1
|
Félix AJ, Solé A, Noé V, Ciudad CJ. Gene Correction of Point Mutations Using PolyPurine Reverse Hoogsteen Hairpins Technology. Front Genome Ed 2020; 2:583577. [PMID: 34713221 PMCID: PMC8525393 DOI: 10.3389/fgeed.2020.583577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
Monogenic disorders are often the result of single point mutations in specific genes, leading to the production of non-functional proteins. Different blood disorders such as ß-thalassemia, sickle cell disease, hereditary spherocytosis, Fanconi anemia, and Hemophilia A and B are usually caused by point mutations. Gene editing tools including TALENs, ZFNs, or CRISPR/Cas platforms have been developed to correct mutations responsible for different diseases. However, alternative molecular tools such as triplex-forming oligonucleotides and their derivatives (e.g., peptide nucleic acids), not relying on nuclease activity, have also demonstrated their ability to correct mutations in the DNA. Here, we review the Repair-PolyPurine Reverse Hoogsteen hairpins (PPRHs) technology, which can represent an alternative gene editing tool within this field. Repair-PPRHs are non-modified single-stranded DNA molecules formed by two polypurine mirror repeat sequences linked by a five-thymidine bridge, followed by an extended sequence at one end of the molecule which is homologous to the DNA sequence to be repaired but containing the corrected nucleotide. The two polypurine arms of the PPRH are bound by intramolecular reverse-Hoogsteen bonds between the purines, thus forming a hairpin structure. This hairpin core binds to polypyrimidine tracts located relatively near the target mutation in the dsDNA in a sequence-specific manner by Watson-Crick bonds, thus producing a triplex structure which stimulates recombination. This technology has been successfully employed to repair a collection of mutants of the dhfr and aprt genes within their endogenous loci in mammalian cells and could be suitable for the correction of mutations responsible for blood disorders.
Collapse
|
2
|
Woodward LA, Mabin JW, Gangras P, Singh G. The exon junction complex: a lifelong guardian of mRNA fate. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 28008720 DOI: 10.1002/wrna.1411] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
During messenger RNA (mRNA) biogenesis and processing in the nucleus, many proteins are imprinted on mRNAs assembling them into messenger ribonucleoproteins (mRNPs). Some of these proteins remain stably bound within mRNPs and have a long-lasting impact on their fate. One of the best-studied examples is the exon junction complex (EJC), a multiprotein complex deposited primarily 24 nucleotides upstream of exon-exon junctions as a consequence of pre-mRNA splicing. The EJC maintains a stable, sequence-independent, hold on the mRNA until its removal during translation in the cytoplasm. Acting as a molecular shepherd, the EJC travels with mRNA across the cellular landscape coupling pre-mRNA splicing to downstream, posttranscriptional processes such as mRNA export, mRNA localization, translation, and nonsense-mediated mRNA decay (NMD). In this review, we discuss our current understanding of the EJC's functions during these processes, and expound its newly discovered functions (e.g., pre-mRNA splicing). Another focal point is the recently unveiled in vivo EJC interactome, which has shed new light on the EJC's location on the spliced RNAs and its intimate relationship with other mRNP components. We summarize new strides being made in connecting the EJC's molecular function with phenotypes, informed by studies of human disorders and model organisms. The progress toward understanding EJC functions has revealed, in its wake, even more questions, which are discussed throughout. WIREs RNA 2017, 8:e1411. doi: 10.1002/wrna.1411 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Lauren A Woodward
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Justin W Mabin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Pooja Gangras
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Solé A, Ciudad CJ, Chasin LA, Noé V. Correction of point mutations at the endogenous locus of the dihydrofolate reductase gene using repair-PolyPurine Reverse Hoogsteen hairpins in mammalian cells. Biochem Pharmacol 2016; 110-111:16-24. [PMID: 27063945 DOI: 10.1016/j.bcp.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Correction of point mutations that lead to aberrant transcripts, often with pathological consequences, has been the focus of considerable research. In this work, repair-PPRHs are shown to be a new powerful tool for gene correction. A repair-PPRH consists of a PolyPurine Reverse Hoogsteen hairpin core bearing an extension sequence at one end, homologous to the DNA strand to be repaired but containing the wild type nucleotide instead of the mutation. Previously, we had corrected a single-point mutation with repair-PPRHs using a mutated version of a dihydrofolate reductase (dhfr) minigene. To further evaluate the utility of these molecules, different repair-PPRHs were designed to correct insertions, deletions, substitutions and a double substitution present in a collection of mutants at the endogenous locus of the dhfr gene, the product of which is the target of the chemotherapeutic agent methotrexate. We also describe an approach to use when the point mutation is far away from the homopyrimidine target domain. This strategy consists in designing Long-Distance- and Short-Distance-Repair-PPRHs where the PPRH core is bound to the repair tail by a five-thymidine linker. Surviving colonies in a DHFR selective medium, lacking glycine and sources of purines and thymidine, were analyzed by DNA sequencing, and by mRNA, protein and enzymatic measurements, confirming that all the dhfr mutants had been corrected. These results show that repair-PPRHs can be effective tools to accomplish a permanent correction of point mutations in the DNA sequence of mutant mammalian cells.
Collapse
Affiliation(s)
- Anna Solé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| | - Lawrence A Chasin
- Department of Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Véronique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Alrayes N, Mohamoud HSA, Ahmed S, Almramhi MM, Shuaib TM, Wang J, Al-Aama JY, Everett K, Nasir J, Jelani M. The alkylglycerol monooxygenase (AGMO) gene previously involved in autism also causes a novel syndromic form of primary microcephaly in a consanguineous Saudi family. J Neurol Sci 2016; 363:240-4. [PMID: 27000257 DOI: 10.1016/j.jns.2016.02.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/28/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH) refers to a genetically heterogeneous group of neurodevelopmental disorders in which patients exhibit a marked decrease in occipitofrontal head circumference at birth and a variable degree of intellectual disability. To date, 18 genes have been reported for MCPH worldwide. We enrolled a consanguineous family from Saudi Arabia presenting with primary microcephaly, developmental delay, short stature and intellectual disability. Whole exome sequencing (WES) with 100× coverage was performed on two affected siblings after defining common regions of homozygosity through genome-wide single nucleotide polymorphism (SNP) microarray genotyping. WES data analysis, confirmed by subsequent Sanger sequence validation, identified a novel homozygous deletion mutation (c.967delA; p.Glu324Lysfs12*) in exon 10 of the alkylglycerol monooxygenase (AGMO) gene on chromosome 7p21.2. Population screening of 178 ethnically matched control chromosomes and consultation of the Exome Aggregation Consortium database, containing 60,706 individuals' exomes worldwide, confirmed that this mutation was not present outside the family. To the best of our knowledge, this is the first evidence of an AGMO mutation underlying primary microcephaly and intellectual disability in humans. Our findings further expand the genetic heterogeneity of MCPH in familial cases.
Collapse
Affiliation(s)
- Nuha Alrayes
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Cell Sciences and Genetics Research Centre, St. George's University of London (SGUL), London SW17 0RE, United Kingdom
| | - Hussein Sheikh Ali Mohamoud
- Cell Sciences and Genetics Research Centre, St. George's University of London (SGUL), London SW17 0RE, United Kingdom
| | - Saleem Ahmed
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mona Mohammad Almramhi
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Jun Wang
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; BGI-Shenzhen, Shenzhen 518083, China
| | - Jumana Yousuf Al-Aama
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kate Everett
- Cell Sciences and Genetics Research Centre, St. George's University of London (SGUL), London SW17 0RE, United Kingdom
| | - Jamal Nasir
- Cell Sciences and Genetics Research Centre, St. George's University of London (SGUL), London SW17 0RE, United Kingdom
| | - Musharraf Jelani
- Princess Al-Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Medical Genetics and Molecular Biology Unit, Biochemistry Department, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| |
Collapse
|
5
|
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA quality-control mechanism that typifies all eukaryotes examined to date. NMD surveys newly synthesized mRNAs and degrades those that harbor a premature termination codon (PTC), thereby preventing the production of truncated proteins that could result in disease in humans. This is evident from dominantly inherited diseases that are due to PTC-containing mRNAs that escape NMD. Although many cellular NMD targets derive from mistakes made during, for example, pre-mRNA splicing and, possibly, transcription initiation, NMD also targets ∼10% of normal physiological mRNAs so as to promote an appropriate cellular response to changing environmental milieus, including those that induce apoptosis, maturation or differentiation. Over the past ∼35 years, a central goal in the NMD field has been to understand how cells discriminate mRNAs that are targeted by NMD from those that are not. In this Cell Science at a Glance and the accompanying poster, we review progress made towards this goal, focusing on human studies and the role of the key NMD factor up-frameshift protein 1 (UPF1).
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Brash DE. UV signature mutations. Photochem Photobiol 2014; 91:15-26. [PMID: 25354245 DOI: 10.1111/php.12377] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/22/2014] [Indexed: 12/17/2022]
Abstract
Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations—deviations from a random distribution of base changes to create a pattern typical of that mutagen—and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the nontranscribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; UV's nonsignature mutations may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents.
Collapse
Affiliation(s)
- Douglas E Brash
- Departments of Therapeutic Radiology and Dermatology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Abstract
Cells use messenger RNAs (mRNAs) to ensure the accurate dissemination of genetic information encoded by DNA. Given that mRNAs largely direct the synthesis of a critical effector of cellular phenotype, i.e., proteins, tight regulation of both the quality and quantity of mRNA is a prerequisite for effective cellular homeostasis. Here, we review nonsense-mediated mRNA decay (NMD), which is the best-characterized posttranscriptional quality control mechanism that cells have evolved in their cytoplasm to ensure transcriptome fidelity. We use protein quality control as a conceptual framework to organize what is known about NMD, highlighting overarching similarities between these two polymer quality control pathways, where the protein quality control and NMD pathways intersect, and how protein quality control can suggest new avenues for research into mRNA quality control.
Collapse
Affiliation(s)
- Maximilian Wei-Lin Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642;
| | | |
Collapse
|
8
|
Mendive FM, Rivolta CM, González-Sarmiento R, Medeiros-Neto G, Targovnik HM. Nonsense-Associated Alternative Splicing of the Human Thyroglobulin Gene. ACTA ACUST UNITED AC 2012; 9:143-9. [PMID: 16271015 DOI: 10.1007/bf03260082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION We have described in previous articles a nonsense mutation (4588C>T, R1511X) in exon 22 of the thyroglobulin (TG) gene in a member of a family with a complex history of congenital goiter. In the mutated thyroid gland, full-length thyroglobulin mRNA is almost undetectable. However, a smaller transcript is detected in which the mutated exon 22 is skipped and the reading frame restored. It is conceivable that alternative splicing might be a mechanism involved in the rescue of nonsense mutations. METHODS To investigate whether the detection of the alternative mRNA is due to an increase in its concentration or its preferential amplification during reverse transcriptase-PCR in the absence of the normal full-length mRNA competitor, we set up an assay in which the competitor mRNA was provided. We also studied the effect of the 4588C>T mutation on exon definition and processing using wild-type and mutated minigenes. RESULTS The detection of the alternative mRNA lacking exon 22 is not caused by the absence of the full-length competitor. In contrast, our results demonstrate that the alternative transcript preferentially accumulates in the mutated thyroid at a level similar to the full-length transcript in control tissue. Transient expression experiments with wild-type and mutated minigenes indicate that the mutated exon is as efficiently spliced as the wild-type, suggesting that the 4588C>T mutation does not interfere with exon 22 definition and processing. CONCLUSIONS The alternative splicing of the TG gene described in this article constitutes a new case of nonsense-associated alternative splicing. We have shown that the mutation itself does not interfere with exon definition and processing in vitro. Our results support the hypothesis that the alternative splicing of the mutated exon is driven by the interruption of the reading frame.
Collapse
Affiliation(s)
- Fernando M Mendive
- Laboratory of Molecular Biology, Department of Genetic and Molecular Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
9
|
Morgado A, Almeida F, Teixeira A, Silva AL, Romão L. Unspliced precursors of NMD-sensitive β-globin transcripts exhibit decreased steady-state levels in erythroid cells. PLoS One 2012; 7:e38505. [PMID: 22675570 PMCID: PMC3366927 DOI: 10.1371/journal.pone.0038505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and rapidly degrades mRNAs carrying premature translation-termination codons (PTCs). Mammalian NMD depends on both splicing and translation, and requires recognition of the premature stop codon by the cytoplasmic ribosomes. Surprisingly, some published data have suggested that nonsense codons may also affect the nuclear metabolism of the nonsense-mutated transcripts. To determine if nonsense codons could influence nuclear events, we have directly assessed the steady-state levels of the unspliced transcripts of wild-type and PTC-containing human β-globin genes stably transfected in mouse erythroleukemia (MEL) cells, after erythroid differentiation induction, or in HeLa cells. Our analyses by ribonuclease protection assays and reverse transcription-coupled quantitative PCR show that β-globin pre-mRNAs carrying NMD-competent PTCs, but not those containing a NMD-resistant PTC, exhibit a significant decrease in their steady-state levels relatively to the wild-type or to a missense-mutated β-globin pre-mRNA. On the contrary, in HeLa cells, human β-globin pre-mRNAs carrying NMD-competent PTCs accumulate at normal levels. Functional analyses of these pre-mRNAs in MEL cells demonstrate that their low steady-state levels do not reflect significantly lower pre-mRNA stabilities when compared to the normal control. Furthermore, our results also provide evidence that the relative splicing efficiencies of intron 1 and 2 are unaffected. This set of data highlights potential nuclear pathways that might be promoter- and/or cell line-specific, which recognize the NMD-sensitive transcripts as abnormal. These specialized nuclear pathway(s) may be superimposed on the general NMD mechanism.
Collapse
Affiliation(s)
- Ana Morgado
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Fátima Almeida
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Alexandre Teixeira
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Centro de Investigação em Genética Molecular Humana, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Luísa Silva
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
10
|
Jentarra GM, Rice SG, Olfers S, Rajan C, Saffen DM, Narayanan V. Skewed allele-specific expression of the NF1 gene in normal subjects: a possible mechanism for phenotypic variability in neurofibromatosis type 1. J Child Neurol 2012; 27:695-702. [PMID: 22068829 DOI: 10.1177/0883073811423439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurofibromatosis type 1 is an autosomal dominant disorder characterized by neurocutaneous abnormalities, learning disabilities, and attention-deficit disorder. Neurofibromatosis type 1 symptom severity can be highly variable even within families where all affected members carry the same mutation. We hypothesized that variation in the expression of the normal NF1 allele may be a mechanism that participates in producing variable phenotypes. We performed allelic expression imbalance assays on healthy control individuals to estimate the prevalence of skewed allelic expression of the NF1 gene. Approximately 30% of individuals in our sample population showed significant skewing of allelic expression away from the expected 50:50 ratio, indicating that differential regulation of the NF1 alleles occurs in a high proportion of individuals. Differences of up to 25% in allele-specific expression of the NF1 alleles were identified. In individuals with Neurofibromatosis type 1, who carry a mutant allele (haploinsufficient), this degree of expression skewing may be sufficient to modulate the phenotype.
Collapse
Affiliation(s)
- Garilyn M Jentarra
- Neurology Research Department, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | | | | | | |
Collapse
|
11
|
Christie M, Brosnan CA, Rothnagel JA, Carroll BJ. RNA decay and RNA silencing in plants: competition or collaboration? FRONTIERS IN PLANT SCIENCE 2011; 2:99. [PMID: 22639621 PMCID: PMC3355627 DOI: 10.3389/fpls.2011.00099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/30/2011] [Indexed: 05/25/2023]
Abstract
Initiation of RNA polymerase II transcription signals the beginning of a series of physically and functionally coupled pre-mRNA processing events that transform an RNA transcript into a highly structured, mature ribonucleoprotein complex. With such a complexity of co-transcriptional processes comes the need to identify and degrade improperly processed transcripts. Quality control of mRNA expression primarily involves exonucleolytic degradation of aberrant RNAs. RNA silencing, on the other hand, tends to be viewed separately as a pathway that primarily functions in regulating endogenous gene expression and in genome defense against transposons and viruses. Here, we review current knowledge of these pathways as they exist in plants and draw parallels to similar pathways in other eukaryotes. We then highlight some unexplored overlaps that exist between the RNA silencing and RNA decay pathways of plants, as evidenced by their shared RNA substrates and shared genetic requirements.
Collapse
Affiliation(s)
- Michael Christie
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia
| | - Christopher A. Brosnan
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia
| | - Joseph A. Rothnagel
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
12
|
Naqvi SK, Wasif N, Javaid H, Ahmad W. Two novel mutations in the gene EDAR causing autosomal recessive hypohidrotic ectodermal dysplasia. Orthod Craniofac Res 2011; 14:156-9. [PMID: 21771270 DOI: 10.1111/j.1601-6343.2011.01521.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Hypohidrotic ectodermal dysplasia (HED) is a human heritable disorder characterized by sparse hair, reduced ability to sweat and hypodontia. The HED exhibits X-linked, autosomal recessive and autosomal dominant mode of inheritance. Mutations in four genes including EDA, EDAR, EDARADD, and WNT10A are known to cause hypohidrotic and anhidrotic ectodermal dysplasia. MATERIALS AND METHODS Genotyping of both affected and normal individuals of two consanguineous Pakistani families (A, B), showing autosomal recessive HED, was carried out using microsatellite markers linked to EDAR gene on chromosome 2q11-q13. To screen for mutations in the gene EDAR, all of its exons and splice junction were amplified and sequenced directly, using an automated DNA sequencer. RESULTS Genotyping using microsatellite markers analysis showed linkage of the two families to gene EDAR on chromosome 2q11-2q13. Subsequently, screening of all the 12 exons and splice junctions of gene EDAR revealed a novel missense mutation (c.1163T>C; p.Ile388Thr) in family A and a novel insertion mutation (c.1014insA; p.V339SfsX6) in family B. CONCLUSION Our findings extend the body of evidence supporting the role of EDAR signaling pathway as a powerful regulator of development of ectodermal appendages.
Collapse
Affiliation(s)
- S K Naqvi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | |
Collapse
|
13
|
Salvatori F, Breveglieri G, Zuccato C, Finotti A, Bianchi N, Borgatti M, Feriotto G, Destro F, Canella A, Brognara E, Lampronti I, Breda L, Rivella S, Gambari R. Production of beta-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous beta(0)39 thalassemia patients. Am J Hematol 2009; 84:720-8. [PMID: 19810011 PMCID: PMC3572903 DOI: 10.1002/ajh.21539] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In several types of thalassemia (including beta(0)39-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying beta-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the beta(0)39-thalassemia globin gene under control of the beta-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of beta-globin by K562 cell clones expressing the beta(0)39-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from beta(0)39-thalassemia patients were demonstrated to be able to produce beta-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of beta(0)-thalassemia caused by stop codon mutations. Am. J. Hematol., 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Francesca Salvatori
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Giulia Breveglieri
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Alessia Finotti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Nicoletta Bianchi
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Monica Borgatti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Giordana Feriotto
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Federica Destro
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Alessandro Canella
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Eleonora Brognara
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Ilaria Lampronti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| | - Laura Breda
- Department of Pediatric and Hematology-Oncology, Weill Medical College of Cornell University, New York, New York
| | - Stefano Rivella
- Department of Pediatric and Hematology-Oncology, Weill Medical College of Cornell University, New York, New York
| | - Roberto Gambari
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy
| |
Collapse
|
14
|
Recurrent mutations in functionally-related EDA and EDAR genes underlie X-linked isolated hypodontia and autosomal recessive hypohidrotic ectodermal dysplasia. Arch Dermatol Res 2009; 301:625-9. [DOI: 10.1007/s00403-009-0975-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 01/01/2023]
|
15
|
Jelani M, Salman Chishti M, Ahmad W. A novel splice-site mutation in theCDH3gene in hypotrichosis with juvenile macular dystrophy. Clin Exp Dermatol 2009; 34:68-73. [DOI: 10.1111/j.1365-2230.2008.02933.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Zhang H, Quan C, Sun LD, Lv HL, Gao M, Zhou FS, Xiao FL, Fang QY, Shen YJ, Zhou L, Yang S, Zhang XJ. A novel frameshift mutation of the EDA1 gene in a Chinese Han family with X-linked hypohidrotic ectodermal dysplasia. Clin Exp Dermatol 2008; 34:74-6. [PMID: 18702659 DOI: 10.1111/j.1365-2230.2008.02844.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypohidrotic ectodermal dysplasia (HED) is a rare skin disease characterized by hypotrichosis, hypodontia and hypohidrosis. HED can be autosomal dominant, autosomal recessive or X-linked. However, X-linked HED (XLHED; OMIM 305100) is the most common form. Mutations within the EDA1 gene, which encodes ectodysplasin-A, are responsible for XLHED. In this study, we investigated the EDA1 gene in a Chinese Han family with XLHED, and found a novel 1-bp deletion mutation (c.952delG) in exon 9 of the EDA1 gene, which results in a frameshift and premature termination codon. This result suggests that the c.952delG mutation of the EDA1 gene is likely to be the disease-causing mutation for XLHED in this family. Our study adds new data to the worldwide knowledge of the molecular basis of XLHED.
Collapse
Affiliation(s)
- H Zhang
- Department of Dermatology, Institute of Dermatology, No 1 Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
MELLERIO J, SMITH F, McMILLAN J, McLEAN W, McGRATH J, MORRISON G, TIERNEY P, ALBERT D, WICHE G, LEIGH I, GEDDES J, LANE E, UITTO J, EADY R. Recessive epidermolysis bullosa simplex associated with plectin mutations: infantile respiratory complications in two unrelated cases. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1997.19832064.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality-control mechanism that selectively degrades mRNAs harboring premature termination (nonsense) codons. If translated, these mRNAs can produce truncated proteins with dominant-negative or deleterious gain-of-function activities. In this review, we describe the molecular mechanism of NMD. We first cover conserved factors known to be involved in NMD in all eukaryotes. We then describe a unique protein complex that is deposited on mammalian mRNAs during splicing, which defines a stop codon as premature. Interaction between this exon-junction complex (EJC) and NMD factors assembled at the upstream stop codon triggers a series of steps that ultimately lead to mRNA decay. We discuss whether these proofreading events preferentially occur during a "pioneer" round of translation in higher and lower eukaryotes, their cellular location, and whether they can use alternative EJC factors or act independent of the EJC.
Collapse
Affiliation(s)
- Yao-Fu Chang
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
19
|
Yonei N, Ohtani T, Furukawa F. Recessive dystrophic epidermolysis bullosa: Case of non-Hallopeau?Siemens variant with premature termination codons in both alleles. J Dermatol 2006; 33:802-5. [PMID: 17073998 DOI: 10.1111/j.1346-8138.2006.00182.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dystrophic epidermolysis bullosa (DEB) is caused by mutations in the COL7A1 gene encoding collagen, the major component of anchoring fibrils. Premature termination codon (PTC) mutations in both alleles usually lead to the Hallopeau-Siemens variant that shows the most severe phenotype. We experienced a case of the non-Hallopeau-Siemens variant (nHS-RDEB), which had a mild clinical severity although it has PTC mutations in both alleles. Our patient was a compound heterozygote for a nonsense mutation (R669X) in exon 15 and a nonsense mutation (E2857X) in exon 116. But we confirmed the existence of some anchoring fibrils on electron micrograph. This suggested that a PTC close to the 3' end of COL7A1 does not completely abolish the collagen VII mRNA. We hypothesized that the truncated procollagen VII from the mutant allele with a nonsense mutation (E2857X) in exon 116 included two out of eight cysteines needed for disulfide bond formation, and hence a few functional anchoring fibrils could be formed.
Collapse
Affiliation(s)
- Nozomi Yonei
- Department of Dermatology, Wakayama Medical University, School of Medicine, Kmiidera, Japan.
| | | | | |
Collapse
|
20
|
Holbrook JA, Neu-Yilik G, Gehring NH, Kulozik AE, Hentze MW. Internal ribosome entry sequence-mediated translation initiation triggers nonsense-mediated decay. EMBO Rep 2006; 7:722-6. [PMID: 16799467 PMCID: PMC1500827 DOI: 10.1038/sj.embor.7400721] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, a surveillance pathway known as nonsense-mediated decay (NMD) regulates the abundance of messenger RNAs containing premature termination codons (PTCs). In mammalian cells, it has been asserted that the NMD-relevant first round of translation is special and involves initiation by a specific protein heterodimer, the nuclear cap-binding complex (CBC). Arguing against a requirement for CBC-mediated translation initiation, we show that ribosomal recruitment by the internal ribosomal entry sequence of the encephalomyocarditis virus triggers NMD of a PTC-containing transcript under conditions in which ribosome entry from the cap is prohibited. These data generalize the previous model and suggest that translation per se, irrespective of how it is initiated, can mediate NMD.
Collapse
Affiliation(s)
- Jill A Holbrook
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Niels H Gehring
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Tel: +49 6221 56 2303; Fax: +49 6221 56 4559; E-mail:
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Tel: +49 6221 387 501; Fax: +49 6221 387 518; E-mail:
| |
Collapse
|
21
|
Wintersberger E. Biochemical events controlling initiation and propagation of the S phase of the cell cycle. Rev Physiol Biochem Pharmacol 2005; 118:49-95. [PMID: 1754800 DOI: 10.1007/bfb0031481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E Wintersberger
- Institut für Molekularbiologie der Universität Wien, Austria
| |
Collapse
|
22
|
Naeem M, Muhammad D, Ahmad W. Novel mutations in the EDAR gene in two Pakistani consanguineous families with autosomal recessive hypohidrotic ectodermal dysplasia. Br J Dermatol 2005; 153:46-50. [PMID: 16029325 DOI: 10.1111/j.1365-2133.2005.06642.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hypohidrotic ectodermal dysplasia (HED) is a human heritable disorder characterized by sparse hair, a lack of sweat glands and malformation of teeth. There are X-linked, autosomal recessive and autosomal dominant forms of this disorder. Mutations in the EDA gene cause X-linked HED and mutations in either the EDAR or the EDARADD genes cause autosomal forms of HED. OBJECTIVES To identify pathogenic mutations in two consanguineous Pakistani families (A and B) with 11 affected individuals demonstrating the autosomal recessive form of HED. METHODS Genotyping of 17 members of the two families, including eight affected and nine unaffected individuals, was carried out by using polymorphic markers D2S293, D2S1893 and D2S1891, which are closely linked to the EDAR gene on chromosome 2q11-q13. To screen for mutations in the EDAR gene, all of its exons and splice junctions were polymerase chain reaction amplified from genomic DNA and sequenced directly in an ABI Prism 310 automated sequencer. RESULTS Genotyping results showed linkage in both the Pakistani families to the EDAR locus. Sequence analysis of the EDAR gene identified two novel mutations in the families: a missense mutation (G382S) in family A and a 4-bp deletion (718delAAAG) in family B. CONCLUSIONS We describe novel mutations in the EDAR gene in two Pakistani families affected with the autosomal recessive form of HED. Our findings extend the body of evidence that supports the importance of the ectodysplasin A1 isoform receptor, a member of the tumour necrosis factor receptor family, in the development of ectodermal appendages.
Collapse
Affiliation(s)
- M Naeem
- Department of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | | |
Collapse
|
23
|
Gudikote JP, Imam JS, Garcia RF, Wilkinson MF. RNA splicing promotes translation and RNA surveillance. Nat Struct Mol Biol 2005; 12:801-9. [PMID: 16116435 DOI: 10.1038/nsmb980] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/19/2005] [Indexed: 11/09/2022]
Abstract
Aberrant mRNAs harboring premature termination codons (PTCs or nonsense codons) are degraded by the nonsense-mediated mRNA decay (NMD) pathway. mRNAs transcribed from genes that naturally acquire PTCs during lymphocyte development are strongly downregulated by PTCs. Here we show that a signal essential for this robust mRNA downregulatory response is efficient RNA splicing. Strong mRNA downregulation can be conferred on a poor NMD substrate by either strengthening its splicing signals or removing its weak introns. Efficient splicing also strongly promotes translation, providing a molecular explanation for enhanced NMD and suggesting that efficient splicing may have evolved to enhance both protein production and RNA surveillance. Our results suggest simple approaches for increasing protein expression from expression vectors and treating human genetic diseases caused by nonsense and frameshift mutations.
Collapse
Affiliation(s)
- Jayanthi P Gudikote
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
24
|
Hashiramoto M, Osawa H, Ando M, Murakami A, Nishimiya T, Nakano M, Nishida W, Onuma H, Makino H. A nonsense mutation in the Arg345 of the insulin receptor gene in a Japanese type A insulin-resistant patient. Endocr J 2005; 52:499-504. [PMID: 16127220 DOI: 10.1507/endocrj.52.499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Defects in insulin receptor function have been associated with insulin resistant states such as obesity and type 2 diabetes mellitus. Several types of mutations in the insulin receptor gene have been identified in patients with genetic syndromes of extreme insulin resistance. We have studied a 10-year-old Japanese girl with type A insulin resistance with hirsutism and hyperinsulinemia but without the dysmorphic features characteristic of leprechaunism or Rabson-Mendenhall syndrome. Despite the presence of severe insulin resistance, the patient did not develop overt diabetes mellitus at the time of investigation. Using direct sequencing, we identified a nonsense mutation causing premature termination after amino acid 345 in the alpha subunit of the insulin receptor.
Collapse
Affiliation(s)
- Mitsuru Hashiramoto
- Department of Diabetology and Clinical Laboratory Medicine, National University Corporation, Ehime University School of Medicine, Ehime
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Although it is frequently assumed that translation does not occur in eukaryotic nuclei, recent evidence suggests that some translation can take place and that it is closely coupled to transcription. The first evidence concerns the destruction of nuclear mRNAs containing premature termination codons by nonsense-mediated decay (NMD). Only ribosomes can detect termination codons, and as some NMD occurs within the nuclear fraction, active nuclear ribosomes could perform the required detection. The second evidence is the demonstration that tagged amino acids are incorporated into nascent polypeptides in a nuclear process coupled to transcription. The third evidence is that components involved in translation, NMD and transcription colocalize, coimmunoprecipitate and co-purify. All these results are simply explained if nuclear ribosomes scan nascent transcripts for premature termination codons at the site of transcription. Alternatively, the scanning needed for NMD might take place at the nuclear membrane, and contaminating cytoplasmic ribosomes might give the appearance of some nuclear translation. We argue, however, that the balance of evidence favours bona fide nuclear translation.
Collapse
Affiliation(s)
- Francisco J Iborra
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | | | | |
Collapse
|
26
|
Dreumont N, Maresca A, Khandjian EW, Baklouti F, Tanguay RM. Cytoplasmic nonsense-mediated mRNA decay for a nonsense (W262X) transcript of the gene responsible for hereditary tyrosinemia, fumarylacetoacetate hydrolase. Biochem Biophys Res Commun 2004; 324:186-92. [PMID: 15465000 DOI: 10.1016/j.bbrc.2004.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 01/01/2023]
Abstract
Messenger RNAs containing premature stop codons are generally targeted for degradation through the nonsense-mediated mRNA decay (NMD) pathway. The subcellular localization of the NMD process in higher eukaryotes remains controversial. While many mRNAs are subjected to NMD prior to their release from the nucleus, a few display cytoplasmic NMD. To understand the possible impact of NMD on the pathogenesis of hereditary tyrosinemia type I, a severe metabolic disease caused by fumarylacetoacetate hydrolase (FAH) deficiency, we examined the metabolism of FAH mRNA harboring a nonsense mutation, W262X, in lymphoblastoid cell lines derived from patients and their parents. W262X-FAH transcripts show a approximately 20-fold reduction in abundance in mutant cells, which is translation-dependent. Cellular fractionation shows that this down-regulation of the W262X transcript occurs in the cytoplasm. Thus, the W262X FAH is another example of nonsense mRNAs subjected to the NMD pathway in the cytoplasm.
Collapse
Affiliation(s)
- Natacha Dreumont
- Laboratory of Cellular and Developmental Genetics, CREFSIP, Department of Medicine, Université Laval, Que., Canada
| | | | | | | | | |
Collapse
|
27
|
Pie J, Casals N, Puisac B, Hegardt FG. Molecular basis of 3-hydroxy-3-methylglutaric aciduria. J Physiol Biochem 2004; 59:311-21. [PMID: 15164951 DOI: 10.1007/bf03179889] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Hydroxy-3-methylglutaric aciduria is a human autosomal recessive metabolic disorder that usually appears within the first year of life. The causes of this aciduria are lethal mutations in the gene encoding for 3-hydroxy-3-methylglutaryl coenzyme A lyase (HL). HL is a mitochondrial matrix enzyme that catalyzes the last step of ketogenesis and leucine catabolism. This gene has been mapped to chromosome 1 at locus 1pter-p33 and its genomic organisation comprises 9 exons whose sizes vary between 64-678 bp. The human cDNA sequence was reported in 1993 with the first genetic study of two Acadian-French Canadian siblings. To date, 24 mutations in 36 patients have been described; most of them are single-base substitutions causing amino acid replacements and a variety of splicing defects. In the population studied two mutations appear predominant: g.122GA (8 patients and 15 alleles) frequent in Saudi Arabia, and g.109GT (6 patients and 12 alleles), prevalent in Spain. At least seven mutations are clustered in the second half of exon 2 affecting aminoacids E37, R41 and D42 and conforming a possible hot spot. The genotype-phenotype correlation is difficult to establish since the probands received different treatments, and the onset of an acute episode frequently depends on external factors such as fasting or acute illness.
Collapse
Affiliation(s)
- J Pie
- Department of Pharmacology and Physiology, School of Medicine, University of Zaragoza, Spain
| | | | | | | |
Collapse
|
28
|
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, have important roles in surfactant function. The importance of these proteins in normal lung function is highlighted by the lung diseases associated with abnormalities in their expression. Mutations in the gene encoding SP-B result in severe, fatal neonatal lung disease, and mutations in the gene encoding SP-C are associated with chronic interstitial lung diseases in newborns, older children, and adults. This work reviews the current state of knowledge concerning the lung diseases associated with mutations in the SP-B and SP-C genes, and the potential roles of abnormal SP-B and SP-C expression and genetic variation in these genes in other lung diseases.
Collapse
Affiliation(s)
- Lawrence M Nogee
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3200, USA.
| |
Collapse
|
29
|
Lytle JR, Steitz JA. Premature termination codons do not affect the rate of splicing of neighboring introns. RNA (NEW YORK, N.Y.) 2004; 10:657-68. [PMID: 15037775 PMCID: PMC1370556 DOI: 10.1261/rna.5241404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 12/29/2003] [Indexed: 05/21/2023]
Abstract
Introduction of a premature termination codon (PTC) into an exon of a gene can lead to nonsense-mediated decay of the mRNA, which is best characterized as a cytoplasmic event. However, increasing evidence has suggested that PTCs may also influence the nuclear processing of an RNA transcript, leading to models of nuclear surveillance perhaps involving translating nuclear ribosomes. We used quantitative RT-PCR to measure the in vivo steady-state levels of every exon-intron junction in wild-type, PTC-containing, and missense-containing precursor mRNAs of both the nonrearranging dihydrofolate reductase (DHFR) and the somatically rearranging Ig- micro genes. We find that each exon-intron junction's abundance and, therefore, the rate of intron removal, is not significantly affected by the presence of a PTC in a neighboring exon in either the DHFR or Ig- micro pre-mRNA. Similarly, the abundance of the uncleaved Ig- micro polyadenylation sites does not differ between wild-type and PTC-containing Ig- micro pre-mRNAs. Our Ig- micro data were confirmed by RNase protection analyses, and multiple cell isolates were examined to resolve differences with previously published data on steady-state pre-mRNA levels. We conclude that the presence of a PTC affects the rate of neither splicing nor the cleavage step of 3' end formation during pre-mRNA processing in the nucleus. Our results are discussed with respect to existing evidence for nuclear surveillance mechanisms.
Collapse
Affiliation(s)
- J Robin Lytle
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
30
|
Goldfarb D, Michaud N. Pathways for the nuclear transport of proteins and RNAs. Trends Cell Biol 2004; 1:20-4. [PMID: 14731805 DOI: 10.1016/0962-8924(91)90065-h] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nuclear pore complex catalyses the import and export of both proteins and RNAs. The molecular mechanisms of RNA and protein translocation through the nuclear pore are likely to be similar; however, their signals and targeting apparatus may differ. Recent insights into RNA transport have come from studies of kinetic control mechanisms and the preconditions for translocation that include processing, RNP assembly, and a targeting function for 5' caps.
Collapse
Affiliation(s)
- D Goldfarb
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
31
|
Zhang X, Lee J, Chasin LA. The effect of nonsense codons on splicing: a genomic analysis. RNA (NEW YORK, N.Y.) 2003; 9:637-639. [PMID: 12756320 PMCID: PMC1370429 DOI: 10.1261/rna.5060403] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 02/20/2003] [Indexed: 05/24/2023]
Abstract
The phenomenon of nonsense-associated altered splicing raises the possibility that the recognition of in-frame nonsense codons is used generally for exon identification during pre-mRNA splicing. However, nonsense codon frequencies in pseudo exons and in regions flanking 5' splice sites are no greater than that expected by chance, arguing against the widespread use of this strategy as a means of rejecting potential splice sites.
Collapse
|
32
|
Miriami E, Motro U, Sperling J, Sperling R. Conservation of an open-reading frame as an element affecting 5' splice site selection. J Struct Biol 2002; 140:116-22. [PMID: 12490159 DOI: 10.1016/s1047-8477(02)00539-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Splice site selection is a key element of pre-mRNA splicing and involves specific recognition of consensus sequences at the 5(') and 3(') splice sites. Evidently, the compliance of a given sequence with the consensus 5(') splice site sequence is not sufficient to define it as a functional 5(') splice site, because not all sequences that conform with the consensus are used for splicing. We have previously hypothesized that the necessity to avoid the inclusion of premature termination codons within mature mRNAs may serve as a criterion that differentiates normal 5(') splice sites from unused (latent) ones. We further provided experimental support to this idea, by analyzing the splicing of pre-mRNAs in which in-frame stop codons upstream of a latent 5(') splice site were mutated, and showing that splicing using the latent site is indeed activated by such mutations. Here we evaluate this hypothesis by a computerized survey for latent 5(') splice sites in 446 protein-coding human genes. This data set contains 2311 introns, in which we found 10490 latent 5(') splice sites. The utilization of 10045 (95.8%) of these sites for splicing would have led to the inclusion of an in-frame stop codon within the resultant mRNA. The validity of this finding is confirmed here by statistical analyses. This finding, together with our previous experimental results, invokes a nuclear scanning mechanism, as part of the splicing machine, which identifies in-frame stop codons within the pre-mRNA and prevents splicing that could lead to the formation of a prematurely terminated protein.
Collapse
Affiliation(s)
- Elana Miriami
- Department of Genetics, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | | | | | |
Collapse
|
33
|
Abstract
Most vertebrate mRNAs with premature termination codons (PTCs) are specifically recognized and degraded by a process referred to as nonsense-mediated mRNA decay (NMD) while still associated with the nucleus. However, it is still a matter of debate whether PTCs can be identified by intranuclear scanning or only by ribosomes on the cytoplasmic side of the nuclear envelope. Here we show that inhibition of mRNA export by two independent approaches does not affect the downregulation of PTC-containing T-cell receptor beta transcripts in the nuclear fraction of mammalian cells, providing strong evidence for intranuclear NMD. Our results are fully consistent with recently reported evidence for nuclear translation and suggest that an important biological role for nuclear ribosomes is the early elimination of nonsense mRNA during a pioneer round of translation.
Collapse
Affiliation(s)
- Marc Bühler
- Institute of Cell Biology, University of Bern, Baltzerstrasse-4, Switzerland
| | | | | |
Collapse
|
34
|
|
35
|
Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K. Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun 2002; 294:630-4. [PMID: 12056815 DOI: 10.1016/s0006-291x(02)00536-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AQP10 is the newest member of aquaporins in mammals and expressed selectively in the duodenum and the jejunum in human functioning as aquaglyceroporin. Here we report the cloning of the mouse AQP10 gene. The gene is composed of six exons and spans 5.2 kb. The arrangement of the exons is well conserved between mouse and human. However, the initiator methionine is lost because of the mutation at the translation-initiation site. An insertion of four thymine residues in exon 2 and a deletion of a cytosine residue in exon 5 shift the reading frame. Moreover, aberrant exon/intron junction sequences of introns 2, 3, and 4 also shift the reading frame between exons. Genomic Southern blot revealed the mouse AQP10 gene as a single copy gene. The results indicate that the mouse AQP10 gene is a pseudogene. Furthermore, the mouse AQP10 transcript was not detected in the jejunum where the human AQP10 is strongly expressed.
Collapse
Affiliation(s)
- Tomonori Morinaga
- Department of Pharmacology, Jichi Medical School, 3311-1 Minamikawachi-machi, Yakushiji, Kawachi-gun, Tochigi 329-0498, Japan
| | | | | | | | | |
Collapse
|
36
|
Abstract
There are many quality-control mechanisms that ensure high fidelity of gene expression. One of these is the nonsense-mediated decay (NMD) pathway, which destroys aberrant mRNAs that contain premature termination codons generated as a result of biosynthetic errors or random and programmed gene mutations. Two complexes that initially bind to RNA in the nucleus have been suggested to be involved in NMD in the cytoplasm. Here we propose an alternative model that involves nuclear scanning, on the basis of recent evidence for nuclear translation.
Collapse
Affiliation(s)
- Miles F Wilkinson
- Miles Wilkinson is in the Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
37
|
Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3:285-98. [PMID: 11967553 DOI: 10.1038/nrg775] [Citation(s) in RCA: 1626] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Point mutations in the coding regions of genes are commonly assumed to exert their effects by altering single amino acids in the encoded proteins. However, there is increasing evidence that many human disease genes harbour exonic mutations that affect pre-mRNA splicing. Nonsense, missense and even translationally silent mutations can inactivate genes by inducing the splicing machinery to skip the mutant exons. Similarly, coding-region single-nucleotide polymorphisms might cause phenotypic variability by influencing splicing accuracy or efficiency. As the splicing mechanisms that depend on exonic signals are elucidated, new therapeutic approaches to treating certain genetic diseases can begin to be explored.
Collapse
Affiliation(s)
- Luca Cartegni
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
38
|
Watanabe Y, Magor KE, Parham P. Exon 5 encoding the transmembrane region of HLA-A contains a transitional region for the induction of nonsense-mediated mRNA decay. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6901-11. [PMID: 11739508 DOI: 10.4049/jimmunol.167.12.6901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA class I alleles containing premature termination codons (PTCs) are increasingly being found. To understand their effects on MHC class I expression, HLA-A*2402 mutants containing PTCs were transfected into class I-deficient cells, and expression of HLA-A mRNA and protein was determined. In exons 2, 3, and 4, and in the 5' part of exon 5, PTCs reduced mRNA levels by up to 90%, whereas in the 3' part of exon 5 and in exons 6 and 7 they had little effect. Transition in the extent of nonsense-mediated mRNA decay occurred within a 48-nt segment of exon 5, placed 58 nt upstream from the exon 5/exon 6 junction. This transition did not conform to the positional rule obeyed by other genes, which predicted it to be approximately 50-55 nt upstream of the exon 7/exon 8 junction and thus placing it in exon 6. Mutants containing extra gene segments showed the difference is caused by the small size of exons 5 and 6, which renders them invisible to the surveillance machinery. For the protein, a transition from secretion to membrane association occurs within a 26-nt segment of exon 5, 17 nt upstream of the exon 5/exon 6 junction. Premature termination in exon 5 can produce secreted and membrane-associated HLA-A variants expressed at high levels.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
39
|
Wilkinson MF, Shyu AB. Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays 2001; 23:775-87. [PMID: 11536290 DOI: 10.1002/bies.1113] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The multistep pathway of eukaryotic gene expression involves a series of highly regulated events in the nucleus and cytoplasm. In the nucleus, genes are transcribed into pre-messenger RNAs which undergo a series of nuclear processing steps. Mature mRNAs are then transported to the cytoplasm, where they are translated into protein and degraded at a rate dictated by transcript- and cell-type-specific cues. Until recently, these individual nuclear and cytoplasmic events were thought to be primarily regulated by different RNA- and DNA-binding proteins that are localized either only in the nucleus or only the cytoplasm. Here, we describe multifunctional proteins that control both nuclear and cytoplasmic steps of gene expression. One such class of multifunctional proteins (e.g., Bicoid and Y-box proteins) regulates both transcription and translation whereas another class (e.g., Sex-lethal) regulates both nuclear RNA processing and translation. Other events controlled by multifunctional proteins include assembly of spliceosome components, spliceosome recycling, RNA editing, cytoplasmic mRNA localization, and cytoplasmic RNA stability. The existence of multifunctional proteins may explain the paradoxical involvement of the nucleus in an RNA surveillance pathway (nonsense-mediated decay) that detects cytoplasmic signals (premature termination codons). We speculate that shuttling multifunctional proteins serve to efficiently link RNA metabolism in the cytoplasmic and nuclear compartments.
Collapse
Affiliation(s)
- M F Wilkinson
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | |
Collapse
|
40
|
Mühlemann O, Mock-Casagrande CS, Wang J, Li S, Custódio N, Carmo-Fonseca M, Wilkinson MF, Moore MJ. Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol Cell 2001; 8:33-43. [PMID: 11511358 DOI: 10.1016/s1097-2765(01)00288-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Messenger RNAs containing premature termination codons (PTCs) are selectively eliminated by nonsense-mediated mRNA decay (NMD). Paradoxically, although cytoplasmic ribosomes are the only known species capable of PTC recognition, in mammals many PTC-containing mRNAs are apparently eliminated prior to release from the nucleus. To determine whether PTCs can influence events within the nucleus proper, we studied the immunoglobulin (Ig)-mu and T cell receptor (TCR)-beta genes using fluorescent in situ hybridization (FISH). Alleles containing PTCs, but not those containing a missense mutation or a frameshift followed by frame-correcting mutations, exhibited elevated levels of pre-mRNA, which accumulated at or near the site of transcription. Our data indicate that mRNA reading frame can influence events at or near the site of gene transcription.
Collapse
Affiliation(s)
- O Mühlemann
- Howard Hughes Medical Institute, W.M. Keck Center for Cellular Visualization, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Noé V, Alemany C, Nicolás M, Ciudad CJ. Sp1 involvement in the 4beta-phorbol 12-myristate 13-acetate (TPA)-mediated increase in resistance to methotrexate in Chinese hamster ovary cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3163-73. [PMID: 11389717 DOI: 10.1046/j.1432-1327.2001.02198.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
4beta-Phorbol 12-myristate 13-acetate (TPA) increases the number of colonies resistant to methotrexate (MTX), mainly by amplification of the dihydrofolate reductase (dhfr) locus. We showed previously that inhibition of protein kinase C (PKC) prevents this resistance. Here, we studied the molecular changes involved in the development of TPA-mediated MTX resistance in Chinese hamster ovary (CHO) cells. TPA incubation increased the expression and activity of DHFR. Because Sp1 controls the dhfr promoter, we determined the effect of TPA on the expression of Sp1 and its binding to DNA. TPA incubation increased Sp1 binding and the levels of Sp1 protein. The latter effect was due to an increase in Sp1 mRNA. Dephosphorylation of nuclear extracts from control or TPA-treated cells reduced the binding of Sp1. Stable transfectants of PKCalpha showed increased Sp1 binding, and when treated with MTX, developed a greater number of resistant colonies than control cells. Seventy-five percent of the isolated colonies showed increased copy number for the dhfr gene. Transient expression of PKCalpha increased DHFR activity. Over-expression of Sp1 increased resistance to MTX, and inhibition of Sp1 binding by mithramycin decreased this resistance. We conclude that one mechanism by which TPA enhances MTX resistance, mainly by gene amplification, is through an increase in Sp1 expression which leads to DHFR activation.
Collapse
Affiliation(s)
- V Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Spain
| | | | | | | |
Collapse
|
42
|
Tanaka T, Nakata T, Oka T, Ogawa T, Okamoto F, Kusaka Y, Sohmiya K, Shimamoto K, Itakura K. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31637-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Ashton GH, Sorelli P, Mellerio JE, Keane FM, Eady RA, McGrath JA. Alpha 6 beta 4 integrin abnormalities in junctional epidermolysis bullosa with pyloric atresia. Br J Dermatol 2001; 144:408-14. [PMID: 11251584 DOI: 10.1046/j.1365-2133.2001.04038.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Junctional epidermolysis bullosa with pyloric atresia (JEB-PA) (MIM 226730) is an autosomal recessive disorder resulting from mutations in the genes encoding alpha 6 beta 4 integrin (ITGA6 and ITGB4). Clinically, it is characterized by mucocutaneous fragility and gastrointestinal atresia, which most commonly affects the pylorus. Additional features of JEB-PA include involvement of the urogenital tract, aplasia cutis and failure to thrive. While most affected individuals have a poor prognosis resulting in death in infancy, others have milder clinical features and a better prognosis. We report two previously undescribed homozygous ITGB4 mutations in two unrelated families, which resulted in severe skin blistering, pyloric atresia and lethality in infancy. Delineation of the mutations was used to undertake DNA-based prenatal diagnosis in subsequent pregnancies at risk for recurrence in both families. We review all previously published ITGA6 and ITGB4 mutation reports to help define genotype--phenotype correlation in this rare genodermatosis.
Collapse
Affiliation(s)
- G H Ashton
- Department of Cell and Molecular Pathology, St John's Institute of Dermatology, The Guy's, King's College and St Thomas' Hospitals' Medical School, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | | | | | | | | | | |
Collapse
|
44
|
Lipscomb DL, Bourne C, Boudreaux MK. Two genetic defects in alphaIIb are associated with type I Glanzmann's thrombasthenia in a Great Pyrenees dog: a 14-base insertion in exon 13 and a splicing defect of intron 13. Vet Pathol 2000; 37:581-8. [PMID: 11105947 DOI: 10.1354/vp.37-6-581] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glannzmann's thrombasthenia (GT) is an autosomal recessive bleeding disorder caused by qualitative or quantitative deficiencies of the platelet membrane glycoprotein alphaIIbbeta3. This is the first report of a molecular genetic basis for type I GT in dogs. As previously reported, a thrombasthenic Great Pyrenees dog (dog No. 1) experienced uncontrolled epistaxis despite results of coagulation screening tests, platelet quantitation, and von Willebrand factor quantitation that were within reference ranges. Platelet aggregation was minimal in response to agonists. Flow cytometry, autoradiography, and immunoblot experiments demonstrated either marked reduction or absence of glycoproteins alphaIIb and beta3. In this study, we report the presence of a 14-base insertion in exon 13 and defective splicing of intron 13 in the alphaIIb gene of two thrombasthenic dogs (Nos. 1 and 8). The insertion disrupted the fourth alphaIIb calcium-binding domain, caused a shift in the reading frame and resulted in a premature termination codon. Possible consequences of this mutation include decreased alphaIIb mRNA stability and production of truncated alphaIIb protein that lacks the transmembrane and cytoplasmic domains and a large portion of the extracellular domain. We identified the dam, sire, and three littermates of dog No. 8 as carriers of the alphaIIb mutation. Canine alphaIIb and beta3 genes share significant homology with the genes in human beings, making canine GT an excellent translational model for human GT. A defined molecular basis for canine GT will enhance ongoing gene therapy research and increase the understanding of structure-function relationships of this integrin.
Collapse
Affiliation(s)
- D L Lipscomb
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849, USA.
| | | | | |
Collapse
|
45
|
Abstract
Generally, nonsense codons 50 bp or more upstream of the 3′-most intron of the human β-globin gene reduce mRNA abundance. In contrast, dominantly inherited β-thalassemia is frequently associated with nonsense mutations in the last exon. In this work, murine erythroleukemia (MEL) cells were stably transfected with human β-globin genes mutated within each of the 3 exons, namely at codons 15 (TGG→TGA), 39 (C→T), or 127 (C→T). Primer extension analysis after erythroid differentiation induction showed codon 127 (C→T) mRNA accumulated in the cytoplasm at approximately 20% of the normal mRNA level. Codon 39 (C→T) mutation did not result in significant mRNA accumulation. Unexpectedly, codon 15 (TGG→TGA) mRNA accumulated at approximately 90%. Concordant results were obtained when reticulocyte mRNA from 2 carriers for this mutation was studied. High mRNA accumulation of codon 15 nonsense-mutated gene was revealed to be independent of the type of nonsense mutation and the genomic background in which this mutation occurs. To investigate the effects of other nonsense mutations located in the first exon on the mRNA level, nonsense mutations at codons 5, 17, and 26 were also cloned and stably transfected into MEL cells. After erythroid differentiation induction, mRNAs with a mutation at codon 5 or 17 were detected at high levels, whereas the mutation at codon 26 led to low mRNA levels. These findings suggest that nonsense-mediated mRNA decay is not exclusively dependent on the localization of mutations relative to the 3′-most intron. Other factors may also contribute to determine the cytoplasmic nonsense-mutated mRNA level in erythroid cells.
Collapse
|
46
|
Nonsense mutations in the human β-globin gene lead to unexpected levels of cytoplasmic mRNA accumulation. Blood 2000. [DOI: 10.1182/blood.v96.8.2895] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Generally, nonsense codons 50 bp or more upstream of the 3′-most intron of the human β-globin gene reduce mRNA abundance. In contrast, dominantly inherited β-thalassemia is frequently associated with nonsense mutations in the last exon. In this work, murine erythroleukemia (MEL) cells were stably transfected with human β-globin genes mutated within each of the 3 exons, namely at codons 15 (TGG→TGA), 39 (C→T), or 127 (C→T). Primer extension analysis after erythroid differentiation induction showed codon 127 (C→T) mRNA accumulated in the cytoplasm at approximately 20% of the normal mRNA level. Codon 39 (C→T) mutation did not result in significant mRNA accumulation. Unexpectedly, codon 15 (TGG→TGA) mRNA accumulated at approximately 90%. Concordant results were obtained when reticulocyte mRNA from 2 carriers for this mutation was studied. High mRNA accumulation of codon 15 nonsense-mutated gene was revealed to be independent of the type of nonsense mutation and the genomic background in which this mutation occurs. To investigate the effects of other nonsense mutations located in the first exon on the mRNA level, nonsense mutations at codons 5, 17, and 26 were also cloned and stably transfected into MEL cells. After erythroid differentiation induction, mRNAs with a mutation at codon 5 or 17 were detected at high levels, whereas the mutation at codon 26 led to low mRNA levels. These findings suggest that nonsense-mediated mRNA decay is not exclusively dependent on the localization of mutations relative to the 3′-most intron. Other factors may also contribute to determine the cytoplasmic nonsense-mutated mRNA level in erythroid cells.
Collapse
|
47
|
Abstract
Clinical manifestations of type IV collagen mutations can vary from the severe, clinically and genetically heterogeneous renal disorder, Alport syndrome, to autosomal dominant familial benign hematuria. The predominant form of Alport syndrome is X-linked; more than 160 different mutations have yet been identified in the type IV collagen alpha 5 chain (COL4A5) gene, located at Xq22-24 head to head to the COL4A6 gene. The autosomal recessive form of Alport syndrome is caused by mutations in the COL4A3 and COL4A4 genes, located at 2q35-37. Recently, the first mutation in the COL4A4 gene was identified in familial benign hematuria. This paper presents an overview of type IV collagen mutations, including eight novel COL4A5 mutations from our own group in patients with Alport syndrome. The spectrum of mutations is broad and provides insight into the clinical heterogeneity of Alport syndrome with respect to age at renal failure and accompanying features such as deafness, leiomyomatosis, and anti-GBM nephritis.
Collapse
Affiliation(s)
- H H Lemmink
- Department of Pediatrics, University Hospital Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
48
|
Vorechovský I, Luo L, Hertz JM, Frøland SS, Klemola T, Fiorini M, Quinti I, Paganelli R, Ozsahin H, Hammarström L, Webster AD, Smith CI. Mutation pattern in the Bruton's tyrosine kinase gene in 26 unrelated patients with X-linked agammaglobulinemia. Hum Mutat 2000; 9:418-25. [PMID: 9143921 DOI: 10.1002/(sici)1098-1004(1997)9:5<418::aid-humu7>3.0.co;2-#] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutation pattern was characterized in the Bruton's tyrosine kinase gene (BTK) in 26 patients with X-linked agammaglobulinemia, the first described immunoglobulin deficiency, and was related to BTK expression. A total of 24 different mutations were identified. Most BTK mutations were found to result in premature termination of the translation product. Mutations were detected in most BTK exons with a predominance of frameshift and nonsense mutations in the 5' end of the gene and missense mutations in its 3' part, corresponding to the catalytic domain of the enzyme. Nonsense and frameshift mutations were associated with diminished levels of BTK mRNA expression, except for a frameshift mutation in exon 17 and two nonsense mutations in exon 2, indicating that these cases are not confined to penultimate exons. One amino acid substitution (R28H) was found in the pleckstrin homology domain's residue, which is mutated in mice bearing the X-linked immunodeficiency phenotype; another substitution (R307G) was identified in the src homology domain 2. All remaining amino acid substitutions were found in the catalytic domain of Btk.
Collapse
Affiliation(s)
- I Vorechovský
- Karolinska Institute, Department of Biosciences, NOVUM, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fukao T, Song XQ, Yamaguchi S, Kondo N, Orii T, Matthieu JM, Bachmann C, Hashimoto T. Identification of three novel frameshift mutations (83delAT, 754insCT, and 435 + 1G to A) of mitochondrial acetoacetyl-coenzyme A thiolase gene in two Swiss patients with CRM-negative beta-ketothiolase deficiency. Hum Mutat 2000; 9:277-9. [PMID: 9090533 DOI: 10.1002/(sici)1098-1004(1997)9:3<277::aid-humu11>3.0.co;2-#] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T Fukao
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The study of the beta globin gene has provided great insights into the mechanisms of gene regulation and expression. In this review, we consider the normal regulation and expression of the beta globin gene and illustrate how the various steps may be affected, providing a basis for understanding the molecular pathophysiology of beta thalassemia. Mutations causing beta thalassemia can be classified as beta0 or B+ according to whether they abolish or reduce the production of beta globin chains. The vast majority of beta thalassemia is caused by point mutations, mostly single base substitutions, within the gene or its immediate flanking sequences. Rarely, beta thalassemia is caused by major deletions of the beta globin cluster. All these mutations behave as alleles of the beta locus but in several families the beta thalassemia phenotype segregates independently of the beta globin complex, and are likely to be caused by mutations in trans-acting regulatory factors.
Collapse
Affiliation(s)
- P J Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | | |
Collapse
|