1
|
Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A. Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res 2010; 39:1360-71. [PMID: 20961955 PMCID: PMC3045583 DOI: 10.1093/nar/gkq829] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The mechanisms by which imbalanced dNTPs induce mutations have been well characterized within a test tube, but not in vivo. We have examined mechanisms by which dNTP imbalances induce genome instability in strains of Saccharomyces cerevisiae with different amino acid substitutions in Rnr1, the large subunit of ribonucleotide reductase. These strains have different dNTP imbalances that correlate with elevated CAN1 mutation rates, with both substitution and insertion–deletion rates increasing by 10- to 300-fold. The locations of the mutations in a strain with elevated dTTP and dCTP are completely different from those in a strain with elevated dATP and dGTP. Thus, imbalanced dNTPs reduce genome stability in a manner that is highly dependent on the nature and degree of the imbalance. Mutagenesis is enhanced despite the availability of proofreading and mismatch repair. The mutations can be explained by imbalanced dNTP-induced increases in misinsertion, strand misalignment and mismatch extension at the expense of proofreading. This implies that the relative dNTP concentrations measured in extracts are truly available to a replication fork in vivo. An interesting mutational strand bias is observed in one rnr1 strain, suggesting that the S-phase checkpoint selectively prevents replication errors during leading strand replication.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
2
|
Okudaira N, Uehara Y, Fujikawa K, Kagawa N, Ootsuyama A, Norimura T, Saeki KI, Nohmi T, Masumura KI, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Ono T. Radiation Dose-Rate Effect on Mutation Induction in Spleen and Liver of gpt delta Mice. Radiat Res 2010; 173:138-47. [DOI: 10.1667/rr1932.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Naohito Okudaira
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yoshihiko Uehara
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Kazuo Fujikawa
- Deparment of Life Science, Faculty of Science and Technology, Kinki University, Kowakae, Higashiosaka 577-8502, Japan
| | - Nao Kagawa
- Deparment of Life Science, Faculty of Science and Technology, Kinki University, Kowakae, Higashiosaka 577-8502, Japan
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Norimura
- Department of Radiation Biology and Health, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ken-ichi Saeki
- Yokohama College of Pharmacy, Totsuka-ku, Yokohama 245-0066, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ken-ichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Tsuneya Matsumoto
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Yoichi Oghiso
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Kimio Tanaka
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Kazuaki Ichinohe
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Shingo Nakamura
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Institute for Environmental Sciences, Rokkasho, Aomori 039-3212, Japan
| | - Tetsuya Ono
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Ono T, Ikehata H, Uehara Y, Komura JI. The Maintenance of Genome Integrity is Tissue-Specific. Genes Environ 2006. [DOI: 10.3123/jemsge.28.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
4
|
Ono T, Ikehata H, Pithani VP, Uehara Y, Chen Y, Kinouchi Y, Shimosegawa T, Hosoi Y. Spontaneous mutations in digestive tract of old mice show tissue-specific patterns of genomic instability. Cancer Res 2004; 64:6919-23. [PMID: 15466182 DOI: 10.1158/0008-5472.can-04-1476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In an attempt to evaluate the possible role of mutations in the age-dependent increase of tumor incidence, we studied the mutational burden that accumulates in the aging process in different parts of the digestive tract in mice. The mutations were monitored in lacZ genes integrated in the mouse genome. The digestive tract was divided into the esophagus, stomach, proximal, medial, and distal part of the small intestine, and the colon. Epithelial tissues were separated from these tissues with the exception of the esophagus, in which case the whole tissue was examined. At a young age, the mutant frequencies as well as the molecular nature of the mutations were similar among the tissues examined. In old age, on the other hand, mutant frequencies were elevated to different degrees among the tissues; they were high in the small intestine and colon, intermediate in the stomach, and low in the esophagus. The molecular characteristics of the mutations also revealed distinct tissue-specificity; there were elevated rates of a small deletion mutation in the esophagus, G:C to T:A transversion in the proximal small intestine, and multiple mutations in the distal small intestine and colon. The results indicate that different parts of the digestive tract suffer from different kinds of mutational stress in the aging process. The nature of the multiple mutations suggests the presence of a mutator phenotype based on an imbalance in deoxyribonucleotide pools.
Collapse
Affiliation(s)
- Tetsuya Ono
- Division of Genome and Radiation Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
One of the most striking features of mammalian chromosomes is the variation in G+C content that occurs over scales of hundreds of kilobases to megabases, the so-called 'isochore' structure of the human genome. This variation in base composition affects both coding and non-coding sequences and seems to reflect a fundamental level of genome organization. However, although we have known about isochores for over 25 years, we still have a poor understanding of why they exist. In this article, we review the current evidence for the three main hypotheses.
Collapse
Affiliation(s)
- A Eyre-Walker
- Centre for the Study of Evolution and School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | | |
Collapse
|
6
|
Hyland PL, Keegan AL, Curran MD, Middleton D, McKenna PG, Barnett YA. Effect of a dCTP:dTTP pool imbalance on DNA replication fidelity in Friend murine erythroleukemia cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 36:87-96. [PMID: 11013406 DOI: 10.1002/1098-2280(2000)36:2<87::aid-em2>3.0.co;2-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nucleotide pool imbalances have been reported to affect the fidelity of DNA replication and repair in prokaryotic and eukaryotic cells. We have reported previously that the mutagen-hypersensitive thymidine kinase (TK)-deficient Friend erythroleukemia (FEL) cells (subclones 707BUF and 707BUE), have a more than sixfold increase in the dCTP:dTTP pool ratio when compared to that of wild-type, TK-positive (TK(+)) clone 707 cells. In this study we present the results of an investigation of the effect of the dCTP:dTTP pool imbalance on the accuracy of DNA replication within 707BUF cells. We examined the spontaneous mutation spectra occurring at the adenine phosphoribosyltransferase (aprt) locus within clone 707 (TK(+)) and 707BUF (TK(-)) FEL cells. Mutations recovered at the aprt locus in FEL cells comprised: base substitutions (43:73), frameshifts (14:13.5), and deletions (43:13.5) [clone 707 (TK(+)):707BUF (TK(-)), respectively, expressed as percentages]. A comparison of the mutation spectra obtained for the two cell lines did not reveal any significant increase in misincorporation of dCTP, the nucleotide in excess, in 707BUF (TK(-)) cells, during DNA replication synthesis. These data suggest that the dCTP:dTTP pool imbalance does not alter the fidelity of DNA replication synthesis in 707BUF (TK(-)) FEL cells. Rather, the predominance of GC --> AT transitions (53%) in the 707BUF (TK(-)) spectrum may reflect a reduced efficiency of repair by uracil DNA glycosylase of uracil residues within these cells.
Collapse
Affiliation(s)
- P L Hyland
- School of Clinical Dentistry, The Queen's University of Belfast, Belfast, Northern Ireland
| | | | | | | | | | | |
Collapse
|
7
|
Dillon D, Stadler D. Spontaneous mutation at the mtr locus in neurospora: the molecular spectrum in wild-type and a mutator strain. Genetics 1994; 138:61-74. [PMID: 8001794 PMCID: PMC1206138 DOI: 10.1093/genetics/138.1.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sequence analysis of 34 mtr mutations has yielded the first molecular spectrum of spontaneous mutants in Neurospora crassa. The great majority of the mutations are base substitutions (48%) or deletions (35%). In addition, sequence analysis of the entire mtr region, including the 1472-base pair open reading frame and 1205 base pairs of flanking DNA, was performed in both the Oak Ridge and Mauriceville strains of Neurospora, which are known to be divergent at the DNA level. Sixteen sequence differences between these two strains have been found in the mtr region, with 13 of these in DNA flanking the open reading frame. The differences consisted of base substitutions and small frameshifts at monotonic runs. This set of sequence differences has allowed a comparison of mutations in unselected DNA to those mutations that produce a phenotypic signal. We have isolated a mutator strain (mut-1) of Neurospora in which the spontaneous mutation rate at various loci is as much as 80-fold higher than in the non-mutator (wild type). Twenty-one mtr mutations in the mutator background have been sequenced and compared to the non-mutator spectrum, revealing a striking increase in -1 frameshift mutations. These frameshifts occur exclusively within or adjacent to monotonic runs and can be explained by small slippage events during DNA replication. This argues for a role of the mut-1 gene in this process.
Collapse
Affiliation(s)
- D Dillon
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
8
|
Hess P, Aquilina G, Dogliotti E, Bignami M. Spontaneous mutations at aprt locus in a mammalian cell line defective in mismatch recognition. SOMATIC CELL AND MOLECULAR GENETICS 1994; 20:409-21. [PMID: 7825063 DOI: 10.1007/bf02257458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Clone B is a CHO cell line that shows a moderate mutator phenotype as a consequence of a defect in mismatch recognition. To identify the classes of mutation that accumulate spontaneously in a functional gene, we isolated and sequenced 54 clone B spontaneous mutants at the adenine phosphoribosyltransferase gene. This spectrum was compared to 42 mutants collected in the parental cells. Rates of AT-->TA transversions and frameshifts were strikingly increased in clone B (almost eight- and sixfold, respectively). Minor increases were also observed for GC-->TA transversions and GC-->AT transition rates. Frameshifts occurred in repeated sequences, and a large proportion were losses of 2 bases occurring in dinucleotide runs of a type similar to microsatellite sequences. AT-->TA transversions clustered in regions of secondary structure and their formation might be explained by slippage-mediated mechanisms. These data indicate that an important function of mismatch recognition is in repair of extrahelical bases generated by misalignment during DNA replication.
Collapse
Affiliation(s)
- P Hess
- Istituto Superiore di Sanità, Section of Chemical Carcinogenesis, Rome, Italy
| | | | | | | |
Collapse
|
9
|
Kunz BA, Kohalmi SE, Kunkel TA, Mathews CK, McIntosh EM, Reidy JA. International Commission for Protection Against Environmental Mutagens and Carcinogens. Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability. Mutat Res 1994; 318:1-64. [PMID: 7519315 DOI: 10.1016/0165-1110(94)90006-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DNA precursor pool imbalances can elicit a variety of genetic effects and modulate the genotoxicity of certain DNA-damaging agents. These and other observations indicate that the control of DNA precursor concentrations is essential for the maintenance of genetic stability, and suggest that factors which offset this control may contribute to environmental mutagenesis and carcinogenesis. In this article, we review the biochemical and genetic mechanisms responsible for regulating the production and relative amounts of intracellular DNA precursors, describe the many outcomes of perturbations in DNA precursor levels, and discuss implications of such imbalances for sensitivity to DNA-damaging agents, population monitoring, and human diseases.
Collapse
Affiliation(s)
- B A Kunz
- Microbiology Department, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
A forward mutation assay was developed to study mutagenic specificity induced by temperature-sensitive alleles of bacteriophage T4 gene 42, which encodes a thermolabile deoxycytidylate hydroxymethylase. Thymidine kinase (tk) mutations induced by T4 ts B3 at a semi-permissive temperature (34 degrees C) were selected under near-ultraviolet light on synthetic agar plates containing bromodeoxyuridine, and sequenced after PCR amplification of the tk gene. 21 of 23 tk- mutations identified were C-->T transitions, while the remainder were C-->A transversions. Analyses of the DNA sequence around each mutant site suggest that the mispairing of thymine with guanine in the template is suppressed when the next nucleotide is dGTP. The 5' neighbor nucleotide of the mismatch may influence mutation frequency as well; no mutations with dAMP residues on the upstream side were seen. Our observations with the forward mutation assay here are consistent with previous results from an rII reversion assay, supporting our model that the mutator phenotype displayed by tsLB3 is a consequence of perturbation of dNTP supplies to replication sites due to partial impairment of thermolabile deoxycytidylate hydroxymethylase at a semi-permissive temperature. The forward mutation assay described here is readily adapted for other studies of mutagenesis in T4 phage.
Collapse
Affiliation(s)
- J Ji
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331
| | | |
Collapse
|
11
|
Abstract
Several lines of evidence are presented which suggest that sequence G + C content and recombination frequency are related in mammals: (i) chromosome G + C content is positively correlated to chiasmata density; (ii) the non-pairing region of the Y chromosome has one of the lowest G + C contents of any chromosomal segment; (iii) a reduction in the rate of recombination at several loci is mirrored by a decrease in G + C content; and (iv) when compared with humans, mice have a lower variance in chiasmata density which is reflected in a lower variance in G + C content. The observed relation between recombination frequency and sequence G + C content provides an elegant explanation of why gene density is higher in G + C rich isochores than in other parts of the genome, and why long interspersed elements (LINES) are exclusive to G + C poor isochores. However, the cause of the relation is as yet unknown. Several possibilities are considered, including gene conversion.
Collapse
Affiliation(s)
- A Eyre-Walker
- Institute of Cell Animal and Population Biology, University of Edinburgh, U.K
| |
Collapse
|
12
|
Eyre-Walker A. The role of DNA replication and isochores in generating mutation and silent substitution rate variance in mammals. Genet Res (Camb) 1992; 60:61-7. [PMID: 1452015 DOI: 10.1017/s0016672300030676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been suggested that isochores are maintained by mutation biases, and that this leads to variation in the rate of mutation across the genome. A model of DNA replication is presented in which the probabilities of misincorporation and proofreading are affected by the composition and concentration of the free nucleotide pools. The relationship between sequence G+C content and the mutation rate is investigated. It is found that there is very little variation in the mutation rate between sequences of different G+C contents if the total concentration of the free nucleotides remains constant. However, variation in the mutation rate can be arbitrarily large if some mismatches are proofread and the total concentration of free nucleotides varies. Hence the model suggests that the maintenance of isochores by the replication of DNA in free nucleotide pools of biased composition does not lead per se to mutation rate variance. However, it is possible that changes in composition could be accompanied by changes in concentration, thus generating mutation rate variance. Furthermore, there is the possibility that germ-line selection could lead to alterations in the overall free nucleotide concentration through the cell cycle. These findings are discussed with reference to the variance in mammalian silent substitution rates.
Collapse
Affiliation(s)
- A Eyre-Walker
- Institute of Cell Animal and Population Biology, University of Edinburgh, Great Britain
| |
Collapse
|
13
|
de Boer JG, Glickman BW. Mutational analysis of the structure and function of the adenine phosphoribosyltransferase enzyme of Chinese hamster. J Mol Biol 1991; 221:163-74. [PMID: 1717694 DOI: 10.1016/0022-2836(91)80212-d] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have analyzed the adenine phosphoribosyltransferase (APRT) enzyme from Chinese hamster ovary cells through the study of mutants that are able to grow in the presence of the toxic adenine analogue 8-azaadenine. The distribution of the amino acid alterations was analyzed in terms of the binding regions for the purine and phosphoribosylpyrophosphate substrates and a comparison was made with mutants known in human APRT and human, mouse and hamster hypoxanthine-guanine phosphoribosyltransferase. A number of mutants were found to cluster in several regions of the amino acid sequence. Residual enzyme activity with adenine was determined and this was correlated with substrate binding regions. A model of the secondary structure features is proposed.
Collapse
Affiliation(s)
- J G de Boer
- York University Biology Department, Downsview, Ontario, Canada
| | | |
Collapse
|
14
|
Kohalmi SE, Glattke M, McIntosh EM, Kunz BA. Mutational specificity of DNA precursor pool imbalances in yeast arising from deoxycytidylate deaminase deficiency or treatment with thymidylate. J Mol Biol 1991; 220:933-46. [PMID: 1880805 DOI: 10.1016/0022-2836(91)90364-c] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Disruption of the dCMP deaminase (DCD1) gene, or provision of excess dTMP to a nucleotide-permeable strain, produced dramatic increases in the dCTP or dTTP pools, respectively, in growing cells of the yeast Saccharomyces cerevisiae. The mutation rate of the SUP4-o gene was enhanced 2-fold by the dCTP imbalance and 104-fold by the dTTP imbalance. 407 SUP4-o mutations that arose under these conditions, and 334 spontaneous mutations recovered in an isogenic strain having balanced DNA precursor levels, were characterized by DNA sequencing and the resulting mutational spectra were compared. Significantly more (greater than 98%) of the changes resulting from nucleotide pool imbalance were single base-pair events, the majority of which could have been due to misinsertion of the nucleotides present in excess. Unexpectedly, expanding the dCTP pool did not increase the fraction of A.T----G.C transitions relative to the spontaneous value nor did enlarging the dTTP pool enhance the proportion of G.C----A.T transitions. Instead, the elevated levels of dCTP or dTTP were associated primarily with increases in the fractions of G.C----C.G or A.T----T.A. transversions, respectively. Furthermore, T----C, and possibly A----C, events occurred preferentially in the dcd1 strain at sites where dCTP was to be inserted next. C----T and A----T events were induced most often by dTMP treatment at sites where the next correct nucleotide was dTTP or dGTP (dGTP levels were also elevated by dTMP treatment). Finally, misinsertion of dCTP or dTTP did not exhibit a strand bias. Collectively, our data suggest that increased levels of dCTP and dTTP induced mutations in yeast via nucleotide misinsertion and inhibition of proofreading but indicate that other factors must also be involved. We consider several possibilities, including potential roles for the regulation and specificity of proofreading and for mismatch correction.
Collapse
Affiliation(s)
- S E Kohalmi
- Microbiology Department, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
15
|
Abstract
Experimental studies have shown that the fidelity of DNA replication can be affected by the concentrations of free deoxyribonucleotides present in the cell. Replication of mammalian chromosomes is achieved using pools of newly-synthesized deoxyribonucleotides which fluctuate during the cell cycle. Since regions of mammalian chromosomes are replicated sequentially, there is the potential for differences among mammalian loci in both the relative and absolute frequencies of the various transitional and transversional mutations which may occur. Where these mutations are effectively neutral, at silent sites in genes and in non-coding sequences, this may result in different rates of evolution and in different base compositions, as have been observed in data from mammalian genes. A simple model of the DNA replication process is developed to describe how the mutation rate could be affected by the G + C contents of the deoxyribonucleotide pools and of the replicating DNA. Mutation rates are predicted to vary from locus to locus; only in the particular case of identical G + C contents in the DNA locus and the deoxyribonucleotide pools, and no proofreading, will the mutation rate be uniform over all loci.
Collapse
Affiliation(s)
- K H Wolfe
- Department of Genetics, University of Dublin, Trinity College, Republic of Ireland
| |
Collapse
|
16
|
Veigl ML, Schneiter S, Mollis S, Sedwick WD. Specificities mediated by neighboring nucleotides appear to underlie mutation induced by antifolates in E. coli. Mutat Res 1991; 246:75-91. [PMID: 1986269 DOI: 10.1016/0027-5107(91)90109-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The antifolate, trimethoprim (TRMP, 5 microM) caused a 10-fold increase in mutation frequency and primarily induced base substitution and deletion mutations in wild-type E. coli. Base-substitutions induced by antifolates were equally divided between transition and transversion mutations. When mutations consistent with expected antifolate-induced deoxynucleotide pool imbalances were considered, 29 out of 32 base-substitution mutations in the i-d region of the lacI gene were followed 3' by the same nucleotide substituted at the base mismatch site and all but one mutation occurred at sites consistent with next nucleotide effects resulting from antifolate-induced deoxynucleotide pool alterations. 66% of the TRMP-induced base-substitutions were also found at sites of frequent mutation identified in the spontaneous spectrum of a mutator D5 strain of E. coli which is deficient in the 3'-exonucleolytic proofreading function of DNA polymerase III holoenzyme. These results suggest that the pool imbalances induced by the antifolate trimethoprim compromise the proofreading activity of polymerase III holoenzyme and lead to mutation at specific sites. The results also imply that not all DNA sequence environments encountered by DNA polymerase III holoenzyme and its accompanying exonuclease are handled with equal facility at the level of nucleotide insertion and exonucleolytic proofreading when the enzyme is faced with an intracellular nucleotide pool imbalance. A number of small deletion and duplication mutations were also induced by the antifolate trimethoprim. In most cases these mutations were flanked by at least two A:T base pairs which could facilitate DNA-strand breakage at deoxyuridine misincorporation sites.
Collapse
Affiliation(s)
- M L Veigl
- Department of Medicine, Case Western Reserve University, University Hospitals of Cleveland, OH
| | | | | | | |
Collapse
|
17
|
Perrino FW, Loeb LA. Hydrolysis of 3'-terminal mispairs in vitro by the 3'----5' exonuclease of DNA polymerase delta permits subsequent extension by DNA polymerase alpha. Biochemistry 1990; 29:5226-31. [PMID: 2166556 DOI: 10.1021/bi00474a002] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purified DNA polymerase alpha, the major replicating enzyme found in mammalian cells, lacks an associated 3'----5' proofreading exonuclease that, in bacteria, contributes significantly to the accuracy of DNA replication. Calf thymus DNA polymerase alpha cannot remove mispaired 3'-termini, nor can it extend them efficiently. We designed a biochemical assay to search in cell extracts for a putative proofreading exonuclease that might function in concert with DNA polymerase alpha in vivo but dissociates from it during purification. Using this assay, we purified a 3'----5' exonuclease from calf thymus that preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by DNA polymerase alpha. This exonuclease copurifies with a DNA polymerase activity that is biochemically distinct from DNA polymerase alpha and exhibits characteristics described for a second replicative DNA polymerase, DNA polymerase delta. In related studies, we showed that the 3'----5' exonuclease of authentic DNA polymerase delta, like the purified exonuclease, removes terminal mispairs, allowing extension by DNA polymerase alpha. These data suggest that a single proofreading exonuclease could be shared by DNA polymerases alpha and delta, functioning at the site of DNA replication in mammalian cells.
Collapse
Affiliation(s)
- F W Perrino
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle 98195
| | | |
Collapse
|
18
|
Phear G, Meuth M. The genetic consequences of DNA precursor pool imbalance: sequence analysis of mutations induced by excess thymidine at the hamster aprt locus. Mutat Res 1989; 214:201-6. [PMID: 2797026 DOI: 10.1016/0027-5107(89)90164-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To determine the effect of deoxyribonucleoside triphosphate pool imbalances on the accuracy of DNA replication within the cell, we examined the base pair alterations induced by excess intracellular dTTP at the adenine phosphoribosyl transferase (aprt) locus of CHO cells. The mutations were predominantly simple (C----T) transitions (38/44) and transversions (G----T, 5/44) explicable by the misincorporation of the DNA precursor supplied in excess (dTTP). Only one small deletion was observed. The context of the mutations is notable as the nucleotide incorporated after the error was usually the nucleotide in excess for the great majority of the transitions but not the transversions. As next nucleotide effects are characteristic of replication complexes having proofreading exonuclease activity, our data indicate that this mechanism functions within the cell to control the occurrence of some types of replicational errors.
Collapse
Affiliation(s)
- G Phear
- Imperial Cancer Research Fund, Clare Hall Laboratories, Hertfordshire, Great Britain
| | | |
Collapse
|