1
|
Chawla AS, Vandereyken M, Arias M, Santiago L, Dikovskaya D, Nguyen C, Skariah N, Wenner N, Golovchenko NB, Thomson SJ, Ondari E, Garzón-Tituaña M, Anderson CJ, Bergkessel M, C D Hinton J, Edelblum KL, Pardo J, Swamy M. Distinct cell death pathways induced by granzymes collectively protect against intestinal Salmonella infection. Mucosal Immunol 2024; 17:1242-1255. [PMID: 39137883 PMCID: PMC11631773 DOI: 10.1016/j.mucimm.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Intestinal intraepithelial T lymphocytes (IEL) constitutively express high amounts of the cytotoxic proteases Granzymes (Gzm) A and B and are therefore thought to protect the intestinal epithelium against infection by killing infected epithelial cells. However, the role of IEL granzymes in a protective immune response has yet to be demonstrated. We show that GzmA and GzmB are required to protect mice against oral, but not intravenous, infection with Salmonella enterica serovar Typhimurium, consistent with an intestine-specific role. IEL-intrinsic granzymes mediate the protective effects by controlling intracellular bacterial growth and aiding in cell-intrinsic pyroptotic cell death of epithelial cells. Surprisingly, we found that both granzymes play non-redundant roles. GzmB-/- mice carried significantly lower burdens of Salmonella, as predominant GzmA-mediated cell death effectively reduced bacterial translocation across the intestinal barrier. Conversely, in GzmA-/- mice, GzmB-driven apoptosis favored luminal Salmonella growth by providing nutrients, while still reducing translocation across the epithelial barrier. Together, the concerted actions of both GzmA and GzmB balance cell death mechanisms at the intestinal epithelium to provide optimal control that Salmonella cannot subvert.
Collapse
Affiliation(s)
- Amanpreet Singh Chawla
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain; Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain; Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Dina Dikovskaya
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Chi Nguyen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Neema Skariah
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nicolas Wenner
- Department of Clinical Infection Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom; Current address: Biozentrum, University of Basel, Basel, Switzerland
| | - Natasha B Golovchenko
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah J Thomson
- Biological Services, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Edna Ondari
- Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Christopher J Anderson
- Centre for Inflammation Research, Institute for Regeneration & Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Megan Bergkessel
- Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jay C D Hinton
- Department of Clinical Infection Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Karen L Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, and CIBER en Enfermedades Infecciosas, Madrid, Spain; Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
2
|
Singh S, Koo OK. A Comprehensive Review Exploring the Protective Role of Specific Commensal Gut Bacteria against Salmonella. Pathogens 2024; 13:642. [PMID: 39204243 PMCID: PMC11356920 DOI: 10.3390/pathogens13080642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Gut microbiota is a diverse community of microorganisms that constantly work to protect the gut against pathogens. Salmonella stands out as a notorious foodborne pathogen that interacts with gut microbes, causing an imbalance in the overall composition of microbiota and leading to dysbiosis. This review focuses on the interactions between Salmonella and the key commensal bacteria such as E. coli, Lactobacillus, Clostridium, Akkermansia, and Bacteroides. The review highlights the role of these gut bacteria and their synergy in combating Salmonella through several mechanistic interactions. These include the production of siderophores, which compete with Salmonella for essential iron; the synthesis of short-chain fatty acids (SCFAs), which exert antimicrobial effects and modulate the gut environment; the secretion of bacteriocins, which directly inhibit Salmonella growth; and the modulation of cytokine responses, which influences the host's immune reaction to infection. While much research has explored Salmonella, this review aims to better understand how specific gut bacteria engage with the pathogen, revealing distinct defense mechanisms tailored to each species and how their synergy may lead to enhanced protection against Salmonella. Furthermore, the combination of these commensal bacteria could offer promising avenues for bacteria-mediated therapy during Salmonella-induced gut infections in the future.
Collapse
Affiliation(s)
| | - Ok Kyung Koo
- Department of Food Science & Technology, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
3
|
Rappold R, Kalogeropoulos K, Auf dem Keller U, Vogel V, Slack E. Salmonella-driven intestinal edema in mice is characterized by tensed fibronectin fibers. FEBS J 2024; 291:3104-3127. [PMID: 38487972 DOI: 10.1111/febs.17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 07/19/2024]
Abstract
Intestinal edema is a common manifestation of numerous gastrointestinal diseases and is characterized by the accumulation of fluid in the interstitial space of the intestinal wall. Technical advances in laser capture microdissection and low-biomass proteomics now allow us to specifically characterize the intestinal edema proteome. Using advanced proteomics, we identify peptides derived from antimicrobial factors with high signal intensity, but also highlight major contributions from the blood clotting system, extracellular matrix (ECM) and protease-protease inhibitor networks. The ECM is a complex fibrillar network of macromolecules that provides structural and mechanical support to the intestinal tissue. One abundant component of the ECM observed in Salmonella-driven intestinal edema is the glycoprotein fibronectin, recognized for its structure-function interplay regulated by mechanical forces. Using mechanosensitive staining of fibronectin fibers reveals that they are tensed in the edema, despite the high abundance of proteases able to cleave fibronectin. In contrast, fibronectin fibers increasingly relax in other cecal tissue areas as the infection progresses. Co-staining for fibrin(ogen) indicates the formation of a provisional matrix in the edema, similar to what is observed in response to skin injury, while collagen staining reveals a sparse and disrupted collagen fiber network. These observations plus the absence of low tensional fibronectin fibers and the additional finding of a high number of protease inhibitors in the edema proteome could indicate a critical role of stretched fibronectin fibers in maintaining tissue integrity in the severely inflamed cecum. Understanding these processes may also provide valuable functional diagnostic markers of intestinal disease progression in the future.
Collapse
Affiliation(s)
- Ronja Rappold
- Institute of Translational Medicine, ETH Zurich, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Switzerland
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Viola Vogel
- Institute of Translational Medicine, ETH Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| | - Emma Slack
- Institute of Food, Nutrition and Health, ETH Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| |
Collapse
|
4
|
Ernst C, Andreassen PR, Giger GH, Nguyen BD, Gäbelein CG, Guillaume-Gentil O, Fattinger SA, Sellin ME, Hardt WD, Vorholt JA. Direct Salmonella injection into enteroid cells allows the study of host-pathogen interactions in the cytosol with high spatiotemporal resolution. PLoS Biol 2024; 22:e3002597. [PMID: 38684033 PMCID: PMC11057982 DOI: 10.1371/journal.pbio.3002597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Chantal Ernst
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Gabriel H. Giger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikael E. Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Hausmann A, Steenholdt C, Nielsen OH, Jensen KB. Immune cell-derived signals governing epithelial phenotypes in homeostasis and inflammation. Trends Mol Med 2024; 30:239-251. [PMID: 38320941 DOI: 10.1016/j.molmed.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
The intestinal epithelium fulfills important physiological functions and forms a physical barrier to the intestinal lumen. Barrier function is regulated by several pathways, and its impairment contributes to the pathogenesis of inflammatory bowel disease (IBD), a chronic inflammatory condition affecting more than seven million people worldwide. Current treatment options specifically target inflammatory mediators and have led to improvement of clinical outcomes; however, a significant proportion of patients experience treatment failure. Pro-repair effects of inflammatory mediators on the epithelium are emerging. In this review we summarize current knowledge on involved epithelial pathways, identify open questions, and put recent findings into clinical perspective, and pro-repair effects. A detailed understanding of epithelial pathways integrating mucosal stimuli in homeostasis and inflammation is crucial for the development of novel, more targeted therapies.
Collapse
Affiliation(s)
- Annika Hausmann
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Casper Steenholdt
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Ole H Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
6
|
Avraham R. Untangling Cellular Host-Pathogen Encounters at Infection Bottlenecks. Infect Immun 2023; 91:e0043822. [PMID: 36939328 PMCID: PMC10112260 DOI: 10.1128/iai.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bacterial pathogens can invade the tissue and establish a protected intracellular niche at the site of invasion that can spread locally (e.g., microcolonies) or to systemic sites (e.g., granulomas). Invasion of the tissue and establishment of intracellular infection are rare events that are difficult to study in the in vivo setting but have critical clinical consequences, such as long-term carriage, reinfections, and emergence of antibiotic resistance. Here, I discuss Salmonella interactions with its host macrophage during early stages of infection and their critical role in determining infection outcome. The dynamics of host-pathogen interactions entail highly heterogenous host immunity, bacterial virulence, and metabolic cross talk, requiring in vivo analysis at single-cell resolution. I discuss models and single-cell approaches that provide a global understanding of the establishment of a protected intracellular niche within the tissue and the host-pathogen landscape at infection bottlenecks during early stages of infection. Studying cellular host-pathogen interactions in vivo can improve our knowledge of the trajectory of infection between the initial inoculation with a dose of pathogens and the appearance of symptoms of disease.
Collapse
Affiliation(s)
- Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
MafK accelerates Salmonella mucosal infection through caspase-3 activation. Aging (Albany NY) 2022; 14:2287-2303. [PMID: 35260530 PMCID: PMC8954977 DOI: 10.18632/aging.203938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
Gastrointestinal homeostasis is critical for maintaining host health, and is affected by many factors. A recent report showed that Musculoaponeurotic fibrosarcoma K (MafK) expression is increased in patients that have ulcerative colitis (UC). Even so, MafK’s significance in sustaining intestinal homeostasis has not been investigated. In this research, MafK overexpressing transgenic (MafK Tg) mice were found to be more susceptible to infection with Salmonella on the mucosa than the wild-type (WT) mice. Following Salmonella oral infection, MafK Tg mice suffered higher mortality and a lot more weight loss, damage to the intestines, and inflammation in the intestines than WT mice. MafK Tg mice were also unable to control Salmonella colonization and dissemination. In vivo data showed that increased MafK expression promoted epithelial cell apoptosis which was further confirmed by in vitro data. The rapid cleavage of caspase-3 in epithelial cells contributed to Salmonella dissemination and inflammation initiation. This study reveals that MafK participates in Salmonella pathogenesis acceleration by increasing caspase-3 activation.
Collapse
|
8
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Buddhasiri S, Sukjoi C, Kaewsakhorn T, Nambunmee K, Nakphaichit M, Nitisinprasert S, Thiennimitr P. Anti-inflammatory Effect of Probiotic Limosilactobacillus reuteri KUB-AC5 Against Salmonella Infection in a Mouse Colitis Model. Front Microbiol 2021; 12:716761. [PMID: 34497597 PMCID: PMC8419263 DOI: 10.3389/fmicb.2021.716761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 01/31/2023] Open
Abstract
Acute non-typhoidal salmonellosis (NTS) caused by Salmonella enterica Typhimurium (STM) is among the most prevalent of foodborne diseases. A global rising of antibiotic resistance strains of STM raises an urgent need for alternative methods to control this important pathogen. Major human food animals which harbor STM in their gut are cattle, swine, and poultry. Previous studies showed that the probiotic Limosilactobacillus (Lactobacillus) reuteri KUB-AC5 (AC5) exhibited anti-Salmonella activities in chicken by modulating gut microbiota and the immune response. However, the immunobiotic effect of AC5 in a mammalian host is still not known. Here, we investigated the anti-Salmonella and anti-inflammatory effects of AC5 on STM infection using a mouse colitis model. Three groups of C57BL/6 mice (prophylactic, therapeutic, and combined) were fed with 109 colony-forming units (cfu) AC5 daily for 7, 4, and 11 days, respectively. Then, the mice were challenged with STM compared to the untreated group. By using a specific primer pair, we found that AC5 can transiently colonize mouse gut (colon, cecum, and ileum). Interestingly, AC5 reduced STM gut proliferation and invasion together with attenuated gut inflammation and systemic dissemination in mice. The decreased STM numbers in mouse gut lumen, gut tissues, and spleen possibly came from longer AC5 feeding duration and/or the combinatorial (direct and indirect inhibitory) effect of AC5 on STM. However, AC5 attenuated inflammation (both in the gut and in the spleen) with no difference between these three approaches. This study demonstrated that AC5 confers both direct and indirect inhibitory effects on STM in the inflamed gut.
Collapse
Affiliation(s)
- Songphon Buddhasiri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thattawan Kaewsakhorn
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kowit Nambunmee
- Major of Occupational Health and Safety, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand.,Urban Safety Innovation Research Group, Mae Fah Luang University, Chiang Rai, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Medicine, Center of Multidisciplinary Technology for Advanced Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Nichols RG, Davenport ER. The relationship between the gut microbiome and host gene expression: a review. Hum Genet 2021; 140:747-760. [PMID: 33221945 PMCID: PMC7680557 DOI: 10.1007/s00439-020-02237-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Despite the growing knowledge surrounding host-microbiome interactions, we are just beginning to understand how the gut microbiome influences-and is influenced by-host gene expression. Here, we review recent literature that intersects these two fields, summarizing themes across studies. Work in model organisms, human biopsies, and cell culture demonstrate that the gut microbiome is an important regulator of several host pathways relevant for disease, including immune development and energy metabolism, and vice versa. The gut microbiome remodels host chromatin, causes differential splicing, alters the epigenetic landscape, and directly interrupts host signaling cascades. Emerging techniques like single-cell RNA sequencing and organoid generation have the potential to refine our understanding of the relationship between the gut microbiome and host gene expression in the future. By intersecting microbiome and host gene expression, we gain a window into the physiological processes important for fostering the extensive cross-kingdom interactions and ultimately our health.
Collapse
Affiliation(s)
- Robert G. Nichols
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Emily R. Davenport
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
11
|
Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids. mBio 2021; 12:mBio.02684-20. [PMID: 33436434 PMCID: PMC7844539 DOI: 10.1128/mbio.02684-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Enterobacterial pathogens infect the gut by a multistep process, resulting in colonization of both the lumen and the mucosal epithelium. Due to experimental constraints, it remains challenging to address how luminal and epithelium-lodged pathogen populations cross-feed each other in vivo Enteroids are cultured three-dimensional miniature intestinal organs with a single layer of primary intestinal epithelial cells (IECs) surrounding a central lumen. They offer new opportunities to study enterobacterial infection under near-physiological conditions, at a temporal and spatial resolution not attainable in animal models, but remain poorly explored in this context. We employed microinjection, time-lapse microscopy, bacterial genetics, and barcoded consortium infections to describe the complete infection cycle of Salmonella enterica serovar Typhimurium in both human and murine enteroids. Flagellar motility and type III secretion system 1 (TTSS-1) promoted Salmonella Typhimurium targeting of the intraepithelial compartment and breaching of the epithelial barrier. Strikingly, however, TTSS-1 also potently boosted colonization of the enteroid lumen. By tracing the infection over time, we identified a cycle(s) of TTSS-1-driven IEC invasion, intraepithelial replication, and reemergence through infected IEC expulsion as a key mechanism for Salmonella Typhimurium luminal colonization. These findings suggest a positive feed-forward loop, through which IEC invasion by planktonic bacteria fuels further luminal population expansion, thereby ensuring efficient colonization of both the intraepithelial and luminal niches.IMPORTANCE Pathogenic gut bacteria are common causes of intestinal disease. Enteroids-cultured three-dimensional replicas of the mammalian gut-offer an emerging model system to study disease mechanisms under conditions that recapitulate key features of the intestinal tract. In this study, we describe the full life cycle of the prototype gut pathogen Salmonella enterica serovar Typhimurium within human and mouse enteroids. We map the consecutive steps and define the bacterial virulence factors that drive colonization of luminal and epithelial compartments, as well as breaching of the epithelial barrier. Strikingly, our work reveals how bacterial colonization of the epithelium potently fuels expansion also in the luminal compartment, through a mechanism involving the death and expulsion of bacterium-infected epithelial cells. These findings have repercussions for our understanding of the Salmonella infection cycle. Moreover, our work provides a comprehensive foundation for the use of microinjected enteroids to model gut bacterial diseases.
Collapse
|
12
|
Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in Salmonella-infected mice. Mucosal Immunol 2021; 14:615-629. [PMID: 33731826 PMCID: PMC8075861 DOI: 10.1038/s41385-021-00381-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 02/04/2023]
Abstract
The gut epithelium is a critical protective barrier. Its NAIP/NLRC4 inflammasome senses infection by Gram-negative bacteria, including Salmonella Typhimurium (S.Tm) and promotes expulsion of infected enterocytes. During the first ~12-24 h, this reduces mucosal S.Tm loads at the price of moderate enteropathy. It remained unknown how this NAIP/NLRC4-dependent tradeoff would develop during subsequent infection stages. In NAIP/NLRC4-deficient mice, S.Tm elicited severe enteropathy within 72 h, characterized by elevated mucosal TNF (>20 pg/mg) production from bone marrow-derived cells, reduced regeneration, excessive enterocyte loss, and a collapse of the epithelial barrier. TNF-depleting antibodies prevented this destructive pathology. In hosts proficient for epithelial NAIP/NLRC4, a heterogeneous enterocyte death response with both apoptotic and pyroptotic features kept S.Tm loads persistently in check, thereby preventing this dire outcome altogether. Our results demonstrate that immediate and selective removal of infected enterocytes, by locally acting epithelium-autonomous NAIP/NLRC4, is required to avoid a TNF-driven inflammatory hyper-reaction that otherwise destroys the epithelial barrier.
Collapse
|
13
|
Aljahdali NH, Sanad YM, Han J, Foley SL. Current knowledge and perspectives of potential impacts of Salmonella enterica on the profile of the gut microbiota. BMC Microbiol 2020; 20:353. [PMID: 33203384 PMCID: PMC7673091 DOI: 10.1186/s12866-020-02008-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
In the past decade, the initial studies of the gut microbiota started focusing on the correlation of the composition of the gut microbiota and the health or diseases of the host, and there are extensive literature reviews pertaining to this theme. However, little is known about the association between the microbiota, the host, and pathogenic bacteria, such as Salmonella enterica, which is among the most important foodborne pathogens and identified as the source of multiple outbreaks linked to contaminated foods causing salmonellosis. Secretion systems, flagella, fimbriae, endotoxins, and exotoxins are factors that play the most important roles in the successful infection of the host cell by Salmonella. Infections with S. enterica, which is a threat to human health, can alter the genomic, taxonomic, and functional traits of the gut microbiota. The purpose of this review is to outline the state of knowledge on the impacts of S. enterica on the intestinal microbiota and highlight the need to identify the gut bacteria that could contribute to salmonellosis.
Collapse
Affiliation(s)
- Nesreen H Aljahdali
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.,Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Yasser M Sanad
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.,Department of Agriculture, University of Arkansas, Pine Bluff, AR, USA.,Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
14
|
Hausmann A, Russo G, Grossmann J, Zünd M, Schwank G, Aebersold R, Liu Y, Sellin ME, Hardt W. Germ-free and microbiota-associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes. Cell Microbiol 2020; 22:e13191. [PMID: 32068945 PMCID: PMC7317401 DOI: 10.1111/cmi.13191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial organoids established from gut tissue have become a widely used research tool. However, it remains unclear how environmental cues, divergent microbiota composition and other sources of variation before, during and after establishment confound organoid properties, and how these properties relate to the original tissue. While environmental influences cannot be easily addressed in human organoids, mice offer a controlled assay-system. Here, we probed the effect of donor microbiota differences, previously identified as a confounding factor in murine in vivo studies, on organoids. We analysed the proteomes and transcriptomes of primary organoid cultures established from two colonised and one germ-free mouse colony of C57BL/6J genetic background, and compared them to their tissue of origin and commonly used cell lines. While an imprint of microbiota-exposure was observed on the proteome of epithelial samples, the long-term global impact of donor microbiota on organoid expression patterns was negligible. Instead, stochastic culture-to-culture differences accounted for a moderate variability between independently established organoids. Integration of transcriptome and proteome datasets revealed an organoid-typic expression signature comprising 14 transcripts and 10 proteins that distinguished organoids across all donors from murine epithelial cell lines and fibroblasts and closely mimicked expression patterns in the gut epithelium. This included the inflammasome components ASC, Naip1-6, Nlrc4 and Caspase-1, which were highly expressed in all organoids compared to the reference cell line m-ICc12 or mouse embryonic fibroblasts. Taken together, these results reveal that the donor microbiota has little effect on the organoid phenotype and suggest that organoids represent a more suitable culture model than immortalised cell lines, in particular for studies of intestinal epithelial inflammasomes.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of BiologyETH ZurichZurichSwitzerland
| | - Giancarlo Russo
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Jonas Grossmann
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Mirjam Zünd
- Institute of Microbiology, Department of BiologyETH ZurichZurichSwitzerland
| | - Gerald Schwank
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Institute of Systems Biology, Department of BiologyETH ZurichZurichSwitzerland
| | - Yansheng Liu
- Institute of Systems Biology, Department of BiologyETH ZurichZurichSwitzerland
- Department of Pharmacology, Cancer Biology InstituteYale University School of MedicineWest HavenConnecticutUSA
| | - Mikael E. Sellin
- Institute of Microbiology, Department of BiologyETH ZurichZurichSwitzerland
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | | |
Collapse
|
15
|
Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella Typhimurium due to site-specific bacterial PAMP expression. Mucosal Immunol 2020; 13:530-544. [PMID: 31953493 PMCID: PMC7181392 DOI: 10.1038/s41385-019-0247-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes can prevent systemic dissemination of enteropathogenic bacteria. As adapted pathogens including Salmonella Typhimurium (S. Tm) have evolved evasion strategies, it has remained unclear when and where inflammasomes restrict their dissemination. Bacterial population dynamics establish that the NAIP/NLRC4 inflammasome specifically restricts S. Tm migration from the gut to draining lymph nodes. This is solely attributable to NAIP/NLRC4 within intestinal epithelial cells (IECs), while S. Tm evades restriction by phagocyte NAIP/NLRC4. NLRP3 and Caspase-11 also fail to restrict S. Tm mucosa traversal, migration to lymph nodes, and systemic pathogen growth. The ability of IECs (not phagocytes) to mount a NAIP/NLRC4 defense in vivo is explained by particularly high NAIP/NLRC4 expression in IECs and the necessity for epithelium-invading S. Tm to express the NAIP1-6 ligands-flagella and type-III-secretion-system-1. Imaging reveals both ligands to be promptly downregulated following IEC-traversal. These results highlight the importance of intestinal epithelial NAIP/NLRC4 in blocking bacterial dissemination in vivo, and explain why this constitutes a uniquely evasion-proof defense against the adapted enteropathogen S. Tm.
Collapse
|