1
|
Uebel CJ, Agbede D, Wallis DC, Phillips CM. Mutator Foci Are Regulated by Developmental Stage, RNA, and the Germline Cell Cycle in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:3719-3728. [PMID: 32763952 PMCID: PMC7534428 DOI: 10.1534/g3.120.401514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/03/2020] [Indexed: 02/02/2023]
Abstract
RNA interference is a crucial gene regulatory mechanism in Caenorhabditis elegans Phase-separated perinuclear germline compartments called Mutator foci are a key element of RNAi, ensuring robust gene silencing and transgenerational epigenetic inheritance. Despite their importance, Mutator foci regulation is not well understood, and observations of Mutator foci have been largely limited to adult hermaphrodite germlines. Here we reveal that punctate Mutator foci arise in the progenitor germ cells of early embryos and persist throughout all larval stages. They are additionally present throughout the male germline and in the cytoplasm of post-meiotic spermatids, suggestive of a role in paternal epigenetic inheritance. In the adult germline, transcriptional inhibition results in a pachytene-specific loss of Mutator foci, indicating that Mutator foci are partially reliant on RNA for their stability. Finally, we demonstrate that Mutator foci intensity is modulated by the stage of the germline cell cycle and specifically, that Mutator foci are brightest and most robust in the mitotic cells, transition zone, and late pachytene of adult germlines. Thus, our data defines several new factors that modulate Mutator foci morphology which may ultimately have implications for efficacy of RNAi in certain cell stages or environments.
Collapse
Affiliation(s)
- Celja J Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Dana Agbede
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Dylan C Wallis
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
2
|
Firnhaber C, Hammarlund M. Neuron-specific feeding RNAi in C. elegans and its use in a screen for essential genes required for GABA neuron function. PLoS Genet 2013; 9:e1003921. [PMID: 24244189 PMCID: PMC3820814 DOI: 10.1371/journal.pgen.1003921] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism. Living organisms often reuse the same genes multiple times for different purposes. If one function of a gene is essential, death or arrest of the mutant masks other functions. Understanding the functions of essential genes is particularly critical in the nervous system, which must maintain plasticity and fend off disease long after development is complete. However, current strategies for generating conditional knockouts rely on making a new transgenic animal for each gene and thus are not useful for forward genetic screens or for other experiments involving a large number of genes. We have developed a technique in C. elegans for generating gene knockdown in selected neuron sub-types in response to feeding RNAi. Using this technique, we performed a screen aimed at identifying essential genes that are required for the function of mature GABAergic neurons. By knocking these genes down in only GABAergic neurons, we can circumvent the muddying effects of pleiotropy and find essential genes that function cell intrinsically to promote GABA neuron function. The genes we identified using this method provide a more complete understanding of the complex genetic requirements of post-developmental neurons.
Collapse
Affiliation(s)
- Christopher Firnhaber
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marc Hammarlund
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
3
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
4
|
Fritz JA, Behm CA. CUTI-1: A novel tetraspan protein involved in C. elegans CUTicle formation and epithelial integrity. PLoS One 2009; 4:e5117. [PMID: 19357781 PMCID: PMC2663847 DOI: 10.1371/journal.pone.0005117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 03/11/2009] [Indexed: 11/18/2022] Open
Abstract
The nematode cuticle is a tough extracellular matrix composed primarily of cross-linked collagens and non-collagenous cuticulins. It is required for nematode motility and protection from the external environment. Little is known about how the complex process of cuticle formation has been adapted to the specialized requirements of the nematode cuticle, which is structurally and compositionally unique from other organisms. The C. elegans gene cuti-1 (CUTicle and epithelial Integrity) encodes a nematode-specific protein. We have shown that CUTI-1 is expressed in the epithelia and in seam cells. Within these tissues the expression of cuti-1 mRNA cycles throughout development in line with the molting cycle, a process that involves synthesis of a new cuticle. In addition, knockdown of cuti-1 by RNA interference (RNAi) results in worms that display post-embryonic phenotypes related to cuticle dysfunction and defects in epithelial integrity. This is one of the first reports of a nematode-specific protein involved in extracellular matrix formation. It provides further insight into how novel ways have evolved to regulate the formation of the cuticle, which is the primary protective barrier and skeletal component of nematodes.
Collapse
Affiliation(s)
- Julie-Anne Fritz
- Biochemistry & Molecular Biology, The School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
5
|
Spike CA, Shaw JE, Herman RK. Analysis of smu-1, a gene that regulates the alternative splicing of unc-52 pre-mRNA in Caenorhabditis elegans. Mol Cell Biol 2001; 21:4985-95. [PMID: 11438655 PMCID: PMC87225 DOI: 10.1128/mcb.21.15.4985-4995.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2001] [Accepted: 05/04/2001] [Indexed: 11/20/2022] Open
Abstract
Mutations in the smu-1 gene of Caenorhabditis elegans were previously shown to suppress mutations in the genes mec-8 and unc-52. mec-8 encodes a putative RNA binding protein that affects the accumulation of specific alternatively spliced mRNA isoforms produced by unc-52 and other genes. unc-52 encodes a set of basement membrane proteins, homologs of mammalian perlecan, that are important for body wall muscle assembly and attachment to basement membrane, hypodermis, and cuticle. We show that a presumptive null mutation in smu-1 suppresses nonsense mutations in exon 17 but not exon 18 of unc-52 and enhances the phenotype conferred by an unc-52 splice site mutation in intron 16. We have used reverse transcription-PCR and RNase protection to show that loss-of-function smu-1 mutations enhance accumulation in larvae of an alternatively spliced isoform that skips exon 17 but not exon 18 of unc-52. We have identified smu-1 molecularly; it encodes a nuclearly localized protein that contains five WD motifs and is ubiquitously expressed. The SMU-1 amino acid sequence is more than 60% identical to a predicted human protein of unknown function. We propose that smu-1 encodes a trans-acting factor that regulates the alternative splicing of the pre-mRNA of unc-52 and other genes.
Collapse
Affiliation(s)
- C A Spike
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
6
|
Winter AD, Page AP. Prolyl 4-hydroxylase is an essential procollagen-modifying enzyme required for exoskeleton formation and the maintenance of body shape in the nematode Caenorhabditis elegans. Mol Cell Biol 2000; 20:4084-93. [PMID: 10805750 PMCID: PMC85778 DOI: 10.1128/mcb.20.11.4084-4093.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multienzyme complex prolyl 4-hydroxylase catalyzes the hydroxylation of proline residues and acts as a chaperone during collagen synthesis in multicellular organisms. The beta subunit of this complex is identical to protein disulfide isomerase (PDI). The free-living nematode Caenorhabditis elegans is encased in a collagenous exoskeleton and represents an excellent model for the study of collagen biosynthesis and extracellular matrix formation. In this study, we examined prolyl 4-hydroxylase alpha-subunit (PHY; EC 1.14.11.2)- and beta-subunit (PDI; EC 5.3.4.1)-encoding genes with respect to their role in collagen modification and formation of the C. elegans exoskeleton. We identified genes encoding two PHYs and a single associated PDI and showed that all three are expressed in collagen-synthesizing ectodermal cells at times of maximal collagen synthesis. Disruption of the pdi gene via RNA interference resulted in embryonic lethality. Similarly, the combined phy genes are required for embryonic development. Interference with phy-1 resulted in a morphologically dumpy phenotype, which we determined to be identical to the uncharacterized dpy-18 locus. Two dpy-18 mutant strains were shown to have null alleles for phy-1 and to have a reduced hydroxyproline content in their exoskeleton collagens. This study demonstrates in vivo that this enzyme complex plays a central role in extracellular matrix formation and is essential for normal metazoan development.
Collapse
Affiliation(s)
- A D Winter
- Wellcome Centre for Molecular Parasitology, Anderson College, The University of Glasgow, Glasgow G11 6NU, United Kingdom
| | | |
Collapse
|
7
|
Longman D, Johnstone IL, Cáceres JF. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J 2000; 19:1625-37. [PMID: 10747030 PMCID: PMC310231 DOI: 10.1093/emboj/19.7.1625] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The SR proteins constitute a family of nuclear phosphoproteins, which are required for constitutive splicing and also influence alternative splicing regulation. Initially, it was suggested that SR proteins were functionally redundant in constitutive splicing. However, differences have been observed in alternative splicing regulation, suggesting unique functions for individual SR proteins. Homology searches of the Caenorhabditis elegans genome identified seven genes encoding putative orthologues of the human factors SF2/ASF, SRp20, SC35, SRp40, SRp75 and p54, and also several SR-related genes. To address the issue of functional redundancy, we used dsRNA interference (RNAi) to inhibit specific SR protein function during C.elegans development. RNAi with CeSF2/ASF caused late embryonic lethality, suggesting that this gene has an essential function during C.elegans development. RNAi with other SR genes resulted in no obvious phenotype, which is indicative of gene redundancy. Simultaneous interference of two or more SR proteins in certain combinations caused lethality or other developmental defects. RNAi with CeSRPK, an SR protein kinase, resulted in early embryonic lethality, suggesting an essential role for SR protein phosphorylation during development.
Collapse
Affiliation(s)
- D Longman
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU
| | | | | |
Collapse
|
8
|
Schlesinger A, Shelton CA, Maloof JN, Meneghini M, Bowerman B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev 1999; 13:2028-38. [PMID: 10444600 PMCID: PMC316921 DOI: 10.1101/gad.13.15.2028] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In a four-cell-stage Caenorhabditis elegans embryo, Wnt signaling polarizes an endoderm precursor called EMS. The polarization of this cell orients its mitotic spindle in addition to inducing endodermal fate in one daughter cell. Reducing the function of Wnt pathway genes, including a newly identified GSK-3beta homolog called gsk-3, disrupts endoderm induction, whereas only a subset of these genes is required for proper EMS mitotic spindle orientation. Wnt pathway genes thought to act downstream of gsk-3 appear not to be required for spindle orientation, suggesting that gsk-3 represents a branch point in the control of endoderm induction and spindle orientation. Orientation of the mitotic spindle does not require gene transcription in EMS, suggesting that Wnt signaling may directly target the cytoskeleton in a responding cell.
Collapse
Affiliation(s)
- A Schlesinger
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | |
Collapse
|
9
|
Sepehri S, Hernandez N. The largest subunit of human RNA polymerase III is closely related to the largest subunit of yeast and trypanosome RNA polymerase III. Genome Res 1997; 7:1006-19. [PMID: 9331371 PMCID: PMC310672 DOI: 10.1101/gr.7.10.1006] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 08/27/1997] [Indexed: 02/05/2023]
Abstract
In both yeast and mammalian systems, considerable progress has been made toward the characterization of the transcription factors required for transcription by RNA polymerase III. However, whereas in yeast all of the RNA polymerase III subunits have been cloned, relatively little is known about the enzyme itself in higher eukaryotes. For example, no higher eukaryotic sequence corresponding to the largest RNA polymerase III subunit is available. Here we describe the isolation of cDNAs that encode the largest subunit of human RNA polymerase III, as suggested by the observations that (1) antibodies directed against the cloned protein immunoprecipitate an active enzyme whose sensitivity to different concentrations of alpha-amanitin is that expected for human RNA polymerase III; and (2) depletion of transcription extracts with the same antibodies results in inhibition of transcription from an RNA polymerase III, but not from an RNA polymerase II, promoter. Sequence comparisons reveal that regions conserved in the RNA polymerase I, II, and III largest subunits characterized so far are also conserved in the human RNA polymerase III sequence, and thus probably perform similar functions for the human RNA polymerase III enzyme.
Collapse
Affiliation(s)
- S Sepehri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
10
|
Hagios C, Koch M, Spring J, Chiquet M, Chiquet-Ehrismann R. Tenascin-Y: a protein of novel domain structure is secreted by differentiated fibroblasts of muscle connective tissue. J Cell Biol 1996; 134:1499-512. [PMID: 8830777 PMCID: PMC2120995 DOI: 10.1083/jcb.134.6.1499] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tenascin-Y was identified in chicken as a novel member of the tenascin (TN) family of ECM proteins. Like TN-C, TN-R, and TN-X, TN-Y is a multidomain protein consisting of heptad repeats, epidermal growth factor-like repeats, fibronectin type III-like (FNIII) domains and a domain homologous to fibrinogen. In contrast to all other known TNs, the series of FNIII domains is interrupted by a novel domain, rich in serines (S) and prolines (P) that occur as repeated S-P-X-motifs, where X stands for any amino acid. Interestingly, the TN-Y-type FNIII domains are 70-100% identical with respect to their DNA sequence. Different TN-Y variants are created by alternative splicing of FNIII domains. Although, based on sequence comparisons TN-Y is most similar to mammalian TN-X, these molecules are not species homologues. TN-Y is predominantly expressed in embryonic and adult chicken heart and skeletal muscle and, to a lower extent, also in several non-muscular tissues. Two major transcripts of approximately 6.5 and 9.5 kb are differentially expressed during heart and skeletal muscle development and are also present in the adult. Anti-TN-Y antibodies recognize a approximately 400-kD double band and a approximately 300-kD form of TN-Y on immunoblots of chicken heart extracts. In situ hybridization and immunofluorescence analysis of aortic smooth muscle, heart, and skeletal muscle revealed that TN-Y is mainly expressed and secreted by cells within muscle-associated connective tissue. Cultured primary muscle fibroblasts released a approximately 220-kD doublet and a approximately 170-kD single TN-Y variant only when cultured in 10% horse serum but not in medium containing 10% fetal calf serum. All TN-Y variants isolated bind to heparin under physiologically relevant conditions that may indicate an important function retained in all tenascins.
Collapse
Affiliation(s)
- C Hagios
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Bartolomei MS, Corden JL. Clustered alpha-amanitin resistance mutations in mouse. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:778-82. [PMID: 7898449 DOI: 10.1007/bf00290727] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the identification of three new alpha-amanitin resistance mutations in the gene encoding the largest subunit of mouse RNA polymerase II (RPII215). These mutations are clustered in a region of the largest subunit that is important for transcription elongation. This same domain has been identified as the site of alpha-amanitin resistance mutations in both Drosophila and Caenarhabditis elegans. The sequences encompassing this cluster of mutations are highly conserved among RNA polymerase II genes from a number of species, including those that are naturally more resistant to alpha-amanitin suggesting that this region of the largest subunit is critical for a conserved catalytic function. The mutations reported here change leucine 745 to phenylalanine, arginine 749 to proline, or isoleucine 779 to phenylalanine. Together with the previously reported asparagine 792 to aspartate substitution these mutations define a potential alpha-amanitin binding pocket in a region of the mouse subunit that could be involved in translocation of polymerase during elongation.
Collapse
Affiliation(s)
- M S Bartolomei
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
12
|
A highly conserved domain of RNA polymerase II shares a functional element with acidic activation domains of upstream transcription factors. Mol Cell Biol 1994. [PMID: 7935466 DOI: 10.1128/mcb.14.11.7507] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here that the largest subunit of yeast RNA polymerase II contains an acidic domain that is similar to acidic activators of transcription. This domain includes the highly conserved homology box H. A hybrid protein containing this acidic domain fused to the DNA-binding domain of GAL4 is a potent activator of transcription in the yeast Saccharomyces cerevisiae. Interestingly, mutations that reduce the upstream activating activity of this acidic domain also abolish the normal function of RNA polymerase II. Such functional defects can be rescued by the acidic activation domains of VP16 and GAL4 when inserted into the mutant derivatives of RNA polymerase II. We further show that this acidic domain of RNA polymerase II interacts directly with two general transcription factors, the TATA-binding protein and TFIIB, and that the acidic activation domain of VP16 can compete specifically with the acidic domain of the RNA polymerase for these interactions. We discuss the implications of this finding for the mechanisms of transcriptional activation in eucaryotes.
Collapse
|
13
|
Xiao H, Friesen JD, Lis JT. A highly conserved domain of RNA polymerase II shares a functional element with acidic activation domains of upstream transcription factors. Mol Cell Biol 1994; 14:7507-16. [PMID: 7935466 PMCID: PMC359287 DOI: 10.1128/mcb.14.11.7507-7516.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report here that the largest subunit of yeast RNA polymerase II contains an acidic domain that is similar to acidic activators of transcription. This domain includes the highly conserved homology box H. A hybrid protein containing this acidic domain fused to the DNA-binding domain of GAL4 is a potent activator of transcription in the yeast Saccharomyces cerevisiae. Interestingly, mutations that reduce the upstream activating activity of this acidic domain also abolish the normal function of RNA polymerase II. Such functional defects can be rescued by the acidic activation domains of VP16 and GAL4 when inserted into the mutant derivatives of RNA polymerase II. We further show that this acidic domain of RNA polymerase II interacts directly with two general transcription factors, the TATA-binding protein and TFIIB, and that the acidic activation domain of VP16 can compete specifically with the acidic domain of the RNA polymerase for these interactions. We discuss the implications of this finding for the mechanisms of transcriptional activation in eucaryotes.
Collapse
Affiliation(s)
- H Xiao
- Department of Genetics, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
14
|
The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations. Mol Cell Biol 1994. [PMID: 8264591 DOI: 10.1128/mcb.14.1.226] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the Saccharomyces cerevisiae sua8 gene were found to be suppressors of an aberrant ATG translation initiation codon in the leader region of the cyc1 gene. Analysis of cyc1 transcripts from sua8 mutants revealed that suppression is a consequence of diminished transcription initiation at the normal start sites in favor of initiation at downstream sites, including a site between the aberrant and normal ATG start codons. This effect is not cyc1 gene specific since initiation at other genes, including ADH1, CYC7, and HIS4, was similarly affected, although initiation at HIS3 and SPT15 was unaffected. The SUA8 gene was cloned and partially sequenced, revealing identity to RPB1, which encodes the largest subunit of RNA polymerase II. The sua8 suppressors are the result of single amino acid replacements of highly conserved residues. Three replacements were found either within or immediately preceding homology block D, and a fourth was found adjacent to homology block H, indicating that these regions play a role in defining start sites in vivo. Nearly identical effects on start site selection were observed for sua7 suppressors, which encode altered forms of TFIIB. Synthetic lethality was associated with double sua7 sua8 suppressor mutations, and recessive sua7 mutants failed to fully complement recessive sua8 mutants in heterozygous diploids (nonallelic noncomplementation). These data indicate that the largest subunit of RNA polymerase II and TFIIB are important determinants of transcription start site selection in S. cerevisiae and suggest that this function might be conferred by interaction between these two proteins.
Collapse
|
15
|
Berroteran RW, Ware DE, Hampsey M. The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations. Mol Cell Biol 1994; 14:226-37. [PMID: 8264591 PMCID: PMC358373 DOI: 10.1128/mcb.14.1.226-237.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the Saccharomyces cerevisiae sua8 gene were found to be suppressors of an aberrant ATG translation initiation codon in the leader region of the cyc1 gene. Analysis of cyc1 transcripts from sua8 mutants revealed that suppression is a consequence of diminished transcription initiation at the normal start sites in favor of initiation at downstream sites, including a site between the aberrant and normal ATG start codons. This effect is not cyc1 gene specific since initiation at other genes, including ADH1, CYC7, and HIS4, was similarly affected, although initiation at HIS3 and SPT15 was unaffected. The SUA8 gene was cloned and partially sequenced, revealing identity to RPB1, which encodes the largest subunit of RNA polymerase II. The sua8 suppressors are the result of single amino acid replacements of highly conserved residues. Three replacements were found either within or immediately preceding homology block D, and a fourth was found adjacent to homology block H, indicating that these regions play a role in defining start sites in vivo. Nearly identical effects on start site selection were observed for sua7 suppressors, which encode altered forms of TFIIB. Synthetic lethality was associated with double sua7 sua8 suppressor mutations, and recessive sua7 mutants failed to fully complement recessive sua8 mutants in heterozygous diploids (nonallelic noncomplementation). These data indicate that the largest subunit of RNA polymerase II and TFIIB are important determinants of transcription start site selection in S. cerevisiae and suggest that this function might be conferred by interaction between these two proteins.
Collapse
Affiliation(s)
- R W Berroteran
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | |
Collapse
|
16
|
Acker J, Wintzerith M, Vigneron M, Kedinger C. Structure of the gene encoding the 14.5 kDa subunit of human RNA polymerase II. Nucleic Acids Res 1993; 21:5345-50. [PMID: 8265347 PMCID: PMC310569 DOI: 10.1093/nar/21.23.5345] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The structure of the gene encoding the 14.5 kDa subunit of the human RNA polymerase II (or B) has been elucidated. The gene consists of six exons, ranging from 52 to over 101 bp, interspaced with five introns ranging from 84 to 246 bp. It is transcribed into three major RNA species, present at low abundance in exponentially growing HeLa cells. The corresponding messenger RNAs contain the same open reading frame encoding a 125 amino acid residue protein, with a calculated molecular weight of 14,523 Da. This protein (named hRPB14.5) shares strong homologies with the homologous polymerase subunits encoded by the Drosophila (RpII15) and yeast (RPB9) genes. Cysteines characteristic of two zinc fingers are conserved in all three corresponding sequences and, like the yeast protein, the hRPB14.5 subunit exhibits zinc-binding activity.
Collapse
Affiliation(s)
- J Acker
- Laboratoire de Génétique Moléculaire des Eucaryotes (CNRS), Unité 184 de Biologie Moléculaire et de Génie Génétique (INSERM), Institut de Chimie Biologique, Strasbourg, France
| | | | | | | |
Collapse
|
17
|
Abstract
The transcription of nucleus-encoded genes in eukaryotes is performed by three distinct RNA polymerases termed I, II, and III, each of which is a complex enzyme composed of more than 10 subunits. The isolation of genes encoding subunits of eukaryotic RNA polymerases from a wide spectrum of organisms has confirmed previous biochemical and immunological data indicating that all three enzymes are closely related in structures that have been conserved in evolution. Each RNA polymerase is an enzyme complex composed of two large subunits that are homologous to the two largest subunits of prokaryotic RNA polymerases and are associated with smaller polypeptides, some of which are common to two or to all three eukaryotic enzymes. This remarkable conservation of structure most probably underlies a conservation of function and emphasizes the likelihood that information gained from the study of RNA polymerases from one organism will be applicable to others. The recent isolation of many mutations affecting the structure and/or function of eukaryotic and prokaryotic RNA polymerases now makes it feasible to begin integrating genetic and biochemical information from various species in order to develop a picture of these enzymes. The picture of eukaryotic RNA polymerases depicted in this article emphasizes the role(s) of different polypeptide regions in interaction with other subunits, cofactors, substrates, inhibitors, or accessory transcription factors, as well as the requirement for these interactions in transcription initiation, elongation, pausing, termination, and/or enzyme assembly. Most mutations described here have been isolated in eukaryotic organisms that have well-developed experimental genetic systems as well as amenable biochemistry, such as Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans. When relevant, mutations affecting regions of Escherichia coli RNA polymerase that are conserved among eukaryotes and prokaryotes are also presented. In addition to providing information about the structure and function of eukaryotic RNA polymerases, the study of mutations and of the pleiotropic phenotypes they imposed has underscored the central role played by these enzymes in many fundamental processes such as development and cellular differentiation.
Collapse
Affiliation(s)
- J Archambault
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
18
|
Mapping mutations in genes encoding the two large subunits of Drosophila RNA polymerase II defines domains essential for basic transcription functions and for proper expression of developmental genes. Mol Cell Biol 1993. [PMID: 8321225 DOI: 10.1128/mcb.13.7.4214] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have mapped a number of mutations at the DNA sequence level in genes encoding the largest (RpII215) and second-largest (RpII140) subunits of Drosophila melanogaster RNA polymerase II. Using polymerase chain reaction (PCR) amplification and single-strand conformation polymorphism (SSCP) analysis, we detected 12 mutations from 14 mutant alleles (86%) as mobility shifts in nondenaturing gel electrophoresis, thus localizing the mutations to the corresponding PCR fragments of about 350 bp. We then determined the mutations at the DNA sequence level by directly subcloning the PCR fragments and sequencing them. The five mapped RpII140 mutations clustered in a C-terminal portion of the second-largest subunit, indicating the functional importance of this region of the subunit. The RpII215 mutations were distributed more broadly, although six of eight clustered in a central region of the subunit. One notable mutation that we localized to this region was the alpha-amanitin-resistant mutation RpII215C4, which also affects RNA chain elongation in vitro. RpII215C4 mapped to a position near the sites of corresponding mutations in mouse and in Caenorhabditis elegans genes, reinforcing the idea that this region is involved in amatoxin binding and transcript elongation. We also mapped mutations in both RpII215 and RpII140 that cause a developmental defect known as the Ubx effect. The clustering of these mutations in each gene suggests that they define functional domains in each subunit whose alteration induces the mutant phenotype.
Collapse
|
19
|
Chen Y, Weeks J, Mortin MA, Greenleaf AL. Mapping mutations in genes encoding the two large subunits of Drosophila RNA polymerase II defines domains essential for basic transcription functions and for proper expression of developmental genes. Mol Cell Biol 1993; 13:4214-22. [PMID: 8321225 PMCID: PMC359971 DOI: 10.1128/mcb.13.7.4214-4222.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have mapped a number of mutations at the DNA sequence level in genes encoding the largest (RpII215) and second-largest (RpII140) subunits of Drosophila melanogaster RNA polymerase II. Using polymerase chain reaction (PCR) amplification and single-strand conformation polymorphism (SSCP) analysis, we detected 12 mutations from 14 mutant alleles (86%) as mobility shifts in nondenaturing gel electrophoresis, thus localizing the mutations to the corresponding PCR fragments of about 350 bp. We then determined the mutations at the DNA sequence level by directly subcloning the PCR fragments and sequencing them. The five mapped RpII140 mutations clustered in a C-terminal portion of the second-largest subunit, indicating the functional importance of this region of the subunit. The RpII215 mutations were distributed more broadly, although six of eight clustered in a central region of the subunit. One notable mutation that we localized to this region was the alpha-amanitin-resistant mutation RpII215C4, which also affects RNA chain elongation in vitro. RpII215C4 mapped to a position near the sites of corresponding mutations in mouse and in Caenorhabditis elegans genes, reinforcing the idea that this region is involved in amatoxin binding and transcript elongation. We also mapped mutations in both RpII215 and RpII140 that cause a developmental defect known as the Ubx effect. The clustering of these mutations in each gene suggests that they define functional domains in each subunit whose alteration induces the mutant phenotype.
Collapse
Affiliation(s)
- Y Chen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
20
|
Abstract
Two types of largest subunit RNA polymerase II (pol II) genes (pol IIA and pol IIB), differing in 3 amino acid substitutions, are encoded in the Trypanosoma brucei (stock 427-60) genome. As a result, the alpha-amanitin-resistant transcription of the procyclic acidic repetitive protein (PARP) and variant surface glycoprotein (VSG) genes was proposed to involve a modified, alpha-amanitin-resistant form of the largest subunit of pol II. Alternatively, pol I could transcribe the PARP and VSG genes. To discriminate between these two models, we deleted the N-terminal domain (about one-third of the polypeptide), which encodes the amino acid substitutions which discriminated the pol IIA and pol IIB genes, at both pol IIB alleles. The pol IIB- trypanosomes still transcribe the PARP genes and the VSG gene promoter region in insect-form trypanosomes by alpha-amanitin-resistant RNA polymerases, while control housekeeping genes are transcribed in an alpha-amanitin-sensitive manner, presumably by pol IIA. We conclude that the alpha-amanitin-resistant transcription of protein coding genes in T. brucei is not mediated by a diverged form of the largest subunit of pol II and that the presence of both the pol IIA and pol IIB genes is not essential for trypanosome viability. This conclusion was further supported by the finding that individual trypanosome variants exhibited allelic heterogeneity for the previously identified amino acid substitutions and that various permutations of the polymorphic amino acids generate at least four different types of largest subunit pol II genes. The expression of the PARP genes and the VSG gene promoter region by alpha-amanitin-resistant RNA polymerases in the pol IIB- trypanosomes provides evidence for transcription of these genes by pol I.
Collapse
|
21
|
Chung HM, Lee MG, Dietrich P, Huang J, Van der Ploeg LH. Disruption of largest subunit RNA polymerase II genes in Trypanosoma brucei. Mol Cell Biol 1993; 13:3734-43. [PMID: 8497277 PMCID: PMC359850 DOI: 10.1128/mcb.13.6.3734-3743.1993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two types of largest subunit RNA polymerase II (pol II) genes (pol IIA and pol IIB), differing in 3 amino acid substitutions, are encoded in the Trypanosoma brucei (stock 427-60) genome. As a result, the alpha-amanitin-resistant transcription of the procyclic acidic repetitive protein (PARP) and variant surface glycoprotein (VSG) genes was proposed to involve a modified, alpha-amanitin-resistant form of the largest subunit of pol II. Alternatively, pol I could transcribe the PARP and VSG genes. To discriminate between these two models, we deleted the N-terminal domain (about one-third of the polypeptide), which encodes the amino acid substitutions which discriminated the pol IIA and pol IIB genes, at both pol IIB alleles. The pol IIB- trypanosomes still transcribe the PARP genes and the VSG gene promoter region in insect-form trypanosomes by alpha-amanitin-resistant RNA polymerases, while control housekeeping genes are transcribed in an alpha-amanitin-sensitive manner, presumably by pol IIA. We conclude that the alpha-amanitin-resistant transcription of protein coding genes in T. brucei is not mediated by a diverged form of the largest subunit of pol II and that the presence of both the pol IIA and pol IIB genes is not essential for trypanosome viability. This conclusion was further supported by the finding that individual trypanosome variants exhibited allelic heterogeneity for the previously identified amino acid substitutions and that various permutations of the polymorphic amino acids generate at least four different types of largest subunit pol II genes. The expression of the PARP genes and the VSG gene promoter region by alpha-amanitin-resistant RNA polymerases in the pol IIB- trypanosomes provides evidence for transcription of these genes by pol I.
Collapse
Affiliation(s)
- H M Chung
- Department of Genetics and Molecular Biology, Merck Research Laboratories, Rahway, New Jersey 07065
| | | | | | | | | |
Collapse
|
22
|
Kaufmann J, Florian V, Klein A. TGA cysteine codons and intron sequences in conserved and nonconserved positions are found in macronuclear RNA polymerase genes of Euplotes octocarinatus. Nucleic Acids Res 1992; 20:5985-9. [PMID: 1461731 PMCID: PMC334464 DOI: 10.1093/nar/20.22.5985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The gene sequences of the second largest subunits of RNA polymerases I and II of Euplotes octocarinatus, RPA2 and RPB2, were determined and compared to the respective known sequences of Saccharomyces cerevisiae. The similarity of the derived polypeptide sequences permitted their assignment to the respective polymerases and allowed the comparison of the zinc binding regions. In frame TGA codons were detected, which are likely to encode conserved cysteinyl residues in the putative zinc-finger region of the RPA2 gene. They were also found in other positions in both the RPA2 and RPB2 genes. The RPB2 gene contains a 30 bp intron close to the 5'-end of its coding region. The 5'-ends of the coding regions of all three genes encoding the largest subunits of the three different polymerases were also analyzed. The zinc finger structures again show the use of TGA codons for conserved cysteinyl residues in two of the genes. An N-terminal intron is located in the RPB1 gene at a conserved position as compared to the respective genes of several other eucarya.
Collapse
Affiliation(s)
- J Kaufmann
- Department of Biology, Philipps University, Marburg, Germany
| | | | | |
Collapse
|
23
|
Barron-Casella E, Corden JL. Conservation of the mammalian RNA polymerase II largest-subunit C-terminal domain. J Mol Evol 1992; 35:405-10. [PMID: 1487824 DOI: 10.1007/bf00171818] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have isolated and sequenced a portion of the gene encoding the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II from three mammals. These mammalian sequences include one rodent and two primate CTDs. Comparisons of the new sequences to mouse and Chinese hamster show a high degree of conservation among the mammalian CTDs. Due to synonymous codon usage, the nucleotide differences between hamster, rat, ape, and human result in no amino acid changes. The amino acid sequence for the mouse CTD appears to have one different amino acid when compared to the other four sequences. Therefore, except for the one variation in mouse, all of the known mammalian CTDs have identical amino acid sequences. This is in marked contrast to the situation among more divergent species. The present study suggests that there is a strong evolutionary pressure to maintain the primary structure of the mammalian CTD.
Collapse
Affiliation(s)
- E Barron-Casella
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | |
Collapse
|
24
|
Fong SE, Surzycki SJ. Chloroplast RNA polymerase genes of Chlamydomonas reinhardtii exhibit an unusual structure and arrangement. Curr Genet 1992; 21:485-97. [PMID: 1617738 DOI: 10.1007/bf00351659] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nucleotide sequence analysis of a 17043 base-pair (bp) region of the Chlamydomonas reinhardtii plastome indicates the presence of three open reading frames (ORFs) similar to RNA polymerase subunit genes. Two, termed rpoB1 and rpoB2, are homologous to the 5'- and 3'-halves of the Escherichia coli beta subunit gene, respectively. A third, termed rpoC2, is similar to the 3'-half of the bacterial beta' subunit gene. These genes exhibit several unusual features: (1) all three represent chimeric structures in which RNA polymerase gene sequences are juxtaposed in-frame with long sequences of unknown identity; (2) unlike their counterparts in plants and eubacteria, rpoB1 and rpoB2 are separated from rpoC2 by a long (7 kilobase-pair, kbp) region containing genes unrelated to RNA polymerase; (3) DNA homologous to the 5' half of rpoC (termed rpoC1 in other species) is not present at the 5' end of rpoC2 and could not be detected in C. reinhardtii chloroplast DNA. RNA expression could not be detected for any of the RNA polymerase genes, suggesting that they are pseudogenes or genes expressed at stages of the C. reinhardtii life-cycle not investigated. The three genes are flanked by GC-rich repeat elements. We suggest that repeat DNA-mediated chloroplast recombination events may have contributed to their unusual arrangement.
Collapse
Affiliation(s)
- S E Fong
- Department of Biology, Indiana University, Bloomington 47505
| | | |
Collapse
|
25
|
VanWye JD, Bronson EC, Anderson JN. Species-specific patterns of DNA bending and sequence. Nucleic Acids Res 1991; 19:5253-61. [PMID: 1923808 PMCID: PMC328884 DOI: 10.1093/nar/19.19.5253] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nucleotide sequences in the GenEMBL database were analyzed using strategies designed to reveal species-specific patterns of DNA bending and DNA sequence. The results uncovered striking species-dependent patterns of bending with more variations among individual organisms than between prokaryotes and eukaryotes. The frequency of bent sites in sequences from different bacteria was related to genomic A + T content and this relationship was confirmed by electrophoretic analysis of genomic DNA. However, base composition was not an accurate predictor for DNA bending in eukaryotes. Sequences from C. elegans exhibited the highest frequency of bent sites in the database and the RNA polymerase II locus from the nematode was the most bent gene in GenEMBL. Bent DNA extended throughout most introns and gene flanking segments from C.elegans while exon regions lacked A-tract bending characteristics. Independent evidence for the strong bending character of this genome was provided by electrophoretic studies which revealed that a large number of the fragments from C.elegans DNA exhibited anomalous gel mobilities when compared to genomic fragments from over 20 other organisms. The prevalence of bent sites in this genome enabled us to detect selectively C.elegans sequences in a computer search of the database using as probes C.elegans introns, bending elements, and a 20 nucleotide consensus sequence for bent DNA. This approach was also used to provide additional examples of species-specific sequence patterns in eukaryotes where it was shown that (A) greater than or equal to 10 and (A.T) greater than or equal to 5 tracts are prevalent throughout the untranslated DNA of D.discodium and P.falciparum, respectively. These results provide new insight into the organization of eukaryotic DNA because they show that species-specific patterns of simple sequences are found in introns and in other untranslated regions of the genome.
Collapse
Affiliation(s)
- J D VanWye
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
26
|
Azuma Y, Yamagishi M, Ueshima R, Ishihama A. Cloning and sequence determination of the Schizosaccharomyces pombe rpb1 gene encoding the largest subunit of RNA polymerase II. Nucleic Acids Res 1991; 19:461-8. [PMID: 2011520 PMCID: PMC333634 DOI: 10.1093/nar/19.3.461] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The gene, rpb1, encoding the largest subunit of RNA polymerase II has been cloned from Schizosaccharomyces pombe using the corresponding gene, RPB1, of Saccharomyces cerevisiae as a cross-hybridization probe. We have determined the complete sequence of this gene, and parts of PCR-amplified rpb1 cDNA. The predicted coding sequence, interrupted by six introns, encodes a polypeptide of 1,752 amino acid residues in length with a molecular weight of 194 kilodaltons. This polypeptide contains eight conserved structural domains characteristic of the largest subunit of RNA polymerases from other eukaryotes and, in addition, 29 repetitions of the C-terminal heptapeptide found in all the eukaryotic RNA polymerase II largest subunits so far examined.
Collapse
Affiliation(s)
- Y Azuma
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | | | |
Collapse
|
27
|
Nawrath C, Schell J, Koncz C. Homologous domains of the largest subunit of eucaryotic RNA polymerase II are conserved in plants. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:65-75. [PMID: 2259344 DOI: 10.1007/bf00315798] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genomic and cDNA clones homologous to the RpII215 gene of Drosophila were isolated from Arabidopsis thaliana and assigned to a single copy gene encoding a transcript of 6.8 kb. Nucleotide sequence analysis of Arabidopsis genomic and cDNAs revealed a striking homology to yeast, Caenorhabditis, Drosophila and mouse genes encoding the largest subunit of RNA polymerase II. The Arabidopsis gene rpII215 contains 13 introns, 12 of which interrupt the coding sequence of a protein of 205 kDa. The position of the first intron is conserved between plant and animal genes, while an intron located in the 3' untranslated region of the rpII215 gene is unique to Arabidopsis. Common domains present in all known largest subunits of eucaryotic RNA polymerase II were identified in the predicted sequence of the Arabidopsis RpII215 protein. Both the order and the position of N-terminal Zn2+ finger and of DNA and alpha-amanitin binding motifs are conserved in Arabidopsis. The C-terminal region of the Arabidopsis protein contains 15 consensus and 26 variant YSPTSPS repeats (CTDs). Highly conserved structure among the various C-terminal domains suggests that the largest subunit of RNA polymerase II in plants may also interact with transcription factors and with protein kinases that control the cell cycle as in other organisms.
Collapse
Affiliation(s)
- C Nawrath
- Max-Planck-Institut für Züchtungsforschung, Köln, Federal Republic of Germany
| | | | | |
Collapse
|
28
|
Abstract
RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.
Collapse
|
29
|
Kolodziej PA, Woychik N, Liao SM, Young RA. RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol Cell Biol 1990; 10:1915-20. [PMID: 2183013 PMCID: PMC360537 DOI: 10.1128/mcb.10.5.1915-1920.1990] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.
Collapse
Affiliation(s)
- P A Kolodziej
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142
| | | | | | | |
Collapse
|
30
|
Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits. Mol Cell Biol 1990. [PMID: 2406567 DOI: 10.1128/mcb.10.3.1270] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conditional mutations in the Saccharomyces cerevisiae RNA polymerase II large subunit, RPB1, were obtained by introducing a mutagenized RPB1 plasmid into yeast cells, selecting for loss of the wild-type RPB1 gene, and screening the cells for heat or cold sensitivity. Sequence analysis of 10 conditional RPB1 mutations and 10 conditional RPB2 mutations revealed that the amino acid residues altered by these distinct mutations are nearly always invariant among eucaryotic RPB1 and RPB2 homologs. These results suggest that RNA polymerase mutants might be obtained in other eucaryotic organisms by alteration of these invariant residues.
Collapse
|
31
|
Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits. Mol Cell Biol 1990; 10:1270-5. [PMID: 2406567 PMCID: PMC361019 DOI: 10.1128/mcb.10.3.1270-1275.1990] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Conditional mutations in the Saccharomyces cerevisiae RNA polymerase II large subunit, RPB1, were obtained by introducing a mutagenized RPB1 plasmid into yeast cells, selecting for loss of the wild-type RPB1 gene, and screening the cells for heat or cold sensitivity. Sequence analysis of 10 conditional RPB1 mutations and 10 conditional RPB2 mutations revealed that the amino acid residues altered by these distinct mutations are nearly always invariant among eucaryotic RPB1 and RPB2 homologs. These results suggest that RNA polymerase mutants might be obtained in other eucaryotic organisms by alteration of these invariant residues.
Collapse
|