1
|
Grosely R, Alvarado C, Ivanov IP, Nicholson OB, Puglisi JD, Dever TE, Lapointe CP. eIF1 and eIF5 dynamically control translation start site fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602410. [PMID: 39026837 PMCID: PMC11257575 DOI: 10.1101/2024.07.10.602410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Translation initiation defines the identity of a synthesized protein through selection of a translation start site on a messenger RNA. This process is essential to well-controlled protein synthesis, modulated by stress responses, and dysregulated in many human diseases. The eukaryotic initiation factors eIF1 and eIF5 interact with the initiator methionyl-tRNAi Met on the 40S ribosomal subunit to coordinate start site selection. Here, using single-molecule analysis of in vitro reconstituted human initiation combined with translation assays in cells, we examine eIF1 and eIF5 function. During translation initiation on a panel of RNAs, we monitored both proteins directly and in real time using single-molecule fluorescence. As expected, eIF1 loaded onto mRNAs as a component of the 43S initiation complex. Rapid (~ 2 s) eIF1 departure required a translation start site and was delayed by alternative start sites and a longer 5' untranslated region (5'UTR). After its initial departure, eIF1 rapidly and transiently sampled initiation complexes, with more prolonged sampling events on alternative start sites. By contrast, eIF5 only transiently bound initiation complexes late in initiation immediately prior to association of eIF5B, which allowed joining of the 60S ribosomal subunit. eIF5 association required the presence of a translation start site and was inhibited and destabilized by alternative start sites. Using both knockdown and overexpression experiments in human cells, we validated that eIF1 and eIF5 have opposing roles during initiation. Collectively, our findings demonstrate how multiple eIF1 and eIF5 binding events control start-site selection fidelity throughout initiation, which is tuned in response to changes in the levels of both proteins.
Collapse
Affiliation(s)
- Rosslyn Grosely
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos Alvarado
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivaylo P. Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Joseph D. Puglisi
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E. Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
2
|
Global phosphoproteomics pinpoints uncharted Gcn2-mediated mechanisms of translational control. Mol Cell 2021; 81:1879-1889.e6. [PMID: 33743194 DOI: 10.1016/j.molcel.2021.02.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
The conserved Gcn2 protein kinase mediates cellular adaptations to amino acid limitation through translational control of gene expression that is exclusively executed by phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α). Using quantitative phosphoproteomics, however, we discovered that Gcn2 targets auxiliary effectors to modulate translation. Accordingly, Gcn2 also phosphorylates the β-subunit of the trimeric eIF2 G protein complex to promote its association with eIF5, which prevents spontaneous nucleotide exchange on eIF2 and thereby restricts the recycling of the initiator methionyl-tRNA-bound eIF2-GDP ternary complex in amino-acid-starved cells. This mechanism contributes to the inhibition of translation initiation in parallel to the sequestration of the nucleotide exchange factor eIF2B by phosphorylated eIF2α. Gcn2 further phosphorylates Gcn20 to antagonize, in an inhibitory feedback loop, the formation of the Gcn2-stimulatory Gcn1-Gcn20 complex. Thus, Gcn2 plays a substantially more intricate role in controlling translation initiation than hitherto appreciated.
Collapse
|
3
|
Kulkarni SD, Zhou F, Sen ND, Zhang H, Hinnebusch AG, Lorsch JR. Temperature-dependent regulation of upstream open reading frame translation in S. cerevisiae. BMC Biol 2019; 17:101. [PMID: 31810458 PMCID: PMC6898956 DOI: 10.1186/s12915-019-0718-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Translation of an mRNA in eukaryotes starts at an AUG codon in most cases, but near-cognate codons (NCCs) such as UUG, ACG, and AUU can also be used as start sites at low levels in Saccharomyces cerevisiae. Initiation from NCCs or AUGs in the 5'-untranslated regions (UTRs) of mRNAs can lead to translation of upstream open reading frames (uORFs) that might regulate expression of the main ORF (mORF). Although there is some circumstantial evidence that the translation of uORFs can be affected by environmental conditions, little is known about how it is affected by changes in growth temperature. RESULTS Using reporter assays, we found that changes in growth temperature can affect translation from NCC start sites in yeast cells, suggesting the possibility that gene expression could be regulated by temperature by altering use of different uORF start codons. Using ribosome profiling, we provide evidence that growth temperature regulates the efficiency of translation of nearly 200 uORFs in S. cerevisiae. Of these uORFs, most that start with an AUG codon have increased translational efficiency at 37 °C relative to 30 °C and decreased efficiency at 20 °C. For translationally regulated uORFs starting with NCCs, we did not observe a general trend for the direction of regulation as a function of temperature, suggesting mRNA-specific features can determine the mode of temperature-dependent regulation. Consistent with this conclusion, the position of the uORFs in the 5'-leader relative to the 5'-cap and the start codon of the main ORF correlates with the direction of temperature-dependent regulation of uORF translation. We have identified several novel cases in which changes in uORF translation are inversely correlated with changes in the translational efficiency of the downstream main ORF. Our data suggest that translation of these mRNAs is subject to temperature-dependent, uORF-mediated regulation. CONCLUSIONS Our data suggest that alterations in the translation of specific uORFs by temperature can regulate gene expression in S. cerevisiae.
Collapse
Affiliation(s)
- Shardul D Kulkarni
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Neelam Dabas Sen
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Present Address: School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hongen Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Jindal S, Ghosh A, Ismail A, Singh N, Komar AA. Role of the uS9/yS16 C-terminal tail in translation initiation and elongation in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 47:806-823. [PMID: 30481328 PMCID: PMC6344880 DOI: 10.1093/nar/gky1180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
The small ribosomal subunit protein uS9 (formerly called rpS16 in Saccharomyces cerevisiae), has a long protruding C-terminal tail (CTT) that extends towards the mRNA cleft of the ribosome. The last C-terminal residue of uS9 is an invariably conserved, positively charged Arg that is believed to enhance interaction of the negatively charged initiator tRNA with the ribosome when the tRNA is base-paired to the AUG codon in the P-site. In order to more fully characterize the role of the uS9 CTT in eukaryotic translation, we tested how truncations, extensions and substitutions within the CTT affect initiation and elongation processes in Saccharomyces cerevisiae. We found that uS9 C-terminal residues are critical for efficient recruitment of the eIF2•GTP•Met-tRNAiMet ternary complex to the ribosome and for its proper response to the presence of an AUG codon in the P-site during the scanning phase of initiation. These residues also regulate hydrolysis of the GTP in the eIF2•GTP•Met-tRNAiMet complex to GDP and Pi. In addition, our data show that uS9 CTT modulates elongation fidelity. Therefore, we propose that uS9 CTT is critical for proper control of the complex interplay of events surrounding accommodation of initiator and elongator tRNAs in the P- and A-sites of the ribosome.
Collapse
Affiliation(s)
- Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Arnab Ghosh
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Amra Ismail
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Nishant Singh
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
5
|
Young-Baird SK, Shin BS, Dever TE. MEHMO syndrome mutation EIF2S3-I259M impairs initiator Met-tRNAiMet binding to eukaryotic translation initiation factor eIF2. Nucleic Acids Res 2019; 47:855-867. [PMID: 30517694 PMCID: PMC6344876 DOI: 10.1093/nar/gky1213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/26/2018] [Indexed: 01/20/2023] Open
Abstract
The heterotrimeric eukaryotic translation initiation factor (eIF) 2 plays critical roles in delivering initiator Met-tRNAiMet to the 40S ribosomal subunit and in selecting the translation initiation site. Genetic analyses of patients with MEHMO syndrome, an X-linked intellectual disability syndrome, have identified several unique mutations in the EIF2S3 gene that encodes the γ subunit of eIF2. To gain insights into the molecular consequences of MEHMO syndrome mutations on eIF2 function, we generated a yeast model of the human eIF2γ-I259M mutant, previously identified in a patient with MEHMO syndrome. The corresponding eIF2γ-I318M mutation impaired yeast cell growth and derepressed GCN4 expression, an indicator of defective eIF2–GTP–Met-tRNAiMet complex formation, and, likewise, overexpression of human eIF2γ-I259M derepressed ATF4 messenger RNA translation in human cells. The yeast eIF2γ-I318M mutation also increased initiation from near-cognate start codons. Biochemical analyses revealed a defect in Met-tRNAiMet binding to the mutant yeast eIF2 complexes in vivo and in vitro. Overexpression of tRNAiMet restored Met-tRNAiMet binding to eIF2 in vivo and rescued the growth defect in the eIF2γ-I318M strain. Based on these findings and the structure of eIF2, we propose that the I259M mutation impairs Met-tRNAiMet binding, causing altered control of protein synthesis that underlies MEHMO syndrome.
Collapse
Affiliation(s)
- Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Hernández G, Osnaya VG, Pérez-Martínez X. Conservation and Variability of the AUG Initiation Codon Context in Eukaryotes. Trends Biochem Sci 2019; 44:1009-1021. [PMID: 31353284 DOI: 10.1016/j.tibs.2019.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 01/30/2023]
Abstract
Selection of the translation initiation site (TIS) is a crucial step during translation. In the 1980s Marylin Kozak performed key studies on vertebrate mRNAs to characterize the optimal TIS consensus sequence, the Kozak motif. Within this motif, conservation of nucleotides in crucial positions, namely a purine at -3 and a G at +4 (where the A of the AUG is numbered +1), is essential for TIS recognition. Ever since its characterization the Kozak motif has been regarded as the optimal sequence to initiate translation in all eukaryotes. We revisit here published in silico data on TIS consensus sequences, as well as experimental studies from diverse eukaryotic lineages, and propose that, while the -3A/G position is universally conserved, the remaining variability of the consensus sequences enables their classification as optimal, strong, and moderate TIS sequences.
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Avenue, Tlalpan, 14080 Mexico City, Mexico.
| | - Vincent G Osnaya
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Avenue, Tlalpan, 14080 Mexico City, Mexico
| | - Xochitl Pérez-Martínez
- Department of Molecular Genetics, Cell Physiology Institute (Instituto de Fisiología Celular), Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico
| |
Collapse
|
7
|
Antony A C, Ram AK, Dutta K, Alone PV. Ribosomal mutation in helix 32 of 18S rRNA alters fidelity of eukaryotic translation start site selection. FEBS Lett 2019; 593:852-867. [PMID: 30900251 DOI: 10.1002/1873-3468.13369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/09/2022]
Abstract
The 40S ribosome plays a critical role in start codon selection. To gain insights into the role of its 18S rRNA in start codon selection, a suppressor screen was performed that suppressed the preferential UUG start codon recognition (Suppressor of initiation codon: Sui- phenotype) associated with the eIF5G31R mutant. The C1209U mutation in helix h32 of 18S rRNA was found to suppress the Sui- and Gcn- (failure to derepress GCN4 expression) phenotype of the eIF5G31R mutant. The C1209U mutation suppressed Sui- and Gcd- (constitutive derepression of GCN4 expression) phenotype of eIF2βS264Y , eIF1K60E , and eIF1A-ΔC mutation. We propose that the C1209U mutation in 40S ribosomal may perturb the premature head rotation in 'Closed/PIN ' state and enhance the stringency of translation start site selection.
Collapse
Affiliation(s)
- Charles Antony A
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kalloly Dutta
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
8
|
Gregory LC, Ferreira CB, Young-Baird SK, Williams HJ, Harakalova M, van Haaften G, Rahman SA, Gaston-Massuet C, Kelberman D, GOSgene, Qasim W, Camper SA, Dever TE, Shah P, Robinson ICAF, Dattani MT. Impaired EIF2S3 function associated with a novel phenotype of X-linked hypopituitarism with glucose dysregulation. EBioMedicine 2019; 42:470-480. [PMID: 30878599 PMCID: PMC6492072 DOI: 10.1016/j.ebiom.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 11/25/2022] Open
Abstract
Background The heterotrimeric GTP-binding protein eIF2 forms a ternary complex with initiator methionyl-tRNA and recruits it to the 40S ribosomal subunit for start codon selection and thereby initiates protein synthesis. Mutations in EIF2S3, encoding the eIF2γ subunit, are associated with severe intellectual disability and microcephaly, usually as part of MEHMO syndrome. Methods Exome sequencing of the X chromosome was performed on three related males with normal head circumferences and mild learning difficulties, hypopituitarism (GH and TSH deficiencies), and an unusual form of glucose dysregulation. In situ hybridisation on human embryonic tissue, EIF2S3-knockdown studies in a human pancreatic cell line, and yeast assays on the mutated corresponding eIF2γ protein, were performed in this study. Findings We report a novel hemizygous EIF2S3 variant, p.Pro432Ser, in the three boys (heterozygous in their mothers). EIF2S3 expression was detectable in the developing pituitary gland and pancreatic islets of Langerhans. Cells lacking EIF2S3 had increased caspase activity/cell death. Impaired protein synthesis and relaxed start codon selection stringency was observed in mutated yeast. Interpretation Our data suggest that the p.Pro432Ser mutation impairs eIF2γ function leading to a relatively mild novel phenotype compared with previous EIF2S3 mutations. Our studies support a critical role for EIF2S3 in human hypothalamo-pituitary development and function, and glucose regulation, expanding the range of phenotypes associated with EIF2S3 mutations beyond classical MEHMO syndrome. Untreated hypoglycaemia in previous cases may have contributed to their more severe neurological impairment and seizures in association with impaired EIF2S3. Fund GOSH, MRF, BRC, MRC/Wellcome Trust and NIGMS funded this study.
Collapse
Affiliation(s)
- Louise C Gregory
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Carolina B Ferreira
- Infection, Immunology Inflammation & Physiological Medicine, UCL Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States; National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MA 20892, United States
| | - Hywel J Williams
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Magdalena Harakalova
- Department of Genetics, University Medical Center Utrecht, 3584, the Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, 3584, the Netherlands
| | - Sofia A Rahman
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts & The London Medical School, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Daniel Kelberman
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | - GOSgene
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, Children NHS Foundation Trust and UCL, London WC1N 1EH, United Kingdom
| | - Waseem Qasim
- Infection, Immunology Inflammation & Physiological Medicine, UCL Great Ormond Street Institute of Child Health, WC1N 1EH London, United Kingdom
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Pratik Shah
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| | | | - Mehul T Dattani
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom.
| |
Collapse
|
9
|
Start Codon Recognition in Eukaryotic and Archaeal Translation Initiation: A Common Structural Core. Int J Mol Sci 2019; 20:ijms20040939. [PMID: 30795538 PMCID: PMC6412873 DOI: 10.3390/ijms20040939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023] Open
Abstract
Understanding molecular mechanisms of ribosomal translation sheds light on the emergence and evolution of protein synthesis in the three domains of life. Universally, ribosomal translation is described in three steps: initiation, elongation and termination. During initiation, a macromolecular complex assembled around the small ribosomal subunit selects the start codon on the mRNA and defines the open reading frame. In this review, we focus on the comparison of start codon selection mechanisms in eukaryotes and archaea. Eukaryotic translation initiation is a very complicated process, involving many initiation factors. The most widespread mechanism for the discovery of the start codon is the scanning of the mRNA by a pre-initiation complex until the first AUG codon in a correct context is found. In archaea, long-range scanning does not occur because of the presence of Shine-Dalgarno (SD) sequences or of short 5′ untranslated regions. However, archaeal and eukaryotic translation initiations have three initiation factors in common: e/aIF1, e/aIF1A and e/aIF2 are directly involved in the selection of the start codon. Therefore, the idea that these archaeal and eukaryotic factors fulfill similar functions within a common structural ribosomal core complex has emerged. A divergence between eukaryotic and archaeal factors allowed for the adaptation to the long-range scanning process versus the SD mediated prepositioning of the ribosome.
Collapse
|
10
|
Qu S, Perlaky SE, Organ EL, Crawford D, Cavener DR. Mutations at the Ser50 residue of translation factor eIF-2alpha dominantly affect developmental rate, body weight, and viability of Drosophila melanogaster. Gene Expr 2018; 6:349-60. [PMID: 9495316 PMCID: PMC6148258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorylation of the translation initiation factor eIF-2alpha downregulates protein synthesis by sequestering the guanylate exchange factor eIF-2B. The importance of this regulation has been demonstrated in the context of stress and virally induced repression of protein synthesis but has not been investigated relative to the control of protein synthesis during development. Transgenic Drosophila strains bearing aspartic acid or alanine substitutions at the presumed regulatory phosphorylation site (Ser50) of Drosophila eIF-2alpha were established. The expression of the eIF-2alpha mutant transgenes, under the transcriptional control of the hsp70 promoter, was induced at various times during development to assess the developmental and biochemical effects. Flies bearing the aspartic acid eIF-2alpha mutant (HD) transgene displayed a slow growth phenotype and small body size. Repeated induction of the HD transgene resulted in cessation of development. In contrast, flies bearing the alanine eIF-2alpha mutant (HA) displayed a fast growth phenotype and females were significantly larger than nontransgenic control sisters. The HD transgenic flies exhibit a relatively lower level of global protein synthesis than the HA transgenic flies, although the difference is statistically insignificant.
Collapse
Affiliation(s)
| | | | | | | | - Douglas R. Cavener
- Address correspondence to Douglas R. Cavener. Tel: (615) 322-3418; Fax: (615) 343-6707; E-mail:
| |
Collapse
|
11
|
Fidelity of HIS4 start codon selection influences 3-amino-1,2,4-triazole sensitivity in GTPase activating protein function defective eIF5. J Genet 2018. [DOI: 10.1007/s12041-018-0989-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Charles Antony A, Alone PV. Fidelity of HIS4 start codon selection influences 3-amino-1,2,4-triazole sensitivity in GTPase activating protein function defective eIF5. J Genet 2018; 97:953-964. [PMID: 30262708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The eIF5 protein plays an important role in the fidelity of AUG start codon selection. However, the hyper GTPase eIF5G31R mutation in yeast causes preferential utilization of UUG as initiation codon and is termed as suppressor of initiation codon (Sui-) phenotype. The eIF5G31R mutant recognizes upUUG initiation codon from the 5' regulatory leader region of GCN4 transcript and dominantly represses GCN4 expression thereby conferring sensitivity to 3-amino-1,2,4-triazole (3AT)-induced starvation. The 3AT sensitivity was rescued by supplementing HIS4UUG allele. The eIF5G31R mutant has a better efficiency of UUG codon recognition from the HIS4UUG allele under starvation conditions. Moreover, the expression of HIS4UUG allele was significantly lower than the critical level causing additional derepression of GCN4 expression in eIF5G31R mutant to rescue its 3AT sensitivity. The overexpression of eIF1 improved expression of HIS4AUG allele and GCN4 transcript causing 3AT resistance, whereas overexpression of eIF1 resulted in diminished UUG codon recognition of HIS4UUG allele causing 3AT sensitivity, despite having higher GCN4 expression. This paper reports the critical role of HIS4 expression necessary in response to 3AT-induced starvation in the eIF5G31R mutant which is ostensibly not a direct target of 3AT inhibition.
Collapse
Affiliation(s)
- A Charles Antony
- School of Biological Sciences, National Institute of Science Education and Research, P.O. Jatni, Bhubaneswar, Khurda 752 050, India.
| | | |
Collapse
|
13
|
Martin-Marcos P, Zhou F, Karunasiri C, Zhang F, Dong J, Nanda J, Kulkarni SD, Sen ND, Tamame M, Zeschnigk M, Lorsch JR, Hinnebusch AG. eIF1A residues implicated in cancer stabilize translation preinitiation complexes and favor suboptimal initiation sites in yeast. eLife 2017; 6:31250. [PMID: 29206102 PMCID: PMC5756025 DOI: 10.7554/elife.31250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
The translation pre-initiation complex (PIC) scans the mRNA for an AUG codon in favorable context, and AUG recognition stabilizes a closed PIC conformation. The unstructured N-terminal tail (NTT) of yeast eIF1A deploys five basic residues to contact tRNAi, mRNA, or 18S rRNA exclusively in the closed state. Interestingly, EIF1AX mutations altering the human eIF1A NTT are associated with uveal melanoma (UM). We found that substituting all five basic residues, and seven UM-associated substitutions, in yeast eIF1A suppresses initiation at near-cognate UUG codons and AUGs in poor context. Ribosome profiling of NTT substitution R13P reveals heightened discrimination against unfavorable AUG context genome-wide. Both R13P and K16D substitutions destabilize the closed complex at UUG codons in reconstituted PICs. Thus, electrostatic interactions involving the eIF1A NTT stabilize the closed conformation and promote utilization of suboptimal start codons. We predict UM-associated mutations alter human gene expression by increasing discrimination against poor initiation sites.
Collapse
Affiliation(s)
- Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States.,Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Charm Karunasiri
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jagpreet Nanda
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Shardul D Kulkarni
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Neelam Dabas Sen
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Michael Zeschnigk
- Institute of Human Genetics, University Duisburg-Essen, Essen, Germany.,Eye Cancer Research Group, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
14
|
Abstract
This review by Kearse and Wilusz discusses the profound impact of non-AUG start codons in eukaryotic translation. It describes how misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and how modulation of non-AUG usage may represent a novel therapeutic strategy. Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| |
Collapse
|
15
|
Aryanpur PP, Regan CA, Collins JM, Mittelmeier TM, Renner DM, Vergara AM, Brown NP, Bolger TA. Gle1 Regulates RNA Binding of the DEAD-Box Helicase Ded1 in Its Complex Role in Translation Initiation. Mol Cell Biol 2017; 37:e00139-17. [PMID: 28784717 PMCID: PMC5640818 DOI: 10.1128/mcb.00139-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/05/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023] Open
Abstract
DEAD-box proteins (DBPs) are required in gene expression to facilitate changes to ribonucleoprotein complexes, but the cellular mechanisms and regulation of DBPs are not fully defined. Gle1 is a multifunctional regulator of DBPs with roles in mRNA export and translation. In translation, Gle1 modulates Ded1, a DBP required for initiation. However, DED1 overexpression causes defects, suggesting that Ded1 can promote or repress translation in different contexts. Here we show that GLE1 expression suppresses the repressive effects of DED1 in vivo and Gle1 counteracts Ded1 in translation assays in vitro Furthermore, both Ded1 and Gle1 affect the assembly of preinitiation complexes. Through mutation analysis and binding assays, we show that Gle1 inhibits Ded1 by reducing its affinity for RNA. Our results are consistent with a model wherein active Ded1 promotes translation but inactive or excess Ded1 leads to translation repression. Gle1 can inhibit either role of Ded1, positioning it as a gatekeeper to optimize Ded1 activity to the appropriate level for translation. This study suggests a paradigm for finely controlling the activity of DEAD-box proteins to optimize their function in RNA-based processes. It also positions the versatile regulator Gle1 as a potential node for the coordination of different steps of gene expression.
Collapse
Affiliation(s)
- Peyman P Aryanpur
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Chelsea A Regan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - John M Collins
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Telsa M Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - David M Renner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Ashley M Vergara
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Nicolette P Brown
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Timothy A Bolger
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
16
|
Antony A C, Alone PV. Defect in the GTPase activating protein (GAP) function of eIF5 causes repression of GCN4 translation. Biochem Biophys Res Commun 2017; 486:1110-1115. [PMID: 28385532 DOI: 10.1016/j.bbrc.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
In eukaryotes, the eIF5 protein plays an important role in translation start site selection by providing the GAP (GTPase activating protein) function. However, in yeast translation initiation fidelity defective eIF5G31R mutant causes preferential utilization of UUG as initiation codon and is termed as Suppressor of initiation codon (Sui-) phenotype due to its hyper GTPase activity. The eIF5G31R mutant dominantly represses GCN4 expression and confers sensitivity to 3-Amino-1,2,4-Trizole (3AT) induced starvation. The down-regulation of the GCN4 expression (Gcn- phenotype) in the eIF5G31R mutant was not because of leaky scanning defects; rather was due to the utilization of upUUG initiation codons at the 5' regulatory region present between uORF1 and the main GCN4 ORF.
Collapse
Affiliation(s)
- Charles Antony A
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Constituent Institutes of Homi Bhabha National Institute (HBNI), P.O Jatni, Khurda 752050 India
| | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Constituent Institutes of Homi Bhabha National Institute (HBNI), P.O Jatni, Khurda 752050 India.
| |
Collapse
|
17
|
Abstract
When given an option to choose among a set of alternatives and only one selection is right, one might stop and reflect over which one is best. However, the ribosome has no time to stop and make such reflections, proteins need to be produced and very fast. Eukaryotic translation initiation is an example of such a conundrum. Here, scanning for the correct codon match must be fast, efficient and accurate. We highlight our recent computational findings, which show how the initiation machinery manages to recognize one specific codon among many possible challengers, by fine-tuning the energetic landscape of base-pairing with the aid of the initiation factors eIF1 and eIF1A. Using a recent 3-dimensional structure of the eukaryotic initiation complex we have performed simulations of codon recognition in atomic detail. These calculations provide an in-depth energetic and structural view of how discrimination against near-cognate codons is achieved by the initiation complex.
Collapse
Affiliation(s)
- Christoffer Lind
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Mauricio Esguerra
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Johan Åqvist
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| |
Collapse
|
18
|
Visweswaraiah J, Hinnebusch AG. Interface between 40S exit channel protein uS7/Rps5 and eIF2α modulates start codon recognition in vivo. eLife 2017; 6. [PMID: 28169832 PMCID: PMC5323038 DOI: 10.7554/elife.22572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/06/2017] [Indexed: 12/26/2022] Open
Abstract
The eukaryotic pre-initiation complex (PIC) bearing the eIF2·GTP·Met-tRNAiMet ternary complex (TC) scans the mRNA for an AUG codon in favorable context. AUG recognition evokes rearrangement of the PIC from an open, scanning to a closed, arrested conformation. Cryo-EM reconstructions of yeast PICs suggest remodeling of the interface between 40S protein Rps5/uS7 and eIF2α between open and closed states; however, its importance was unknown. uS7 substitutions disrupting eIF2α contacts favored in the open complex increase initiation at suboptimal sites, and uS7-S223D stabilizes TC binding to PICs reconstituted with a UUG start codon, indicating inappropriate rearrangement to the closed state. Conversely, uS7-D215 substitutions, perturbing uS7-eIF2α interaction in the closed state, confer the opposite phenotypes of hyperaccuracy and (for D215L) accelerated TC dissociation from reconstituted PICs. Thus, remodeling of the uS7/eIF2α interface appears to stabilize first the open, and then the closed state of the PIC to promote accurate AUG selection in vivo. DOI:http://dx.doi.org/10.7554/eLife.22572.001
Collapse
Affiliation(s)
- Jyothsna Visweswaraiah
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
19
|
Skopkova M, Hennig F, Shin BS, Turner CE, Stanikova D, Brennerova K, Stanik J, Fischer U, Henden L, Müller U, Steinberger D, Leshinsky-Silver E, Bottani A, Kurdiova T, Ukropec J, Nyitrayova O, Kolnikova M, Klimes I, Borck G, Bahlo M, Haas SA, Kim JR, Lotspeich-Cole LE, Gasperikova D, Dever TE, Kalscheuer VM. EIF2S3 Mutations Associated with Severe X-Linked Intellectual Disability Syndrome MEHMO. Hum Mutat 2017; 38:409-425. [PMID: 28055140 DOI: 10.1002/humu.23170] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/19/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022]
Abstract
Impairment of translation initiation and its regulation within the integrated stress response (ISR) and related unfolded-protein response has been identified as a cause of several multisystemic syndromes. Here, we link MEHMO syndrome, whose genetic etiology was unknown, to this group of disorders. MEHMO is a rare X-linked syndrome characterized by profound intellectual disability, epilepsy, hypogonadism and hypogenitalism, microcephaly, and obesity. We have identified a C-terminal frameshift mutation (Ile465Serfs) in the EIF2S3 gene in three families with MEHMO syndrome and a novel maternally inherited missense EIF2S3 variant (c.324T>A; p.Ser108Arg) in another male patient with less severe clinical symptoms. The EIF2S3 gene encodes the γ subunit of eukaryotic translation initiation factor 2 (eIF2), crucial for initiation of protein synthesis and regulation of the ISR. Studies in patient fibroblasts confirm increased ISR activation due to the Ile465Serfs mutation and functional assays in yeast demonstrate that the Ile465Serfs mutation impairs eIF2γ function to a greater extent than tested missense mutations, consistent with the more severe clinical phenotype of the Ile465Serfs male mutation carriers. Thus, we propose that more severe EIF2S3 mutations cause the full MEHMO phenotype, while less deleterious mutations cause a milder form of the syndrome with only a subset of the symptoms.
Collapse
Affiliation(s)
- Martina Skopkova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Friederike Hennig
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Clesson E Turner
- Department of Genetics, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Daniela Stanikova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,First Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Katarina Brennerova
- First Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Juraj Stanik
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,First Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia.,Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, University of Leipzig, Germany
| | - Ute Fischer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lyndal Henden
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ulrich Müller
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Daniela Steinberger
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany.,bio.logis Center for Human Genetics, Frankfurt a. M., Germany
| | - Esther Leshinsky-Silver
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel.,Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Timea Kurdiova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Miriam Kolnikova
- Department of Pediatric Neurology, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Iwar Klimes
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joo-Ran Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Leda E Lotspeich-Cole
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Gasperikova
- DIABGENE & Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
20
|
Saini AK, Nanda JS, Martin-Marcos P, Dong J, Zhang F, Bhardwaj M, Lorsch JR, Hinnebusch AG. Eukaryotic translation initiation factor eIF5 promotes the accuracy of start codon recognition by regulating Pi release and conformational transitions of the preinitiation complex. Nucleic Acids Res 2014; 42:9623-40. [PMID: 25114053 PMCID: PMC4150770 DOI: 10.1093/nar/gku653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
eIF5 is the GTPase activating protein (GAP) for the eIF2 · GTP · Met-tRNAi (Met) ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2 · GDP · Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui(-) mutations in numerous factors. We conclude that both of eIF5's functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo.
Collapse
Affiliation(s)
- Adesh K Saini
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jagpreet S Nanda
- Shoolini University of Biotechnology and Management Sciences, Department of Biotechnology, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Monika Bhardwaj
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jon R Lorsch
- Shoolini University of Biotechnology and Management Sciences, Department of Biotechnology, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Rawal Y, Qiu H, Hinnebusch AG. Accumulation of a threonine biosynthetic intermediate attenuates general amino acid control by accelerating degradation of Gcn4 via Pho85 and Cdk8. PLoS Genet 2014; 10:e1004534. [PMID: 25079372 PMCID: PMC4117449 DOI: 10.1371/journal.pgen.1004534] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
Gcn4 is a master transcriptional regulator of amino acid and vitamin biosynthetic enzymes subject to the general amino acid control (GAAC), whose expression is upregulated in response to amino acid starvation in Saccharomyces cerevisiae. We found that accumulation of the threonine pathway intermediate β-aspartate semialdehyde (ASA), substrate of homoserine dehydrogenase (Hom6), attenuates the GAAC transcriptional response by accelerating degradation of Gcn4, already an exceedingly unstable protein, in cells starved for isoleucine and valine. The reduction in Gcn4 abundance on ASA accumulation requires Cdk8/Srb10 and Pho85, cyclin-dependent kinases (CDKs) known to mediate rapid turnover of Gcn4 by the proteasome via phosphorylation of the Gcn4 activation domain under nonstarvation conditions. Interestingly, rescue of Gcn4 abundance in hom6 cells by elimination of SRB10 is not accompanied by recovery of transcriptional activation, while equivalent rescue of UAS-bound Gcn4 in hom6 pho85 cells restores greater than wild-type activation of Gcn4 target genes. These and other findings suggest that the two CDKs target different populations of Gcn4 on ASA accumulation, with Srb10 clearing mostly inactive Gcn4 molecules at the promoter that are enriched for sumoylation of the activation domain, and Pho85 clearing molecules unbound to the UAS that include both fully functional and inactive Gcn4 species. Transcriptional activator Gcn4 maintains amino acid homeostasis in budding yeast by inducing multiple amino acid biosynthetic pathways in response to starvation for any amino acid—the general amino acid control. Gcn4 abundance is tightly regulated by the interplay between an intricate translational control mechanism, which induces Gcn4 synthesis in starved cells, and a pathway of phosphorylation and ubiquitylation that mediates its rapid degradation by the proteasome. Here, we discovered that accumulation of a threonine biosynthetic pathway intermediate, β-aspartate semialdehyde (ASA), in hom6Δ mutant cells impairs general amino acid control in cells starved for isoleucine and valine by accelerating the already rapid degradation of Gcn4, in a manner requiring its phosphorylation by cyclin-dependent kinases Cdk8/Srb10 and Pho85. Interestingly, our results unveil a division of labor between these two kinases wherein Srb10 primarily targets inactive Gcn4 molecules—presumably damaged under conditions of ASA excess—while Pho85 clears a greater proportion of functional Gcn4 species from the cell. The ability of ASA to inhibit transcriptional induction of threonine pathway enzymes by Gcn4, dampening ASA accumulation and its toxic effects on cell physiology, should be adaptive in the wild when yeast encounters natural antibiotics that target Hom6 enzymatic activity.
Collapse
Affiliation(s)
- Yashpal Rawal
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ghosh A, Jindal S, Bentley AA, Hinnebusch AG, Komar AA. Rps5-Rps16 communication is essential for efficient translation initiation in yeast S. cerevisiae. Nucleic Acids Res 2014; 42:8537-55. [PMID: 24948608 PMCID: PMC4117775 DOI: 10.1093/nar/gku550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conserved ribosomal proteins frequently harbor additional segments in eukaryotes not found in bacteria, which could facilitate eukaryotic-specific reactions in the initiation phase of protein synthesis. Here we provide evidence showing that truncation of the N-terminal domain (NTD) of yeast Rps5 (absent in bacterial ortholog S7) impairs translation initiation, cell growth and induction of GCN4 mRNA translation in a manner suggesting incomplete assembly of 48S preinitiation complexes (PICs) at upstream AUG codons in GCN4 mRNA. Rps5 mutations evoke accumulation of factors on native 40S subunits normally released on conversion of 48S PICs to 80S initiation complexes (ICs) and this abnormality and related phenotypes are mitigated by the SUI5 variant of eIF5. Remarkably, similar effects are observed by substitution of Lys45 in the Rps5-NTD, involved in contact with Rps16, and by eliminating the last two residues of the C-terminal tail (CTT) of Rps16, believed to contact initiator tRNA base-paired to AUG in the P site. We propose that Rps5-NTD-Rps16-NTD interaction modulates Rps16-CTT association with Met-tRNAi (Met) to promote a functional 48S PIC.
Collapse
Affiliation(s)
- Arnab Ghosh
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Amber A Bentley
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
23
|
Martin-Marcos P, Nanda JS, Luna RE, Zhang F, Saini AK, Cherkasova VA, Wagner G, Lorsch JR, Hinnebusch AG. Enhanced eIF1 binding to the 40S ribosome impedes conformational rearrangements of the preinitiation complex and elevates initiation accuracy. RNA (NEW YORK, N.Y.) 2014; 20:150-67. [PMID: 24335188 PMCID: PMC3895268 DOI: 10.1261/rna.042069.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/17/2013] [Indexed: 05/20/2023]
Abstract
In the current model of translation initiation by the scanning mechanism, eIF1 promotes an open conformation of the 40S subunit competent for rapidly loading the eIF2·GTP·Met-tRNAi ternary complex (TC) in a metastable conformation (POUT) capable of sampling triplets entering the P site while blocking accommodation of Met-tRNAi in the PIN state and preventing completion of GTP hydrolysis (Pi release) by the TC. All of these functions should be reversed by eIF1 dissociation from the preinitiation complex (PIC) on AUG recognition. We tested this model by selecting eIF1 Ssu(-) mutations that suppress the elevated UUG initiation and reduced rate of TC loading in vivo conferred by an eIF1 (Sui(-)) substitution that eliminates a direct contact of eIF1 with the 40S subunit. Importantly, several Ssu(-) substitutions increase eIF1 affinity for 40S subunits in vitro, and the strongest-binding variant (D61G), predicted to eliminate ionic repulsion with 18S rRNA, both reduces the rate of eIF1 dissociation and destabilizes the PIN state of TC binding in reconstituted PICs harboring Sui(-) variants of eIF5 or eIF2. These findings establish that eIF1 dissociation from the 40S subunit is required for the PIN mode of TC binding and AUG recognition and that increasing eIF1 affinity for the 40S subunit increases initiation accuracy in vivo. Our results further demonstrate that the GTPase-activating protein eIF5 and β-subunit of eIF2 promote accuracy by controlling eIF1 dissociation and the stability of TC binding to the PIC, beyond their roles in regulating GTP hydrolysis by eIF2.
Collapse
Affiliation(s)
- Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jagpreet S. Nanda
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rafael E. Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adesh K. Saini
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh-173212, India
| | - Vera A. Cherkasova
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jon R. Lorsch
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Corresponding authorsE-mail E-mail
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
24
|
The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β. Cell Rep 2012; 1:689-702. [PMID: 22813744 DOI: 10.1016/j.celrep.2012.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/16/2012] [Accepted: 04/19/2012] [Indexed: 11/23/2022] Open
Abstract
Recognition of the proper start codon on mRNAs is essential for protein synthesis, which requires scanning and involves eukaryotic initiation factors (eIFs) eIF1, eIF1A, eIF2, and eIF5. The carboxyl terminal domain (CTD) of eIF5 stimulates 43S preinitiation complex (PIC) assembly; however, its precise role in scanning and start codon selection has remained unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we identified the binding sites of eIF1 and eIF2β on eIF5-CTD and found that they partially overlapped. Mutating select eIF5 residues in the common interface specifically disrupts interaction with both factors. Genetic and biochemical evidence indicates that these eIF5-CTD mutations impair start codon recognition and impede eIF1 release from the PIC by abrogating eIF5-CTD binding to eIF2β. This study provides mechanistic insight into the role of eIF5-CTD's dynamic interplay with eIF1 and eIF2β in switching PICs from an open to a closed state at start codons.
Collapse
|
25
|
Takacs JE, Neary TB, Ingolia NT, Saini AK, Martin-Marcos P, Pelletier J, Hinnebusch AG, Lorsch JR. Identification of compounds that decrease the fidelity of start codon recognition by the eukaryotic translational machinery. RNA (NEW YORK, N.Y.) 2011; 17:439-452. [PMID: 21220547 PMCID: PMC3039144 DOI: 10.1261/rna.2475211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Translation initiation in eukaryotes involves more than a dozen protein factors. Alterations in six factors have been found to reduce the fidelity of start codon recognition by the ribosomal preinitiation complex in yeast, a phenotype referred to as Sui(-). No small molecules are known that affect the fidelity of start codon recognition. Such compounds would be useful tools for probing the molecular mechanics of translation initiation and its regulation. To find compounds with this effect, we set up a high-throughput screen using a dual luciferase assay in S. cerevisiae. Screening of over 55,000 compounds revealed two structurally related molecules that decrease the fidelity of start codon selection by approximately twofold in the dual luciferase assay. This effect was confirmed using additional in vivo assays that monitor translation from non-AUG start codons. Both compounds increase translation of a natural upstream open reading frame previously shown to initiate translation at a UUG. The compounds were also found to exacerbate increased use of UUG as a start codon (Sui(-) phenotype) conferred by haploinsufficiency of wild-type eukaryotic initiation factor (eIF) 1, or by mutation in eIF1. Furthermore, the effects of the compounds are suppressed by overexpressing eIF1, which is known to restore the fidelity of start codon selection in strains harboring Sui(-) mutations in various other initiation factors. Together, these data strongly suggest that the compounds affect the translational machinery itself to reduce the accuracy of selecting AUG as the start codon.
Collapse
Affiliation(s)
- Julie E Takacs
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang F, Hinnebusch AG. An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA. Nucleic Acids Res 2011; 39:3128-40. [PMID: 21227927 PMCID: PMC3082883 DOI: 10.1093/nar/gkq1251] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genome-wide analysis of ribosome locations in mRNAs of Saccharomyces cerevisiae has revealed the translation of upstream open reading frames that initiate with near-cognate start codons in many transcripts. Two such non-translation initiation codon (AUG)-initiated upstream open reading frames (uORFs) (nAuORFs 1 and 2) occur in GCN4 mRNA upstream of the four AUG-initiated uORFs (uORFs 1–4) that regulate GCN4 translation. We verified that nAuORF2 is translated in vivo by demonstrating β-galactosidase production from lacZ coding sequences fused to nAuORF2, in a manner abolished by replacing its non-AUG initiation codon (AUA) start codon with the non-cognate triplet AAA, whereas translation of nAuORF1 was not detected. Importantly, replacing the near-cognate start codons of both nAuORFs with non-cognate triplets had little or no effect on the repression of GCN4 translation in non-starved cells, nor on its derepression in response to histidine limitation, nutritional shift-down or treatment with rapamycin, hydrogen peroxide or methyl methanesulfonate. Additionally, we found no evidence that initiation from the AUA codon of nAuORF2 is substantially elevated, or dependent on Gcn2, the sole eIF2α kinase of yeast, in histidine-deprived cells. Thus, although nAuORF2 is translated in vivo, it appears that this event is not stimulated by eIF2α phosphorylation nor significantly influences GCN4 translational induction under various starvation or stress conditions.
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice K Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
27
|
Schmitt E, Naveau M, Mechulam Y. Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett 2009; 584:405-12. [PMID: 19896944 DOI: 10.1016/j.febslet.2009.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
Abstract
Eukaryotic/archaeal translation initiation factor 2 (e/aIF2) is a heterotrimeric GTPase that plays a key role in selection of the correct start codon on messenger RNA. This review integrates structural and functional data to discuss the involvement of the three subunits in initiator tRNA binding. A possible role of the peripheral subunits in modulating the guanine nucleotide cycle on the core subunit is also addressed.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Ecole Polytechnique, Laboratoire de Biochimie, F-91128 Palaiseau Cedex, France.
| | | | | |
Collapse
|
28
|
eIF1 controls multiple steps in start codon recognition during eukaryotic translation initiation. J Mol Biol 2009; 394:268-85. [PMID: 19751744 DOI: 10.1016/j.jmb.2009.09.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/04/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
Eukaryotic translation initiation factor (eIF) 1 is a central mediator of start codon recognition. Dissociation of eIF1 from the preinitiation complex (PIC) allows release of phosphate from the G-protein factor eIF2, triggering downstream events in initiation. Mutations that weaken binding of eIF1 to the PIC decrease the fidelity of start codon recognition (Sui(-) phenotype) by allowing increased eIF1 release at non-AUG codons. Consistent with this, overexpression of these mutant proteins suppresses their Sui(-) phenotypes. Here, we have examined mutations at the penultimate residue of eIF1, G107, that produce Sui(-) phenotypes without increasing the rate of eIF1 release. We provide evidence that, in addition to its role in gating phosphate release, dissociation of eIF1 triggers conversion from an open, scanning-competent state of the PIC to a stable, closed one. We also show that eIF5 antagonizes binding of eIF1 to the complex and that key interactions of eIF1 with its partners are modulated by the charge at and around G107. Our data indicate that eIF1 plays multiple roles in start codon recognition and suggest that prior to AUG recognition it prevents eIF5 from binding to a key site in the PIC required for triggering downstream events.
Collapse
|
29
|
Kolitz SE, Takacs JE, Lorsch JR. Kinetic and thermodynamic analysis of the role of start codon/anticodon base pairing during eukaryotic translation initiation. RNA (NEW YORK, N.Y.) 2009; 15:138-52. [PMID: 19029312 PMCID: PMC2612769 DOI: 10.1261/rna.1318509] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Start codon recognition is a crucial event in the initiation of protein synthesis. To gain insight into the mechanism of start codon recognition in eukaryotes, we used a yeast reconstituted initiation system to isolate the step of Met-tRNA(i)*eIF2*GTP ternary complex (TC) binding to the 40S subunit. We examined the kinetics and thermodynamics of this step in the presence of base changes in the mRNA start codon and initiator methionyl tRNA anticodon, in order to investigate the effects of base pairing and sequence on the stability of the resulting 43S*mRNA complex. We observed that the formation of three base pairs, rather than their identities, was the key determinant of stability of TC binding, indicating that nothing is inherently special about the sequence AUG for this step. Surprisingly, the rate constant for TC binding to the 40S subunit was strongly codon dependent, whereas the rate constant for TC dissociation from the 43S*mRNA complex was not. The data suggest a model in which, after the initial diffusion-limited encounter of TC with the 40S subunit, the formation of three matching start codon/anticodon base pairs triggers a conformational change that locks the complex into a stable state. This induced-fit mechanism supports the proposal that initiation codon recognition by the 43S complex induces a conformational change from an open state to a closed one that arrests movement along the mRNA.
Collapse
Affiliation(s)
- Sarah E Kolitz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
30
|
Bañuelos MA, Haro R, Fraile-Escanciano A, Rodríguez-Navarro A. Effects of polylinker uATGs on the function of grass HKT1 transporters expressed in yeast cells. PLANT & CELL PHYSIOLOGY 2008; 49:1128-1132. [PMID: 18539606 DOI: 10.1093/pcp/pcn088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
HvHKT1 mediates K(+) or Na(+) uniport in yeast cells if the expression promoter is joined directly to the HvHKT1 cDNA, and Na(+)-K(+) symport if a 59 nucleotide polylinker is inserted. Our results show that three ATG triplets in the polylinker decreased the synthesis of the transporter and that the lower amount of transporter caused the functional change. With the rice HKT1 cDNA, the 59 nt polylinker changed the mode of Na(+) uptake from K(+)-insensitive to K(+)-inhibitable. These two modes of Na(+) uptake also occurred in rice plants.
Collapse
Affiliation(s)
- María A Bañuelos
- Departamento de Biotecnología, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Haro R, Bañuelos MA, Senn ME, Barrero-Gil J, Rodríguez-Navarro A. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. PLANT PHYSIOLOGY 2005; 139:1495-506. [PMID: 16258014 PMCID: PMC1283784 DOI: 10.1104/pp.105.067553] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The function of HKT1 in roots is controversial. We tackled this controversy by studying Na+ uptake in barley (Hordeum vulgare) roots, cloning the HvHKT1 gene, and expressing the HvHKT1 cDNA in yeast (Saccharomyces cerevisiae) cells. High-affinity Na+ uptake was not detected in plants growing at high K+ but appeared soon after exposing the plants to a K(+)-free medium. It was a uniport, insensitive to external K+ at the beginning of K+ starvation and inhibitable by K+ several hours later. The expression of HvHKT1 in yeast was Na+ (or K+) uniport, Na(+)-K+ symport, or a mix of both, depending on the construct from which the transporter was expressed. The Na+ uniport function was insensitive to external K+ and mimicked the Na+ uptake carried out by the roots at the beginning of K+ starvation. The K+ uniport function only took place in yeast cells that were completely K+ starved and disappeared when internal K+ increased, which makes it unlikely that HvHKT1 mediates K+ uptake in roots. Mutation of the first in-frame AUG codon of HvHKT1 to CUC changed the uniport function into symport. The expression of the symport from either mutants or constructs keeping the first in-frame AUG took place only in K(+)-starved cells, while the uniport was expressed in all conditions. We discuss here that the symport occurs only in heterologous expression. It is most likely related to the K+ inhibitable Na+ uptake process of roots that heterologous systems fail to reproduce.
Collapse
Affiliation(s)
- Rosario Haro
- Departamento de Biotecnología, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
32
|
Fekete CA, Applefield DJ, Blakely SA, Shirokikh N, Pestova T, Lorsch JR, Hinnebusch AG. The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J 2005; 24:3588-601. [PMID: 16193068 PMCID: PMC1276705 DOI: 10.1038/sj.emboj.7600821] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/26/2005] [Indexed: 11/09/2022] Open
Abstract
Translation initiation factor 1A stimulates 40S-binding of the eukaryotic initiation factor 2 (eIF2)/GTP/Met-tRNA(iMet) ternary complex (TC) and promotes scanning in vitro. eIF1A contains an OB-fold present in bacterial IF1 plus N- and C-terminal extensions. Truncating the C-terminus (deltaC) or mutating OB-fold residues (66-70) of eIF1A reduced general translation in vivo but increased GCN4 translation (Gcd- phenotype) in a manner suppressed by overexpressing TC. Consistent with this, both mutations diminished 40S-bound TC, eIF5 and eIF3 in vivo, and deltaC impaired TC recruitment in vitro. The assembly defects of the OB-fold mutation can be attributed to reduced 40S-binding of eIF1A, whereas deltaC impairs eIF1A function on the ribosome. A substitution in the C-terminal helix (98-101) also reduced 43S assembly in vivo. Rather than producing a Gcd- phenotype, however, 98-101 impairs GCN4 derepression in a manner consistent with defective scanning by reinitiating ribosomes. Indeed, 98-101 allows formation of aberrant 48S complexes in vitro and increases utilization of non-AUG codons in vivo. Thus, the OB-fold is crucial for ribosome-binding and the C-terminal domain of eIF1A has eukaryotic-specific functions in TC recruitment and scanning.
Collapse
Affiliation(s)
- Christie A Fekete
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Drew J Applefield
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen A Blakely
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Nikolay Shirokikh
- Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY, USA
| | - Tatyana Pestova
- Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY, USA
| | - Jon R Lorsch
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Building 6A/Room B1A-13, Bethesda, MD 20892, USA. Tel.: +1 301 496 4480; Fax: +1 301 496 6828; E-mail:
| |
Collapse
|
33
|
Harger JW, Dinman JD. Evidence against a direct role for the Upf proteins in frameshifting or nonsense codon readthrough. RNA (NEW YORK, N.Y.) 2004; 10:1721-1729. [PMID: 15388879 PMCID: PMC1236997 DOI: 10.1261/rna.7120504] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 08/10/2004] [Indexed: 05/24/2023]
Abstract
The Upf proteins are essential for nonsense-mediated mRNA decay (NMD). They have also been implicated in the modulation of translational fidelity at viral frameshift signals and premature termination codons. How these factors function in both mRNA turnover and translational control remains unclear. In this study, mono- and bicistronic reporter systems were used in the yeast Saccharomyces cerevisae to differentiate between effects at the levels of mRNA turnover and those at the level of translation. We confirm that upfDelta mutants do not affect programmed frameshifting, and show that this is also true for mutant forms of eIF1/Sui1p. Further, bicistronic reporters did not detect defects in translational readthrough due to deletion of the UPF genes, suggesting that their function in termination is not as general a phenomenon as was previously believed. The demonstration that upf sui1 double mutants are synthetically lethal demonstrates an important functional interaction between the NMD and translation initiation pathway.
Collapse
Affiliation(s)
- Jason W Harger
- Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
34
|
Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC. Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 2004; 279:49656-63. [PMID: 15358761 DOI: 10.1074/jbc.m408081200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although initiation of translation at non-AUG codons occurs occasionally in prokaryotes and higher eukaryotes, it has not been reported in yeast until very recently. Evidence presented here shows that redundant ACG codons are recognized as alternative translation start sites for ALA1, the only gene in Saccharomyces cerevisiae coding for alanyl-tRNA synthetase. ALA1 is shown to be a bifunctional gene that provides both cytoplasmic and mitochondrial activities. Unlike most bifunctional genes that contain alternative in-frame AUG initiators, there is only one AUG codon, designated AUG1, close to the 5'-end of the ALA1 open reading frame. Transcriptional mapping identified three overlapping transcripts, with 5'-ends at positions 54, 105, and 117 nucleotides upstream of AUG1, respectively. Site-specific mutagenesis demonstrated that the cytoplasmic and mitochondrial functions of ALA1 are provided by two protein isoforms with distinct amino termini; that is, a short cytoplasmic form initiated at AUG1 and a longer mitochondrial isoform initiated at two upstream in-frame ACG codons, i.e. ACG(-25) and ACG(-24). These two ACG codons function redundantly in initiation of translation. Either codon can function in the absence of the other. The short transcript appears to serve as the template for the cytoplasmic form, whereas the longer transcripts are likely to code for both isoforms via alternative initiation. Because yeast ribosomes in general cannot efficiently recognize a non-AUG initiator, this unique feature of redundancy of non-AUG initiators in a single mRNA may in itself represent a novel paradigm for translation initiation from poor initiators.
Collapse
Affiliation(s)
- Huei-Lin Tang
- Department of Life Science, National Central University, Jung-li, Taiwan 32054
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
36
|
Chang KJ, Wang CC. Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 2004; 279:13778-85. [PMID: 14734560 DOI: 10.1074/jbc.m311269200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although previous studies have already shown that both cytoplasmic and mitochondrial activities of glycyl-tRNA synthetase are provided by a single gene, GRS1,in the yeast Saccharomyces cerevisiae, the mechanism by which this occurs remains unclear. Evidence presented here indicates that this bifunctional property is actually a result of two distinct translational products alternatively generated from a single transcript of this gene. Except for an amino-terminal 23-amino acid extension, these two isoforms have the same polypeptide sequence and function exclusively in their respective compartments under normal conditions. Reporter gene assays further suggest that this leader peptide can function independently as a mitochondrial targeting signal and plays the major role in the subcellular localization of the isoforms. Additionally, whereas the short protein is translationally initiated from a traditional AUG triplet, the longer isoform is generated from an upstream inframe UUG codon. To our knowledge, GRS1 appears to be the first example in the yeast wherein a functional protein isoform is initiated from a naturally occurring non-AUG codon. The results suggest that non-AUG initiation might be a mechanism existing throughout all kingdoms.
Collapse
Affiliation(s)
- Kuang-Jung Chang
- Department of Life Science, National Central University, 300 Jung-da, Jung-li, Taiwan 32054
| | | |
Collapse
|
37
|
Kimball SR. Regulation of translation initiation by amino acids in eukaryotic cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:155-84. [PMID: 11575165 DOI: 10.1007/978-3-642-56688-2_6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translation of mRNA in eukaryotic cells is regulated by amino acids through multiple mechanisms. One such mechanism involves activation of mTOR (Fig. 1). mTOR controls a myriad of downstream effectors, including RNA polymerase I, S6K1, 4E-BP1, and eEF2 kinase. In yeast, and probably in higher eukaryotes, mTOR signals through Tap42p/alpha 4 to regulate protein phosphatases. Through phosphorylation of Tap42p/alpha 4, mTOR abrogates dephosphorylation of the downstream effectors by PP2 A and/or PP6, resulting in their increased phosphorylation. Although at this time still speculative, in vitro results using mTOR immunoprecipitates suggest that mTOR, or an associated kinase, may also be directly involved in phosphorylating some effectors. Enhanced RNA polymerase I activity results in increased transcription of rDNA genes, whereas increased S6K1 activity promotes preferential translation of TOP mRNAs, such as those encoding ribosomal proteins. Together, stimulated RNA polymerase I and S6K1 activities enhance ribosome biogenesis, increasing the translational capacity of the cell. Phosphorylation of 4E-BP1 prohibits its association with eIF4E, allowing eIF4E to bind to eIF4G and form the active eIF4F complex. Increased eIF4F formation preferentially stimulates translation of mRNAs containing long, highly-structured 5' UTRs. Finally, amino acids cause inhibition of the eEF2 kinase, resulting in an increase in the proportion of eEF2 in the active, dephosphorylated form. By inhibiting eEF2 phosphorylation, amino acids may not only stimulate translation elongation, but may also prevent activation of GCN2 by enhancing the rate of removal of deacylated tRNA from the P-site on the ribosome; a potential activator of GCN2. GCN2 may also be regulated directly by the accumulation of deacylated-tRNA caused by treatment with inhibitors of tRNA synthetases or in cells incubated in the absence of essential amino acids. However, because the Km of the tRNA synthetases for amino acids is well above the amino acid concentrations found in plasma of fasted animals, such a mechanism may not be operative in mammals in vivo. Activation of GCN2 results in increased phosphorylation of the alpha-subunit of eIF2, which in turn causes inhibition of eIF2B. Thus, by preventing activation of GCN2, amino acids preserve eIF2B activity, which promotes translation of all mRNAs, i.e., global protein synthesis is enhanced.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acids, Essential/metabolism
- Animals
- Carrier Proteins/metabolism
- Cell Cycle Proteins
- DNA-Binding Proteins
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2B/metabolism
- Fungal Proteins/genetics
- Humans
- Models, Biological
- Peptide Chain Initiation, Translational/physiology
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/metabolism
- Ribosomal Protein S6 Kinases/metabolism
- Ribosomes/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Signal Transduction
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
38
|
Nett JH, Kessl J, Wenz T, Trumpower BL. The AUG start codon of the Saccharomyces cerevisiae NFS1 gene can be substituted for by UUG without increased initiation of translation at downstream codons. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5209-14. [PMID: 11589713 DOI: 10.1046/j.0014-2956.2001.02454.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The selection of the site for initiation of translation for the Saccharomyces cerevisiae NFS1 gene was examined using mutated AUG1, AUG2 and AUG3 codons. When AUG1 of the yeast NFS1 gene was mutated to UUG and the resulting mRNA was translated in vitro using a reticulocyte system, initiation from the mutated codon was abolished and occurred instead at downstream codons at increased rates. When the same mRNA was translated using a yeast extract, translation initiated at the mutated codon, albeit at a reduced rate, and there was no increased translation at downstream AUG codons. The NFS1 gene in which AUG1 was replaced by UUG was also able to substitute for the wild-type gene in vivo in yeast. Western blots confirmed that the encoded protein was the same size as that encoded by the wild-type gene and that both the wild-type and mutated proteins localized to mitochondria. This is apparently the first example of a yeast protein where mutagenesis of AUG1 does not lead to alternate use of a downstream AUG.
Collapse
Affiliation(s)
- J H Nett
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
39
|
Bittel DC, Smirnova IV, Andrews GK. Functional heterogeneity in the zinc fingers of metalloregulatory protein metal response element-binding transcription factor-1. J Biol Chem 2000; 275:37194-201. [PMID: 10958790 DOI: 10.1074/jbc.m003863200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metal response element-binding transcription factor-1 (MTF-1) is a unique, zinc-inducible transcription factor that binds to metal response elements in the metallothionein promoter and activates transcription in response to metals and oxidative stress. MTF-1 contains six zinc fingers of the Cys(2)-His(2) type. It was previously shown that MTF-1 is reversibly activated to bind DNA in response to changes in zinc status, unlike other zinc finger transcription factors, which do not appear to be reversibly activated by zinc in the cellular environment. Here we show that zinc fingers 2-4 constitute the core DNA-binding domain, whereas fingers 5 and 6 appear to be unnecessary for DNA binding in vitro. Deletion of finger 1 resulted in a protein that bound DNA constitutively in vitro. Furthermore, transfer of MTF-1 finger 1 to a position immediately preceding the three zinc fingers of Sp1 resulted in a chimeric protein that required exogenous zinc to activate DNA binding in vitro, unlike native Sp1, which binds DNA constitutively. Transient transfection experiments demonstrated that intact MTF-1 activated a reporter 2.5-4-fold above basal levels after metal treatment in mouse MTF-1 knockout cells, Drosophila SL2 cells, and yeast. However, the metal response was lost in all three systems when finger 1 was deleted, but was unaffected by deletion of fingers 5 and 6. These data suggest that finger 1 of MTF-1 constitutes a unique metal-sensing domain that, in cooperation with the transactivation domains, produces a zinc-sensing metalloregulatory transcription factor.
Collapse
Affiliation(s)
- D C Bittel
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | |
Collapse
|
40
|
Abstract
The mechanisms whereby ribosomes engage a messenger RNA and select the start site for translation differ between prokaryotes and eukaryotes. Initiation sites in polycistronic prokaryotic mRNAs are usually selected via base pairing with ribosomal RNA. That straightforward mechanism is made complicated and interesting by cis- and trans-acting elements employed to regulate translation. Initiation sites in eukaryotic mRNAs are reached via a scanning mechanism which predicts that translation should start at the AUG codon nearest the 5' end of the mRNA. Interest has focused on mechanisms that occasionally allow escape from this first-AUG rule. With natural mRNAs, three escape mechanisms - context-dependent leaky scanning, reinitiation, and possibly direct internal initiation - allow access to AUG codons which, although not first, are still close to the 5' end of the mRNA. This constraint on the initiation step of translation in eukaryotes dictates the location of transcriptional promoters and may have contributed to the evolution of splicing.The binding of Met-tRNA to ribosomes is mediated by a GTP-binding protein in both prokaryotes and eukaryotes, but the more complex structure of the eukaryotic factor (eIF-2) and its association with other proteins underlie some aspects of initiation unique to eukaryotes. Modulation of GTP hydrolysis by eIF-2 is important during the scanning phase of initiation, while modulating the release of GDP from eIF-2 is a key mechanism for regulating translation in eukaryotes. Our understanding of how some other protein factors participate in the initiation phase of translation is in flux. Genetic tests suggest that some proteins conventionally counted as eukaryotic initiation factors may not be required for translation, while other tests have uncovered interesting new candidates. Some popular ideas about the initiation pathway are predicated on static interactions between isolated factors and mRNA. The need for functional testing of these complexes is discussed. Interspersed with these theoretical topics are some practical points concerning the interpretation of cDNA sequences and the use of in vitro translation systems. Some human diseases resulting from defects in the initiation step of translation are also discussed.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
41
|
Kirkpatrick DT, Dominska M, Petes TD. Conversion-type and restoration-type repair of DNA mismatches formed during meiotic recombination in Saccharomyces cerevisiae. Genetics 1998; 149:1693-705. [PMID: 9691029 PMCID: PMC1460284 DOI: 10.1093/genetics/149.4.1693] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meiotic recombination in yeast is associated with heteroduplex formation. Heteroduplexes formed between nonidentical DNA strands contain DNA mismatches, and most DNA mismatches in wild-type strains are efficiently corrected. Although some patterns of mismatch correction result in non-Mendelian segregation of the heterozygous marker (gene conversion), one predicted pattern of correction (restoration-type repair) results in normal Mendelian segregation. Using a yeast strain in which a marker leading to a well-repaired mismatch is flanked by markers that lead to poorly repaired mismatches, we present direct evidence for restoration-type repair in yeast. In addition, we find that the frequency of tetrads with conversion-type repair is higher for a marker at the 5' end of the HIS4 gene than for a marker in the middle of the gene. These results suggest that the ratio of conversion-type to restoration-type repair may be important in generating gradients of gene conversion (polarity gradients).
Collapse
Affiliation(s)
- D T Kirkpatrick
- Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
42
|
Cuesta R, Hinnebusch AG, Tamame M. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae. Genetics 1998; 148:1007-20. [PMID: 9539420 PMCID: PMC1460055 DOI: 10.1093/genetics/148.3.1007] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, expression of the transcriptional activator GCN4 increases at the translational level in response to starvation for an amino acid. The products of multiple GCD genes are required for efficient repression of GCN4 mRNA translation under nonstarvation conditions. The majority of the known GCD genes encode subunits of the general translation initiation factor eIF-2 or eIF-2B. To identify additional initiation factors in yeast, we characterized 65 spontaneously arising Gcd- mutants. In addition to the mutations that were complemented by known GCD genes or by GCN3, we isolated mutant alleles of two new genes named GCD14 and GCD15. Recessive mutations in these two genes led to highly unregulated GCN4 expression and to derepressed transcription of genes in the histidine biosynthetic pathway under GCN4 control. The derepression of GCN4 expression in gcd14 and gcd15 mutants occurred with little or no increase in GCN4 mRNA levels, and it was dependent on upstream open reading frames (uORFs) in GCN4 mRNA that regulate its translation. We conclude that GCD14 and GCD15 are required for repression of GCN4 mRNA translation by the uORFs under conditions of amino acid sufficiency. The gcd14 and gcd15 mutations confer a slow-growth phenotype on nutrient-rich medium, and gcd15 mutations are lethal when combined with a mutation in gcd13. Like other known GCD genes, GCD14 and GCD15 are therefore probably required for general translation initiation in addition to their roles in GCN4-specific translational control.
Collapse
MESH Headings
- Alcohol Oxidoreductases
- Aminohydrolases
- Cloning, Molecular
- DNA-Binding Proteins
- Epistasis, Genetic
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-2B
- Fungal Proteins/genetics
- Gene Deletion
- Gene Expression Regulation, Fungal
- Genes, Dominant
- Genes, Fungal
- Genes, Recessive
- Genes, Regulator
- Genetic Complementation Test
- Meiosis
- Mutagenesis
- Phenotype
- Protein Biosynthesis
- Protein Kinases/genetics
- Pyrophosphatases
- RNA, Fungal
- RNA, Messenger
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- R Cuesta
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Spain
| | | | | |
Collapse
|
43
|
Yun DF, Laz TM, Clements JM, Sherman F. mRNA sequences influencing translation and the selection of AUG initiator codons in the yeast Saccharomyces cerevisiae. Mol Microbiol 1996; 19:1225-39. [PMID: 8730865 DOI: 10.1111/j.1365-2958.1996.tb02468.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The secondary structure and sequences influencing the expression and selection of the AUG initiator codon in the yeast Saccharomyces cerevisiae were investigated with two fused genes, which were composed of either the CYC7 or CYC1 leader regions, respectively, linked to the lacZ coding region. In addition, the strains contained the upf1-delta disruption, which stabilized mRNAs that had premature termination codons, resulting in wild-type levels. The following major conclusions were reached by measuring beta-galactosidase activities in yeast strains having integrated single copies of the fused genes with various alterations in the 89 and 38 nucleotide-long untranslated CYC7 and CYC1 leader regions, respectively. The leader region adjacent to the AUG initiator codon was dispensable, but the nucleotide preceding the AUG initiator at position -3 modified the efficiency of translation by less than twofold, exhibiting an order of preference A > G > C > U. Upstream out-of-frame AUG triplets diminished initiation at the normal site, from essentially complete inhibition to approximately 50% inhibition, depending on the position of the upstream AUG triplet and on the context (-3 position nucleotides) of the two AUG triplets. In this regard, complete inhibition occurred when the upstream and downstream AUG triplets were closer together, and when the upstream and downstream AUG triplets had, respectively, optimal and suboptimal contexts. Thus, leaky scanning occurs in yeast, similar to its occurrence in higher eukaryotes. In contrast, termination codons between two AUG triplets causes reinitiation at the downstream AUG in higher eukaryotes, but not generally in yeast. Our results and the results of others with GCN4 mRNA and its derivatives indicate that reinitiation is not a general phenomenon in yeast, and that special sequences are required.
Collapse
Affiliation(s)
- D F Yun
- Department of Biochemistry, University of Rochester, School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
44
|
Wolfe C, Lou Y, Hopper A, Martin N. Interplay of heterogeneous transcriptional start sites and translational selection of AUGs dictate the production of mitochondrial and cytosolic/nuclear tRNA nucleotidyltransferase from the same gene in yeast. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36841-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Altmann M, Trachsel H. The yeast Saccharomyces cerevisiae system: a powerful tool to study the mechanism of protein synthesis initiation in eukaryotes. Biochimie 1994; 76:853-61. [PMID: 7880902 DOI: 10.1016/0300-9084(94)90187-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review summarizes recent progress in the study of initiation of protein synthesis in the yeast Saccharomyces cerevisiae. Biochemical and genetic approaches provide new insight into the recognition of the 5'-end of mRNA by initiation factors and 40S ribosomes, unwinding of mRNA secondary structures in the untranslated region and proper recognition of the AUG start codon. Experiments with initiation factor-dependent cell-free systems have facilitated studies of factor functions and factor requirements for translation of different mRNAs. The analysis of mutations which suppress the inhibitory effect on translation of RNA secondary structure in the 5'-untranslated region of yeast mRNAs has led to the identification of gene products which may be involved in both transcription and translation.
Collapse
Affiliation(s)
- M Altmann
- Institut für Biochemie und Molekularbiologie, Universität Bern, Switzerland
| | | |
Collapse
|
46
|
|
47
|
Chiorini J, Boal T, Miyamoto S, Safer B. A difference in the rate of ribosomal elongation balances the synthesis of eukaryotic translation initiation factor (eIF)-2 alpha and eIF-2 beta. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)86920-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Detloff P, White MA, Petes TD. Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae. Genetics 1992; 132:113-23. [PMID: 1398048 PMCID: PMC1205110 DOI: 10.1093/genetics/132.1.113] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Heteroduplexes formed between genes on homologous chromosomes are intermediates in meiotic recombination. In the HIS4 gene of Saccharomyces cerevisiae, most mutant alleles at the 5' end of the gene have a higher rate of meiotic recombination (gene conversion) than mutant alleles at the 3' end of the gene. Such gradients are usually interpreted as indicating a higher frequency of heteroduplex formation at the high conversion end of the gene. We present evidence indicating that the gradient of conversion at HIS4 primarily reflects the direction of mismatch repair rather than the frequency of heteroduplex formation. We also identify a site located between the 5' end of HIS4 and the 3' end of BIK1 that stimulates heteroduplex formation at HIS4 and BIK1.
Collapse
Affiliation(s)
- P Detloff
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | |
Collapse
|
49
|
Gulyas KD, Donahue TF. SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell 1992; 69:1031-42. [PMID: 1318786 DOI: 10.1016/0092-8674(92)90621-i] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reversion of haploid, His4- yeast containing a stem-loop mutation in the 5' UTR that blocks HIS4 translation initiation identified four unlinked suppressor genes, SSL1-SSL4, which restore His4+ expression. The SSL2 gene encodes an essential 95 kd protein with ATP-dependent helicase motifs. SSL2 protein is 54% identical to the protein encoded by the human gene, ERCC-3, for which a defective form causes xeroderma pigmentosum and Cockayne's syndrome. An SSL2 allele made to resemble the defective ERCC-3 gene confers UV light hypersensitivity to yeast cells. Hence, SSL2 is the functional homolog of ERCC-3. However, the SSL2 suppressor gene does not restore HIS4 expression by removal of the stem-loop from DNA or the mRNA. We propose that SSL2 and ERCC-3 may have two functions, one defined by a UV repair defect, and a second essential function that is related to gene expression.
Collapse
Affiliation(s)
- K D Gulyas
- Indiana University, Department of Biology, Bloomington 47405
| | | |
Collapse
|
50
|
Abstract
The first observations regarding the control of translation initiation in the yeast Saccharomyces cerevisiae were made by Fred Sherman and his colleagues in 1971. Elegant genetic studies of the CYC1 gene resulted in the formulation of 'Sherman's Rules' for translation initiation as follows: (i) AUG is the only initiator codon. (ii) the most proximal AUG from the 5' end of a message will serve as the start site of translation; and (iii) if the upstream AUG codon is mutated then initiation begins at the next available AUG in the message. Hidden within these rules is the mechanism of eukaryotic translation initiation, as these very same rules were later shown to apply to higher eukaryotic organisms and were formulated into the scanning model. However, only in the past five years has yeast been taken seriously as an organism for studying the mechanism of eukaryotic translation initiation. The basis for this is that the yeast genes for at least four mammalian translation initiation factor homologues have been identified and the number is growing. Similar factors suggest similar mechanisms for translation initiation between yeast and mammals. For some translation initiation factors, the genetics of yeast has provided new insights into their function. A mechanism for regulating translation initiation in mammalian cells is now evident in yeast. It seems clear that the molecular genetics of yeast coupled with the available in vitro translation system will provide a wealth of information in the future regarding translational control and regulatory mechanisms. The purpose of this review is to summarize what is known about translational control in S. cerevisiae.
Collapse
Affiliation(s)
- H Yoon
- Department of Biology, Indiana University, Bloomington 47405
| | | |
Collapse
|