1
|
Rzeszutek I, Maurer-Alcalá XX, Nowacki M. Programmed genome rearrangements in ciliates. Cell Mol Life Sci 2020; 77:4615-4629. [PMID: 32462406 PMCID: PMC7599177 DOI: 10.1007/s00018-020-03555-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Ciliates are a highly divergent group of unicellular eukaryotes with separate somatic and germline genomes found in distinct dimorphic nuclei. This characteristic feature is tightly linked to extremely laborious developmentally regulated genome rearrangements in the development of a new somatic genome/nuclei following sex. The transformation from germline to soma genome involves massive DNA elimination mediated by non-coding RNAs, chromosome fragmentation, as well as DNA amplification. In this review, we discuss the similarities and differences in the genome reorganization processes of the model ciliates Paramecium and Tetrahymena (class Oligohymenophorea), and the distantly related Euplotes, Stylonychia, and Oxytricha (class Spirotrichea).
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Xyrus X Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
2
|
Maurer-Alcalá XX, Yan Y, Pilling OA, Knight R, Katz LA. Twisted Tales: Insights into Genome Diversity of Ciliates Using Single-Cell 'Omics. Genome Biol Evol 2018; 10:1927-1939. [PMID: 29945193 PMCID: PMC6101598 DOI: 10.1093/gbe/evy133] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
The emergence of robust single-cell 'omics techniques enables studies of uncultivable species, allowing for the (re)discovery of diverse genomic features. In this study, we combine single-cell genomics and transcriptomics to explore genome evolution in ciliates (a > 1 Gy old clade). Analysis of the data resulting from these single-cell 'omics approaches show: 1) the description of the ciliates in the class Karyorelictea as "primitive" is inaccurate because their somatic macronuclei contain loci of varying copy number (i.e., they have been processed by genome rearrangements from the zygotic nucleus); 2) gene-sized somatic chromosomes exist in the class Litostomatea, consistent with Balbiani's (1890) observation of giant chromosomes in this lineage; and 3) gene scrambling exists in the underexplored Postciliodesmatophora (the classes Heterotrichea and Karyorelictea, abbreviated here as the Po-clade), one of two major clades of ciliates. Together these data highlight the complex evolutionary patterns underlying germline genome architectures in ciliates and provide a basis for further exploration of principles of genome evolution in diverse microbial lineages.
Collapse
Affiliation(s)
- Xyrus X Maurer-Alcalá
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst.,Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Olivia A Pilling
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego.,Department of Computer Science and Engineering, University of California San Diego, San Diego.,Center for Microbiome Innovation, University of California San Diego, San Diego
| | - Laura A Katz
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| |
Collapse
|
3
|
Huvos PE. Extensive changes in the locations and sequence content of developmentally deleted DNA between Tetrahymena thermophila and its closest relative, T. malaccensis. J Eukaryot Microbiol 2007; 54:73-82. [PMID: 17300523 DOI: 10.1111/j.1550-7408.2006.00148.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahymena thermophila has two different types of nuclei in a single cell. The development of the transcriptionally active macronucleus from a transcriptionally inert micronucleus is accompanied by the elimination of numerous DNA segments, called deletion elements or internally eliminated sequences (IESs). To try to distinguish between alternative modes for the generation of IESs during evolution, DNA sequences at three loci that contain IESs in T. thermophila were examined in Tetrahymena malaccensis, the closest relative of T. thermophila. In T. malaccensis, two loci examined do not seem to contain IESs. At one of these sites, the presence of the IES in T. thermophila can be accounted for either by insertion of a novel IES into T. thermophila or its precise deletion from T. malaccensis. At a third locus, the newly discovered EFZ IES (named after neighboring EF-hand/Zinc finger genes), both T. thermophila and T. malaccensis contain IESs, but of different length and sequence content. If the three locations examined are a representative sample, the evolution of IESs seems to have been very rapid, and has led to substantial changes in the IES content of these two closely related species. Although insertion-deletion events are likely to have shaped IES evolution, none of the IESs examined here could be identified as transposon-like elements.
Collapse
Affiliation(s)
- Piroska E Huvos
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA.
| |
Collapse
|
4
|
KLOETZEL JOHNA. Identification and Properties ofPlateins, Major Proteins in the Cortical Alveolar Plates ofEuplotes1. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1991.tb01376.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Juranek SA, Lipps HJ. New Insights into the Macronuclear Development in Ciliates. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:219-51. [PMID: 17631190 DOI: 10.1016/s0074-7696(07)62005-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During macronuclear differentiation in ciliated protozoa, most amazing "DNA gymnastics" takes place, which includes DNA excision, DNA elimination, DNA reorganization, and DNA-specific amplification. Although the morphological events occurring during macronuclear development are well described, a detailed knowledge of the molecular mechanisms and the regulation of this differentiation process is still missing. However, recently several models have been proposed for the molecular regulation of macronuclear differentiation, but these models have yet to be verified experimentally. The scope of this review is to summarize recent discoveries in different ciliate species and to compare and discuss the different models proposed. Results obtained in these studies are not only relevant for our understanding of nuclear differentiation in ciliates, but also for cellular differentiation in eukaryotic organisms in general as well as for other disciplines such as bioinformatics and computational biology.
Collapse
Affiliation(s)
- Stefan A Juranek
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
6
|
Yao MC, Chao JL. RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 2006; 39:537-59. [PMID: 16285871 DOI: 10.1146/annurev.genet.39.073003.095906] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ciliated protozoan are unicellular eukaryotes. Most species in this diverse group display nuclear dualism, a special feature that supports both somatic and germline nuclei in the same cell. Probably due to this unique life style, they exhibit unusual nuclear characteristics that have intrigued researchers for decades. Among them are large-scale DNA rearrangements, which restructure the somatic genome to become drastically different from its germline origin. They resemble the classical phenomenon of chromatin diminution in some nematodes discovered more than a century ago. The mechanisms of such rearrangements, their biological roles, and their evolutionary origins have been difficult to understand. Recent studies have revealed a clear link to RNA interference, and begin to shed light on these issues. Using the simple ciliate Tetrahymena as a model, this chapter summarizes the physical characterization of these processes, describes recent findings that connect them to RNA interference, and discusses the details of their mechanisms, potential roles in genome defense, and possible occurrences in other organisms.
Collapse
Affiliation(s)
- Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China.
| | | |
Collapse
|
7
|
Huvos P. Modular structure in developmentally eliminated DNA in Tetrahymena may be a consequence of frequent insertions and deletions. J Mol Biol 2004; 336:1075-86. [PMID: 15037070 DOI: 10.1016/j.jmb.2003.12.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 12/15/2003] [Accepted: 12/17/2003] [Indexed: 11/28/2022]
Abstract
The work reported here describes insertion-deletion (Indel) polymorphisms in two internally eliminated sequences (IESs, that are deleted during development in Tetrahymena): a 1.8 kb Indel at one end of the 1.1 kb H1 IES and a 0.5 kb Indel inside the 1.4 kb calmodulin (C) IES. These two IESs are located in the proximity of the H1 histone and calmodulin genes, respectively, and are among the ten IESs that have been fully sequenced out of an estimated total of 6000. Three hundred base-pairs of the 1.8 kb H1 Indel are retained in the macronucleus. Both the +Indel and the -Indel variants of the H1 and C IESs that occur in different strains are eliminated during development. Thus, a drastic change involving over half of the deleted sequence and 300 bp of flanking sequence does not disable developmental elimination of the H1 IES, which may indicate a lack of requirement for specific sequences on the Indel side of the IES. The H1 Indel is a composite of three sequence elements: a unique segment and two other sections containing members of different repeat families. One of these, a 0.5 kb repetitive component, is 75% similar to another 0.5 kb sequence that constitutes the C Indel, a sequence present in the middle of the calmodulin IES in some strains, but not in others. Therefore, the C Indel sequence is likely to have been part of a mobile unit, even though it has no obvious features of a transposon. However, sequences similar to the C Indel are present in about 100 copies in the genome. The results suggest that IESs may consist, at least in part, of relatively short modules of repeated sequences that are the source of insertion-deletion polymorphisms among strains of Tetrahymena thermophila.
Collapse
Affiliation(s)
- Piroska Huvos
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
8
|
Huvos P. A member of a repeat family is the source of an insertion-deletion polymorphism inside a developmentally eliminated sequence of Tetrahymena thermophila. J Mol Biol 2004; 336:1061-73. [PMID: 15037069 DOI: 10.1016/j.jmb.2003.12.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 12/15/2003] [Accepted: 12/17/2003] [Indexed: 11/21/2022]
Abstract
In Tetrahymena thermophila, the development of a transcriptionally active macronucleus from a transcriptionally inert micronucleus is accompanied by the elimination of numerous DNA segments, called internally eliminated sequences (IESs), many of which belong to dispersed repetitive sequence families. To examine the relationship between the insertion and deletion events expected to occur during evolution of the repeats and the developmental elimination process, IESs were compared among different Tetrahymena strains. A 600 base-pair DNA segment, the R Indel, was discovered inside the R IES, one of the ten sequenced IESs out of an estimated 6000 total in the Tetrahymena genome. The R Indel was found in strains B3 and C2 but not in several other strains examined, indicating that the Indel was probably present in a progenitor of strains B3 and C2. The R Indel was found to belong to a moderately large sequence family of about 200 members; however, BLAST searches did not reveal meaningful similarities with other mobile elements. Sequence comparisons revealed that a 300 base-pair stretch, very closely related to the first half of the R Indel, was present inside the previously described B IES, another of the ten sequenced IESs. This is the first example of shared sequences between two of the known IESs.
Collapse
Affiliation(s)
- Piroska Huvos
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
9
|
Abstract
The germline genomes of ciliated protozoa are dynamic structures, undergoing massive DNA rearrangement during the formation of a functional macronucleus. Macronuclear development involves chromosome fragmentation coupled with de novo telomere synthesis, numerous DNA splicing events that remove internal segments of DNA, and, in some ciliates, the reordering of scrambled gene segments. Despite the fact that all ciliates share similar forms of DNA rearrangement, there appears to be great diversity in both the nature of the rearranged DNA and the molecular mechanisms involved. Epigenetic effects on rearrangement have also been observed, and recent work suggests that chromatin differentiation plays a role in specifying DNA segments either for rearrangement or for elimination.
Collapse
Affiliation(s)
- Carolyn L Jahn
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
10
|
Abstract
During the process of macronuclear development, the ciliate Euplotes crassus undergoes extensive programmed DNA rearrangement. Previous studies have identified a gene, H3(P), that is expressed only during sexual reproduction and is predicted to encode a variant histone H3 protein. In the current study, an antiserum to the H3(P) protein has been generated. The antiserum has been used to demonstrate that H3(P) is maximally expressed during the polytene chromosome stage of macronuclear development. Moreover, H3(P) is localized to the developing macronucleus, but not other nuclei present within the cell. Additional studies indicate that at least one additional variant histone is also present within the developing macronucleus. The results indicate that there are significant changes in nucleosome composition within the developing macronucleus, and provide additional support for the notion that changes in chromatin structure play a role in the DNA rearrangement processes of macronuclear development. genesis 26:179-188, 2000.
Collapse
Affiliation(s)
- S Ghosh
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | |
Collapse
|
11
|
Abstract
In Euplotes crassus, most of the micronuclear genome is eliminated during formation of a transcriptionally active macronucleus. To understand how this is mediated throughout the genome, we have examined the chromatin structure of the macronucleus-destined sequences and Tec transposons, which are dispersed in 15,000 copies in the micronuclear genome and completely eliminated during formation of the macronuclear genome. Whereas the macronucleus-destined sequences show a typical pattern of nucleosomal repeats in micrococcal nuclease digests, the Tec element chromatin structure digests to a nucleosome-like repeat pattern that is not typical: the minimum digestion products are approximately 300-600 base pairs, or "subnucleosomal," in size. In addition, the excised, circular forms of the Tec elements are exceedingly resistant to nucleases. Nevertheless, an underlying nucleosomal structure of the Tec elements can be demonstrated from the size differences between repeats in partial micrococcal nuclease digests and by trypsin treatment of nuclei, which results in mononucleosome-sized products. Characterization of the most micrococcal nuclease-resistant DNA indicates that micronuclear telomeres are organized into a chromatin structure with digestion properties identical to those of the Tec elements in the developing macronucleus. Thus, these major repetitive sequence components of the micronuclear genome differ in their chromatin structure from the macronuclear-destined sequences during DNA elimination. The potential role of developmental stage-specific histone variants in this chromatin differentiation is discussed.
Collapse
Affiliation(s)
- C L Jahn
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA.
| |
Collapse
|
12
|
Klobutcher LA. Characterization of in vivo developmental chromosome fragmentation intermediates in E. crassus. Mol Cell 1999; 4:695-704. [PMID: 10619017 DOI: 10.1016/s1097-2765(00)80380-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ligation-mediated PCR was used to characterize intermediates in the fragmentation/de novo telomere addition process that occurs during sexual reproduction in the ciliate E. crassus. Fragmentation generates ends with 6-base, 3' overhangs that have 5'-phosphate and 3'-hydroxyl groups. These intermediates are detected only during the period of chromosome fragmentation. Fragmentation always occurs at a precise distance from a conserved sequence, the E-Cbs, indicating that it is a key cis-acting element in the process. The results also serve to identify the natural substrate for de novo telomere addition and indicate that telomerase recognizes, and compensates for, partial telomeric repeats at the ends of fragmentation intermediates. Similarities of the Euplotes fragmentation/telomere addition process to the movement of some non-long terminal repeat retrotransposons are discussed.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Nucleus/enzymology
- Cell Nucleus/genetics
- Chromosome Breakage/genetics
- Chromosomes/chemistry
- Chromosomes/genetics
- Chromosomes/metabolism
- Conserved Sequence/genetics
- DNA Ligases/metabolism
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Euplotes/cytology
- Euplotes/enzymology
- Euplotes/genetics
- Euplotes/growth & development
- Evolution, Molecular
- Micronucleus, Germline/enzymology
- Micronucleus, Germline/genetics
- Models, Genetic
- Polymerase Chain Reaction/methods
- Regulatory Sequences, Nucleic Acid/genetics
- Reproduction
- Retroelements/genetics
- Telomerase/metabolism
- Telomere/chemistry
- Telomere/genetics
- Telomere/metabolism
Collapse
Affiliation(s)
- L A Klobutcher
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032, USA.
| |
Collapse
|
13
|
Tan M, Brünen-Nieweler C, Heckmann K. Isolation of micronuclei from Euplotes octocarinatus and identification of an internal eliminated sequence in the micronuclear gene encoding γ-tubulin 2. Eur J Protistol 1999. [DOI: 10.1016/s0932-4739(99)80039-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Mayer KM, Forney JD. A mutation in the flanking 5'-TA-3' dinucleotide prevents excision of an internal eliminated sequence from the Paramecium tetraurelia genome. Genetics 1999; 151:597-604. [PMID: 9927454 PMCID: PMC1460486 DOI: 10.1093/genetics/151.2.597] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The germline chromosomes in Paramecium and other ciliated protozoa contain regions of DNA that are excised and eliminated during the development of a new macronuclear genome. Paramecium tetraurelia internal eliminated sequences (IESs) are invariably flanked by a 5'-TA-3' dinucleotide sequence that is part of a larger 8-bp terminal inverted-repeat consensus sequence. Both features, the absolutely conserved 5'-TA-3' and the remaining 6-bp terminal inverted repeat, are shared with the mariner/Tc1 class of transposons. In this article we describe a mutant cell line (AIM-2) defective in excision of a single IES from the coding region of the A51 surface antigen gene. Excision of the 370-bp IES6649 is prevented by a single A to G transition in the invariably conserved 5'-TA-3' dinucleotide. Failure to excise IES6649 also revealed a 29-bp IES located inside IES6649. Additional experiments with the previously isolated AIM-1 mutant, which also contains an internal IES, shows that alternate excision using the wild-type end of IES2591 with an end from the internal IES is extremely rare or nonexistent. These results indicate that IESs are discrete elements whose excision depends upon nucleotides located within the consensus sequence, but also suggest that additional information is required to match one end of an IES with its excision partner.
Collapse
Affiliation(s)
- K M Mayer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | |
Collapse
|
15
|
Huvos PE, Wu M, Gorovsky MA. A developmentally eliminated sequence in the flanking region of the histone H1 gene in Tetrahymena thermophila contains short repeats. J Eukaryot Microbiol 1998; 45:189-97. [PMID: 9561773 DOI: 10.1111/j.1550-7408.1998.tb04524.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Tetrahymena, as in other ciliated protozoans, a transcriptionally active, 'somatic' macronucleus develops from a transcriptionally inactive 'germline' micronucleus after conjugation. The process of development involves elimination of germline DNA segments at thousands of locations in the genome. The characterization of one of these segments in Tetrahymena thermophila is described here. This micronucleus-specific DNA has been identified by comparing the sequence of the corresponding micronuclear and macronuclear regions. The micronucleus-specific DNA is over 1 kb long, is AT-rich and has TTT direct repeats at its termini. At one end of the micronuclear sequence there is a 130 bp duplication, and at the other end there are several related repeats of a 13-mer. Short G-rich sections are found in the middle of the eliminated DNA, as well as on one side of the rearrangement junction. Short G-rich segments are also detectable in three previously described micronucleus-specific sequences. The micronuclear sequence described here is a member of a repeat family. Cross-hybridizing sequences are also detectable in some other Tetrahymena species. The distribution of cross-hybridizing sequences among related species is not consistent with the phylogenetic tree.
Collapse
Affiliation(s)
- P E Huvos
- Department of Medical Biochemistry, Southern Illinois University, Carbondale 62901, USA.
| | | | | |
Collapse
|
16
|
Mayer KM, Mikami K, Forney JD. A mutation in Paramecium tetraurelia reveals functional and structural features of developmentally excised DNA elements. Genetics 1998; 148:139-49. [PMID: 9475728 PMCID: PMC1459799 DOI: 10.1093/genetics/148.1.139] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The excision of internal eliminated sequences (IESs) from the germline micronuclear DNA occurs during the differentiation of a new macronuclear genome in ciliated protozoa. In Paramecium, IESs are generally short (28-882 bp), AT rich DNA elements that show few conserved sequence features with the exception of an inverted-terminal-repeat consensus sequence that has similarity to the ends of mariner/Tcl transposons (KLOBUTCHER and HERRICK 1995). We have isolated and analyzed a mutant cell line that cannot excise a 370-bp IESs (IES2591) from the coding region of the 51A variable surface protein gene. A single micronuclear C to T transition within the consensus sequence prevents excision. The inability to excise IES259 I has revealed a 28-bp IES inside the larger IES, suggesting that reiterative integration of these elements can occur. Together, the consensus sequence mutation and the evidence for reiterative integration support the theory that Paramecium IESs evolved from transposable elements. Unlike a previously studied Paramecium IES, the presence of this IES in the macronucleus does not completely inhibit excision of its Mild-type micronuclear copy through multiple sexual generations.
Collapse
Affiliation(s)
- K M Mayer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | | | |
Collapse
|
17
|
Klobutcher LA, Herrick G. Developmental genome reorganization in ciliated protozoa: the transposon link. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:1-62. [PMID: 9187050 DOI: 10.1016/s0079-6603(08)61001-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L A Klobutcher
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
18
|
Ling Z, Ghosh S, Jacobs ME, Klobutcher LA. Conjugation-specific genes in the ciliate Euplotes crassus: gene expression from the old macronucleus. J Eukaryot Microbiol 1997; 44:1-11. [PMID: 9172827 DOI: 10.1111/j.1550-7408.1997.tb05682.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Following mating or conjugation, the hypotrichous ciliate Euplotes crassus undergoes a massive genome reorganization process. While the nature of the rearrangement events has been well studied, little is known concerning proteins that carry out such processes. As a means of identifying such proteins, differential screening of a developmental cDNA library, as well as construction of a cDNA subtraction library, was used to isolate genes expressed only during sexual reproduction. Five different conjugation-specific genes have been identified that are maximally expressed early in conjugation, during the period of micronuclear meiosis, which is just prior to macronuclear development and the DNA rearrangement process. All five genes are retained in the mature macronucleus. Micronuclear, macronuclear, and cDNA clones of one gene (conZA7) have been sequenced, and the results indicate that the gene encodes a putative DNA binding protein. In addition, the presence of an internal eliminated sequence in the micronuclear copy of the conZA7 gene indicates that this conjugation-specific gene is transcribed from the old macronucleus.
Collapse
Affiliation(s)
- Z Ling
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | |
Collapse
|
19
|
Coyne RS, Chalker DL, Yao MC. Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring. Annu Rev Genet 1996; 30:557-78. [PMID: 8982465 DOI: 10.1146/annurev.genet.30.1.557] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ciliated protozoa divide the labor of germline and somatic genetic functions between two distinct nuclei. The development of the somatic (macro-) nucleus from the germinal (micro-) nucleus occurs during sexual reproduction and involves large-scale, genetic reorganization including site-specific chromosome breakage and DNA deletion. This intriguing process has been extensively studied in Tetrahymena thermophila. Characterization of cis-acting sequences, putative protein factors, and possible reaction intermediates has begun to shed light on the underlying mechanisms of genome rearrangement. This article summarizes the current understanding of this phenomenon and discusses its origin and biological function. We postulate that ciliate nuclear restructuring serves to segregate the two essential functions of chromosomes: the transmission and expression of genetic information.
Collapse
Affiliation(s)
- R S Coyne
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
20
|
Jacobs ME, Klobutcher LA. The long and the short of developmental DNA deletion in Euplotes crassus. J Eukaryot Microbiol 1996; 43:442-52. [PMID: 8976602 DOI: 10.1111/j.1550-7408.1996.tb04503.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M E Jacobs
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
21
|
Dönhoff T, Klein A. Timing of differential amplification of macronucleus-destined sequences during macronuclear development in the hypotrichous ciliate Euplotes crassus. Chromosoma 1996; 105:172-9. [PMID: 8781185 DOI: 10.1007/bf02509498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The change in copy numbers of macronucleus-destined gene sequences was followed in anlagen DNA during postconjugational development in Euplotes crassus. As noted earlier, copy numbers increase during the polytene stage. During this replication process major differential amplification of different genes is not observed. Instead it is only achieved during or shortly after the fragmentation of the polytene chromosomes. This process is not totally synchronous with respect to different genes. Highly amplified genes are excised earlier than genes with a low final macronuclear copy number. Unexpectedly, the pattern of processing of the newly added oversized telomeres also appears to correlate with the degree of gene amplification. These observations are discussed in terms of a limited replication period after polytene chromosome fragmentation leading to preferential amplification of early excised genes.
Collapse
Affiliation(s)
- T Dönhoff
- Molecular Genetics, Department of Biology, Philipps University, D-35032 Marburg, Germany
| | | |
Collapse
|
22
|
Hale CA, Jacobs ME, Estes HG, Ghosh S, Klobutcher LA. Micronuclear and macronuclear sequences of a Euplotes crassus gene encoding a putative nuclear protein kinase. J Eukaryot Microbiol 1996; 43:389-92. [PMID: 8822809 DOI: 10.1111/j.1550-7408.1996.tb05048.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The sequences of a 1.8-kbp macronuclear DNA molecule (V3), and the majority of its micronuclear counterpart, are reported. The macronuclear V3 DNA molecule contains an open reading frame that is interrupted by a single intron, while the micronuclear copy is interrupted by four internal eliminated sequences, one of which is located within the intron. The predicted protein product of the macronuclear V3 gene is a 471-amino acid polypeptide that is very similar to a group of protein-serine/threonine kinases from both plant and animal species, some of whose members appear to be involved in cell cycle or growth control.
Collapse
Affiliation(s)
- C A Hale
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | | | |
Collapse
|
23
|
Huvos P. Developmental DNA rearrangements and micronucleus-specific sequences in five species within the Tetrahymena pyriformis species complex. Genetics 1995; 141:925-36. [PMID: 8582637 PMCID: PMC1206855 DOI: 10.1093/genetics/141.3.925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Tetrahymena thermophila, the development of a transcriptionally active macronucleus from a transcriptionally inert micronucleus includes the elimination of many segments of DNA, the bulk of which belong to repetitive sequence families. Two approaches were used to study the interspecies variations in developmentally eliminated DNA segments. First, the occurrence of restriction fragments crosshybridizing to developmentally eliminated DNA segments isolated from T. thermophila was examined in other species of Tetrahymena. Most micronucleus-specific sequence families examined showed large differences in numbers and intensities of crosshybridizing bands in different species, indicating the possibility of gain or loss of repeats within each of the sequence families. Second, the presence of developmentally excisable DNA segments, i.e., of rearrangement sites, was examined in the same set of species at a number of unique loci. This was carried out by comparing the hybridization patterns of seven unique macronucleus-retained sequences in the micro- and macronuclei of each of the species. Essentially all of the loci displayed variability with respect to the presence of rearrangement sites among the species examined. Results from the two approaches indicate that generation or loss of developmental rearrangements can occur among the species examined here.
Collapse
Affiliation(s)
- P Huvos
- Department of Medical Biochemistry, Southern Illinois University, Carbondale 62901, USA
| |
Collapse
|
24
|
Brandt A, Klein A. Transcription rates and transcript stabilities of macronuclear genes in vegetative Euplotes crassus cells. J Eukaryot Microbiol 1995; 42:691-6. [PMID: 8520583 DOI: 10.1111/j.1550-7408.1995.tb01617.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In hypotrichous ciliates such as Euplotes crassus genes in the transcriptionally active macronucleus are present on individual minichromosomes which occur in gene-specific copy numbers. This different degree of gene amplification can be understood as a means to preset the expression potential of the respective genetic information. In addition, the actual steady state transcript amounts are governed by the transcription rates and transcript stabilities. To establish the relative effects of these three parameters the copy numbers of genes transcribed by the three different polymerases were determined. The transcript levels of growing or starving vegetative cells were then determined, and nuclear run-on assays were performed to determine the transcription rates of the genes in the different nutritional states. A weak correlation between the gene copy numbers and transcription rates was found. The transcripts of genes synthesized by RNA polymerase II exhibited different stabilities upon starvation of the cells, compared to the supposedly stable ribosomal 5S and 26S RNA. Refeeding of the cells after starvation also resulted in a differential response with respect to the accumulation of the transcripts of different genes transcribed by RNA polymerase II, which can be interpreted in the context of the gene functions.
Collapse
MESH Headings
- Animals
- Base Sequence
- Biological Evolution
- Conjugation, Genetic
- Conserved Sequence
- DNA Probes
- DNA, Protozoan/genetics
- DNA, Ribosomal/genetics
- Euplotes/genetics
- Euplotes/physiology
- Gene Expression
- Genes, Protozoan
- RNA Polymerase II/metabolism
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5S/biosynthesis
- RNA, Ribosomal, 5S/genetics
- Transcription, Genetic
- Tubulin/biosynthesis
Collapse
Affiliation(s)
- A Brandt
- Department of Biology, Phillipps-University, Marburg, Germany
| | | |
Collapse
|
25
|
Perkins DD, Raju NB, Barry EG, Butler DK. Chromosome rearrangements that involve the nucleolus organizer region in Neurospora. Genetics 1995; 141:909-23. [PMID: 8582636 PMCID: PMC1206854 DOI: 10.1093/genetics/141.3.909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In approximately 3% of Neurospora crassa rearrangements, part of a chromosome arm becomes attached to the nucleolus organizer region (NOR) at one end of chromosome 2 (linkage group V). Investigations with one inversion and nine translocations of this type are reported here. They appear genetically to be nonreciprocal and terminal. When a rearrangement is heterozygous, about one-third of viable progeny are segmental aneuploids with the translocated segment present in two copies, one in normal position and one associated with the NOR. Duplications from many of the rearrangements are highly unstable, breaking down by loss of the NOR-attached segment to restore normal chromosome sequence. When most of the rearrangements are homozygous, attenuated strands can be seen extending through the unstained nucleolus at pachytene, joining the translocated distal segment to the remainder of chromosome 2. Although the rearrangements appear genetically to be nonreciprocal, molecular evidence shows that at least several of them are physically reciprocal, with a block of rDNA repeats translocated away from the NOR. Evidence that NOR-associated breakpoints are nonterminal is also provided by intercrosses between pairs of translocations that transfer different-length segments of the same donor-chromosome arm to the NOR.
Collapse
Affiliation(s)
- D D Perkins
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | | | | | |
Collapse
|
26
|
Knecht K, Klobutcher LA. Telomeric repeat sequences are not associated with Tec1 elements in euplotes crassus. Eur J Protistol 1995. [DOI: 10.1016/s0932-4739(11)80444-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
27
|
Heinonen T, Pearlman R. A germ line-specific sequence element in an intron in Tetrahymena thermophila. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32457-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Jahn CL, Doktor SZ, Frels JS, Jaraczewski JW, Krikau MF. Structures of the Euplotes crassus Tec1 and Tec2 elements: identification of putative transposase coding regions. Gene X 1993; 133:71-8. [PMID: 8224896 DOI: 10.1016/0378-1119(93)90226-s] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Tec1 and Tec2 transposon-like element families of Euplotes crassus are highly unusual in that all 30,000 copies of each family are excised from the genome during a discrete time period of macronuclear development. Complete nucleotide sequences were generated for the Tec1-1 and Tec2-1 elements, representing the Tec1 and Tec2 families. Open reading frames (ORFs) are conserved in position and sequence between the two elements, although sequences that comprise one ORF (ORF2) of Tec1-1 are split into two overlapping ORFs (ORFs 2A and 2B) in Tec2-1. ORF1 in Tec1-1, its homolog in Tec2-1 and one of the overlapping ORFs from Tec2-1 (ORF2B) contain TGA codons, which may be translated as Cys, as observed for two other Euplotid genes. Sequence analyses of ORFs from other members of each element family indicate that the families are distinct from each other and are highly conserved within each family. Computer searches of sequence databases have revealed sequence similarity between Tec ORF1s and the previously described Tc1-IS630 family of transposases which includes ORFs from bacterial, nematode and insect transposons.
Collapse
Affiliation(s)
- C L Jahn
- Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, IL 60611
| | | | | | | | | |
Collapse
|
29
|
Abstract
Chromatin diminution in Parascaris and Ascaris represents the classical case of a developmentally programmed genome rearrangement. The process is very specific with respect to ontogenetic timing and chromosomal localization, and involves chromosomal breakage, new telomere formation and DNA degradation. Recent evidence from Ascaris lumbricoides var. suum suggests that chromatin diminution might have a function in gene regulation.
Collapse
Affiliation(s)
- H Tobler
- Institute of Zoology, University of Fribourg, Switzerland
| | | | | |
Collapse
|
30
|
Abstract
Hypotrichs are a large group of ciliate species that cut, splice, reorder and eliminate DNA sequences to an extraordinary extent during their sexual life cycle. Such DNA processing occurs when a ciliate converts a copy of its germ-line nucleus into a somatic nucleus after cell mating.
Collapse
Affiliation(s)
- D M Prescott
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| |
Collapse
|
31
|
Prescott DM. Cutting, splicing, reordering, and elimination of DNA sequences in hypotrichous ciliates. Bioessays 1992; 14:317-24. [PMID: 1637363 DOI: 10.1002/bies.950140505] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypotrichous ciliates extensively process genomic DNA during their life cycle. Processing occurs after cell mating, beginning with multiple rounds of DNA replication to form polytene chromosomes. Thousands of transposonlike elements are then excised from the chromosomes and destroyed, and thousands of short, internal eliminated sequences (IESs) are excised from coding and noncoding parts of genes and destroyed. IES removal from a gene is accompanied by splicing of the remaining chromosomal DNA segments to form a transcriptionally competent gene. For some genes these DNA segments are in a scrambled order and are ligated into a genetically correct order at the time of IES removal. Next the polytene chromosomes are cut up band-by-band and all genes are excised from the chromosomes as short, linear molecules averaging 2.2 kbp (in Oxytricha nova). Gene excision is accompanied by destruction of all nongenic DNA, which, together with the transposonlike elements and IESs, accounts for approximately 95% of the total sequence complexity of the genome in O. nova. Telomeric sequences are added to the excised gene-sized DNA molecules. Finally, the gene-sized molecules are replicated several times to form the macronucleus of the organism.
Collapse
Affiliation(s)
- D M Prescott
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| |
Collapse
|
32
|
Brünen-Nieweler C, Schmidt HJ, Heckmann K. Two introns in the pheromone 3-encoding gene of Euplotes octocarinatus. Gene X 1991; 109:233-7. [PMID: 1765269 DOI: 10.1016/0378-1119(91)90613-g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The portion of the pheromone 3 (Phr3)-encoding gene (phr3) of Euplotes octocarinatus, corresponding to secreted Phr3 was isolated using the polymerase chain reaction and oligodeoxyribonucleotide primers flanking the Phr3-encoding cDNA. Unexpectedly, the sequence analysis revealed that this gene is interrupted by two introns with lengths of 63 bp and 72 bp. These introns belong to the class of nuclear pre-mRNA introns and contain typical 5'- and 3'-consensus sequences, as well as unique features. Our findings constitute the first example of introns in any Euplotes species and the first case of multiple introns in hypotrichous ciliates. In ciliates such as Euplotes, the macronucleus is the transcriptionally active nucleus. It develops from a micronucleus in a process which involves chromosome breakage and the elimination of up to 95% of the micronuclear genome. The existence of the introns in the macronuclear version of phr3 shows that, in spite of this extensive elimination, some noncoding sequences are nevertheless retained in the macronucleus of hypotrichous ciliates. It was recently discovered by Meyer et al. [Proc. Natl. Acad. Sci. USA 88 (1991) 3758-3761] that the Phr3-encoding cDNA contains three in frame TGA triplets coding for cysteine. The genomic sequence of phr3 confirms this finding.
Collapse
Affiliation(s)
- C Brünen-Nieweler
- Institute of General Zoology and Genetics, University of Münster, F.R.G
| | | | | |
Collapse
|
33
|
Klobutcher LA, Jahn CL. Developmentally controlled genomic rearrangements in ciliated protozoa. Curr Opin Genet Dev 1991; 1:397-403. [PMID: 1668650 DOI: 10.1016/s0959-437x(05)80306-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ciliated protozoa undergo an extensive genome reorganization during the course of forming a transcriptionally active macronucleus. The process includes numerous chromosome fragmentation and DNA breakage and rejoining events. Recent work indicates that transposable elements play a role in the process.
Collapse
Affiliation(s)
- L A Klobutcher
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030
| | | |
Collapse
|
34
|
Jahn CL. The nuclear genomes of hypotrichous ciliates: maintaining the maximum and the minimum of information. THE JOURNAL OF PROTOZOOLOGY 1991; 38:252-8. [PMID: 1652639 DOI: 10.1111/j.1550-7408.1991.tb04438.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C L Jahn
- Department of Biological Sciences, University of Illinois, Chicago 60680
| |
Collapse
|
35
|
Baird SE, Klobutcher LA. Differential DNA amplification and copy number control in the hypotrichous ciliate Euplotes crassus. THE JOURNAL OF PROTOZOOLOGY 1991; 38:136-40. [PMID: 1902260 DOI: 10.1111/j.1550-7408.1991.tb06033.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During macronuclear development in hypotrichous ciliated protozoans, several thousand macronuclear DNA molecules are amplified several-hundred fold. We investigated the regulation of this amplification by determining the copy numbers of three different macronuclear DNA molecules in the hypotrichous ciliate Euplotes crassus. Two of the macronuclear DNA molecules were present in approximately 1,000 copies per cell, while the third was present in approximately 6,500 copies per cell. These reiteration levels were achieved either during macronuclear development, or shortly thereafter, and were maintained during vegetative growth. The most abundant macronuclear DNA molecule is present as a single-copy sequence in the micronuclear genome. Thus, its high copy number results from differential amplification. These results indicate that DNA amplification during macronuclear development is regulated individually for each macronuclear DNA molecule.
Collapse
Affiliation(s)
- S E Baird
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | |
Collapse
|
36
|
Godiska R, Yao MC. A programmed site-specific DNA rearrangement in Tetrahymena thermophila requires flanking polypurine tracts. Cell 1990; 61:1237-46. [PMID: 2364428 DOI: 10.1016/0092-8674(90)90688-b] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During macronuclear development in ciliates, precise deletion events eliminate thousands of specific DNA segments. Each segment is bounded by a unique pair of short direct repeats, but no other common feature has been reported. To determine the critical cis-acting sequences, we developed an in vivo system for analyzing this process in Tetrahymena. We show that sequences essential for recognition and excision of one such region are located within the 70 bp of DNA flanking either side of it. Three authentic splice sites and one cryptic site are each adjacent to an unusual polypurine tract (5'-A5G5) situated 40-50 bp distal to each terminal repeat. Removal of this tract or substitution of 3 bp within it abolishes splicing to the adjacent site. The normal chromosomal environment and the integrity of the eliminated sequence are not required for its removal. We believe the polypurine tract is a signal essential for excision of this sequence.
Collapse
Affiliation(s)
- R Godiska
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|