | | | |
Collapse
|