1
|
Kalalah AA, Koenig SSK, Bono JL, Bosilevac JM, Eppinger M. Pathogenomes and virulence profiles of representative big six non-O157 serogroup Shiga toxin-producing Escherichia coli. Front Microbiol 2024; 15:1364026. [PMID: 38562479 PMCID: PMC10982417 DOI: 10.3389/fmicb.2024.1364026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) of non-O157:H7 serotypes are responsible for global and widespread human food-borne disease. Among these serogroups, O26, O45, O103, O111, O121, and O145 account for the majority of clinical infections and are colloquially referred to as the "Big Six." The "Big Six" strain panel we sequenced and analyzed in this study are reference type cultures comprised of six strains representing each of the non-O157 STEC serogroups curated and distributed by the American Type Culture Collection (ATCC) as a resource to the research community under panel number ATCC MP-9. The application of long- and short-read hybrid sequencing yielded closed chromosomes and a total of 14 plasmids of diverse functions. Through high-resolution comparative phylogenomics, we cataloged the shared and strain-specific virulence and resistance gene content and established the close relationship of serogroup O26 and O103 strains featuring flagellar H-type 11. Virulence phenotyping revealed statistically significant differences in the Stx-production capabilities that we found to be correlated to the strain's individual stx-status. Among the carried Stx1a, Stx2a, and Stx2d phages, the Stx2a phage is by far the most responsive upon RecA-mediated phage mobilization, and in consequence, stx2a + isolates produced the highest-level of toxin in this panel. The availability of high-quality closed genomes for this "Big Six" reference set, including carried plasmids, along with the recorded genomic virulence profiles and Stx-production phenotypes will provide a valuable foundation to further explore the plasticity in evolutionary trajectories in these emerging non-O157 STEC lineages, which are major culprits of human food-borne disease.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| |
Collapse
|
2
|
Freedman SB, van de Kar NCAJ, Tarr PI. Shiga Toxin-Producing Escherichia coli and the Hemolytic-Uremic Syndrome. N Engl J Med 2023; 389:1402-1414. [PMID: 37819955 DOI: 10.1056/nejmra2108739] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Affiliation(s)
- Stephen B Freedman
- From the Departments of Pediatrics and Emergency Medicine, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada (S.B.F.); the Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands (N.C.A.J.K.); and the Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, and the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis (P.I.T.)
| | - Nicole C A J van de Kar
- From the Departments of Pediatrics and Emergency Medicine, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada (S.B.F.); the Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands (N.C.A.J.K.); and the Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, and the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis (P.I.T.)
| | - Phillip I Tarr
- From the Departments of Pediatrics and Emergency Medicine, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada (S.B.F.); the Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands (N.C.A.J.K.); and the Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, and the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis (P.I.T.)
| |
Collapse
|
3
|
Lange ME, Clarke ST, Boras VF, Brown CLJ, Zhang G, Laing CR, Uwiera RRE, Montina T, Kalmokoff ML, Taboada EN, Gannon VPJ, Metz GAS, Church JS, Inglis GD. Commensal Escherichia coli Strains of Bovine Origin Competitively Mitigated Escherichia coli O157:H7 in a Gnotobiotic Murine Intestinal Colonization Model with or without Physiological Stress. Animals (Basel) 2023; 13:2577. [PMID: 37627368 PMCID: PMC10451813 DOI: 10.3390/ani13162577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cattle are a primary reservoir of enterohemorrhagic Escherichia coli (EHEC) O157:H7. Currently, there are no effective methods of eliminating this important zoonotic pathogen from cattle, and colonization resistance in relation to EHEC O157:H7 in cattle is poorly understood. We developed a gnotobiotic EHEC O157:H7 murine model to examine aspects of the cattle pathogen-microbiota interaction, and to investigate competitive suppression of EHEC O157:H7 by 18 phylogenetically distinct commensal E. coli strains of bovine origin. As stress has been suggested to influence enteric colonization by EHEC O157:H7 in cattle, corticosterone administration (±) to incite a physiological stress response was included as an experimental variable. Colonization of the intestinal tract (IT) of mice by the bovine EHEC O157:H7 strain, FRIK-2001, mimicked characteristics of bovine IT colonization. In this regard, FRIK-2001 successfully colonized the IT and temporally incited minimal impacts on the host relative to other EHEC O157:H7 strains, including on the renal metabolome. The presence of the commensal E. coli strains decreased EHEC O157:H7 densities in the cecum, proximal colon, and distal colon. Moreover, histopathologic changes and inflammation markers were reduced in the distal colon of mice inoculated with commensal E. coli strains (both propagated separately and communally). Although stress induction affected the behavior of mice, it did not influence EHEC O157:H7 densities or disease. These findings support the use of a gnotobiotic murine model of enteric bovine EHEC O157:H7 colonization to better understand pathogen-host-microbiota interactions toward the development of effective on-farm mitigations for EHEC O157:H7 in cattle, including the identification of bacteria capable of competitively colonizing the IT.
Collapse
Affiliation(s)
- Maximo E. Lange
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Sandra T. Clarke
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Valerie F. Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB T1J 1W5, Canada;
| | - Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Guangzhi Zhang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Chad R. Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada;
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Martin L. Kalmokoff
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada;
| | - Eduardo N. Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Victor P. J. Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4, Canada;
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - John S. Church
- Natural Resource Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| |
Collapse
|
4
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
5
|
Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng† P, Eppinger M. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of Escherichia coli O113:H21. Microb Genom 2022; 8. [PMID: 35394418 PMCID: PMC9453080 DOI: 10.1099/mgen.0.000796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections with globally disseminated Shiga toxin-producing Escherichia coli (STEC) of the O113:H21 serotype can progress to severe clinical complications, such as hemolytic uremic syndrome (HUS). Two phylogeographically distinct clonal complexes have been established by multi locus sequence typing (MLST). Infections with ST-820 isolates circulating exclusively in Australia have caused severe human disease, such as HUS. Conversely, ST-223 isolates prevalent in the US and outside Australia seem to rarely cause severe human disease but are frequent contaminants. Following a genomic epidemiology approach, we wanted to gain insights into the underlying cause for this disparity. We examined the plasticity in the genome make-up and Shiga toxin production in a collection of 20 ST-820 and ST-223 strains isolated from produce, the bovine reservoir, and clinical cases. STEC are notorious for assembly into fragmented draft sequences when using short-read sequencing technologies due to the extensive and partly homologous phage complement. The application of long-read technology (LRT) sequencing yielded closed reference chromosomes and plasmids for two representative ST-820 and ST-223 strains. The established high-resolution framework, based on whole genome alignments, single nucleotide polymorphism (SNP)-typing and MLST, includes the chromosomes and plasmids of other publicly available O113:H21 sequences and allowed us to refine the phylogeographical boundaries of ST-820 and ST-223 complex isolates and to further identify a historic non-shigatoxigenic strain from Mexico as a quasi-intermediate. Plasmid comparison revealed strong correlations between the strains' featured pO113 plasmid genotypes and chromosomally inferred ST, which suggests coevolution of the chromosome and virulence plasmids. Our pathogenicity assessment revealed statistically significant differences in the Stx2a-production capabilities of ST-820 as compared to ST-223 strains under RecA-induced Stx phage mobilization, a condition that mimics Stx-phage induction. These observations suggest that ST-820 strains may confer an increased pathogenic potential in line with the strain-associated epidemiological metadata. Still, some of the tested ST-223 cultures sourced from contaminated produce or the bovine reservoir also produced Stx at levels comparable to those of ST-820 isolates, which calls for awareness and for continued surveillance of this lineage.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Ricardo A. Martinez
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Armando L. Rodriguez
- University of Texas at San Antonio, Research Computing Support Group, San Antonio, TX, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Peter Feng†
- U.S. Food and Drug Administration (FDA), College Park, MD, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
- *Correspondence: Mark Eppinger,
| |
Collapse
|
6
|
Eppinger M, Almería S, Allué-Guardia A, Bagi LK, Kalalah AA, Gurtler JB, Fratamico PM. Genome Sequence Analysis and Characterization of Shiga Toxin 2 Production by Escherichia coli O157:H7 Strains Associated With a Laboratory Infection. Front Cell Infect Microbiol 2022; 12:888568. [PMID: 35770066 PMCID: PMC9234449 DOI: 10.3389/fcimb.2022.888568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sonia Almería
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States
| | - Lori K Bagi
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anwar A Kalalah
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Joshua B Gurtler
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Pina M Fratamico
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| |
Collapse
|
7
|
Torti JF, Cuervo P, Nardello A, Pizarro M. Epidemiology and Characterization of Shiga Toxin-Producing Escherichia Coli of Hemolytic Uremic Syndrome in Argentina. Cureus 2021; 13:e17213. [PMID: 34540440 PMCID: PMC8443070 DOI: 10.7759/cureus.17213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Argentina has one of the highest prevalence in Shiga toxin-producing Escherichia coli (STEC) and the high rate of hemolytic uremic syndrome (HUS) in the world. Though preventive steps such as food safety have been implemented as a way to reduce STEC infections, these have proven to be insufficient. STEC's pathogenesis, virulence factors, relationship with the environment, and emerging strains have been studied in the past few years in the country. Many factors that contribute to the morbidity and mortality of STEC infections include the expression of pathologic genes, alternative characteristics (inhibition of phagocytosis, invasion, cytotoxicity, and bacterial attachment), and host factors (age, immune status, treatments, medical history). However, research studies in combination with epidemiological data suggest trends of the prognosis, with the relationship between and genetic combinations of adherence, Shiga toxin (Stx) genes, and virulence genes, which significantly influence disease outcomes. This review explains the characteristics and epidemiology of STEC in Argentina. All these facts show that the application of molecular subtyping techniques in real-time is essential for detecting and controlling outbreaks. Applying molecular subtyping techniques in hemorrhagic diarrhea can avoid severe consequences caused by progression to HUS, and help the epidemiological analysis of the outbreak.
Collapse
Affiliation(s)
| | - Paula Cuervo
- Biochemistry, National University of Cuyo, Mendoza, ARG
| | | | | |
Collapse
|
8
|
Dallman TJ, Greig DR, Gharbia SE, Jenkins C. Phylogenetic structure of Shiga toxin-producing Escherichia coli O157:H7 from sub-lineage to SNPs. Microb Genom 2021; 7. [PMID: 33720818 PMCID: PMC8190602 DOI: 10.1099/mgen.0.000544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sequence similarity of pathogen genomes can infer the relatedness between isolates as the fewer genetic differences identified between pairs of isolates, the less time since divergence from a common ancestor. Clustering based on hierarchical single linkage clustering of pairwise SNP distances has been employed to detect and investigate outbreaks. Here, we evaluated the evidence-base for the interpretation of phylogenetic clusters of Shiga toxin-producing Escherichia coli (STEC) O157:H7. Whole genome sequences of 1193 isolates of STEC O157:H7 submitted to Public Health England between July 2015 and December 2016 were mapped to the Sakai reference strain. Hierarchical single linkage clustering was performed on the pairwise SNP difference between all isolates at descending distance thresholds. Cases with known epidemiological links fell within 5-SNP single linkage clusters. Five-SNP single linkage community clusters where an epidemiological link was not identified were more likely to be temporally and/or geographically related than sporadic cases. Ten-SNP single linkage clusters occurred infrequently and were challenging to investigate as cases were few, and temporally and/or geographically dispersed. A single linkage cluster threshold of 5-SNPs has utility for the detection of outbreaks linked to both persistent and point sources. Deeper phylogenetic analysis revealed that the distinction between domestic UK and imported isolates could be inferred at the sub-lineage level. Cases associated with domestically acquired infection that fall within clusters that are predominantly travel associated are likely to be caused by contaminated imported food.
Collapse
Affiliation(s)
- Timothy J Dallman
- National Infection Services, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - David R Greig
- National Infection Services, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Saheer E Gharbia
- National Infection Services, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Claire Jenkins
- National Infection Services, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| |
Collapse
|
9
|
Ruano-Gallego D, Fernández LÁ. Identification of Nanobodies Blocking Intimate Adherence of Shiga Toxin-Producing Escherichia coli to Epithelial Cells. Methods Mol Biol 2021; 2291:253-272. [PMID: 33704757 DOI: 10.1007/978-1-0716-1339-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Therapeutic antibodies (Abs) inhibiting bacterial adhesion to host epithelia are an attractive option to reduce the load of Shiga toxin-producing E. coli (STEC) in the intestine of the patient and also in the bovine reservoir, thereby minimizing the risk of STEC contamination in the food chain. Of particular interest are recombinant single-domain Ab fragments called nanobodies (Nbs) derived from the variable domain of camelid heavy chain-only antibodies (VHH). The outer membrane adhesin intimin and the translocated intimin receptor (Tir) are essential for the attachment of STEC to host epithelia. In addition, EspA filaments of the bacterial type III protein secretion system are needed for Tir translocation into the host cell. Given their importance for bacterial adhesion and colonization, we developed Nbs against intimin, Tir and EspA proteins of STEC serotype O157:H7. Here, we report the screening methods used to isolate inhibitory Nbs blocking intimin-Tir protein-protein interaction, actin-pedestal formation, and intimate adhesion of STEC to epithelial cells in vitro. First, we describe how VHH gene repertoires can be produced as Nbs secreted by E. coli using the α-hemolysin (HlyA) protein secretion system. Next, we report the methods for identification of inhibitors of intimin-Tir protein-protein interaction and of STEC intimate adhesion to HeLa cells in culture. These methods can be adapted for the screening of Nbs against different adhesin-receptor complexes to block the adhesion of other pathogens to host cells.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
10
|
Jenkins C, Dallman TJ, Grant KA. Impact of whole genome sequencing on the investigation of food-borne outbreaks of Shiga toxin-producing Escherichia coli serogroup O157:H7, England, 2013 to 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 30696532 PMCID: PMC6352002 DOI: 10.2807/1560-7917.es.2019.24.4.1800346] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We aim to provide insight and guidance on the utility of whole genome sequencing (WGS) data for investigating food-borne outbreaks of Shiga toxin-producing Escherichia coli (STEC) O157:H7 in England between 2013 and 2017. Analysis of WGS data delivered an unprecedented level of strain discrimination when compared with multilocus variable number tandem repeat analysis. The robustness of the WGS method ensured confidence in the microbiological identification of linked cases, even when epidemiological links were obscured. There was evidence that phylogeny derived from WGS data can be used to trace the geographical origin of an isolate. Further analysis of the phylogenetic data provided insight on the evolutionary context of emerging pathogenic strains. Publically available WGS data linked to the clinical, epidemiological and environmental context of the sequenced strain has improved trace back investigations during outbreaks. Expanding the use of WGS-based typing analysis globally will ensure the rapid implementation of interventions to protect public health, inform risk assessment and facilitate the management of national and international food-borne outbreaks of STEC O157:H7.
Collapse
Affiliation(s)
- Claire Jenkins
- National Infection Service, Public Health England, United Kingdom
| | | | - Kathie A Grant
- National Infection Service, Public Health England, United Kingdom
| |
Collapse
|
11
|
Santos ACDM, Santos FF, Silva RM, Gomes TAT. Diversity of Hybrid- and Hetero-Pathogenic Escherichia coli and Their Potential Implication in More Severe Diseases. Front Cell Infect Microbiol 2020; 10:339. [PMID: 32766163 PMCID: PMC7381148 DOI: 10.3389/fcimb.2020.00339] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Although extraintestinal pathogenic Escherichia coli (ExPEC) are designated by their isolation site and grouped based on the type of host and the disease they cause, most diarrheagenic E. coli (DEC) are subdivided into several pathotypes based on the presence of specific virulence traits directly related to disease development. This scenario of a well-categorized E. coli collapsed after the German outbreak of 2011, caused by one strain bearing the virulence factors of two different DEC pathotypes (enteroaggregative E. coli and Shiga toxin-producing E. coli). Since the outbreak, many studies have shown that this phenomenon is more frequent than previously realized. Therefore, the terms hybrid- and hetero-pathogenic E. coli have been coined to describe new combinations of virulence factors among the classic E. coli pathotypes. In this review, we provide an overview of these classifications and highlight the E. coli genomic plasticity that results in some mixed E. coli pathotypes displaying novel pathogenic strategies, which lead to a new symptomatology related to E. coli diseases. In addition, as the capacity for genome interrogation has grown in the last few years, it is clear that genes encoding some virulence factors, such as Shiga toxin, are found among different E. coli pathotypes to which they have not traditionally been associated, perhaps foreshowing their emergence in new and severe outbreaks caused by such hybrid strains. Therefore, further studies regarding hetero-pathogenic and hybrid-pathogenic E. coli isolates are necessary to better understand and control the spread of these pathogens.
Collapse
Affiliation(s)
- Ana Carolina de Mello Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Silva
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tânia Aparecida Tardelli Gomes
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Nyong EC, Zaia SR, Allué-Guardia A, Rodriguez AL, Irion-Byrd Z, Koenig SSK, Feng P, Bono JL, Eppinger M. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Front Microbiol 2020; 11:619. [PMID: 32351476 PMCID: PMC7175801 DOI: 10.3389/fmicb.2020.00619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.
Collapse
Affiliation(s)
- Emmanuel C. Nyong
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sam R. Zaia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Armando L. Rodriguez
- Research Computing Support Group, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zaina Irion-Byrd
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | | | - James L. Bono
- United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture (ARS-USDA), Clay Center, NE, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| |
Collapse
|
13
|
Liu S, Pan J, Meng X, Zhu J, Zhou J, Zhu X. Trichinella spiralis infection decreases the diversity of the intestinal flora in the infected mouse. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:490-500. [PMID: 31708483 DOI: 10.1016/j.jmii.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Trichinella spiralis is a kind of intestinal nematode that can strongly modulate the host immune system. However, the effects of T. spiralis infection on the intestinal flora are poorly understood. This study aimed to explore the effect of T. spiralis infection on the intestinal flora. METHODS The intestinal contents of T. spiralis infected mice were examined through high-throughput sequencing (Illumina) of the V3-V4 hypervariable region in bacterial 16S rRNA gene. The sequences were analyzed using the QIIME software package and other bioinformatics methods. RESULTS Altogether 2,899,062 sequences were generated from the samples collected from different intestinal regions at various infection time points; the 44,843 Operational Taxonomic Unit (OTUs) analysis showed that T. spiralis infection would decrease the diversity of intestinal flora in the infected mice relative to that in the uninfected ones, especially in the large intestine and feces. Further analysis indicated that, the genera Oscillospira from the phylum Firmicutes showed a higher abundance in the helminth-infected small and larger intestines; the genera Bacteroides from the phyla Bacteroides, the genera Lactobacillus from the phyla Firmicutes, the genera Escherichia from the phyla Proteobacteria, and the genera Akkermansia from the phyla Verrucomicrobia displayed increased abundances in the T. spiralis positive fecal samples compared with those in the negative samples. CONCLUSIONS T. spiralis infection decreases the diversity of the intestinal flora in the infected mouse. However, it remains unclear about the association between the changes in intestinal flora caused by T. spiralis infection and the parasite pathogenesis, which should be further examined.
Collapse
Affiliation(s)
- Sha Liu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jin Pan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiangli Meng
- Ningbo International Travel Healthcare Center, Ningbo Customs District People's Republic of China, Ningbo 315012, PR China
| | - Junping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jie Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
14
|
Ruano-Gallego D, Yara DA, Di Ianni L, Frankel G, Schüller S, Fernández LÁ. A nanobody targeting the translocated intimin receptor inhibits the attachment of enterohemorrhagic E. coli to human colonic mucosa. PLoS Pathog 2019; 15:e1008031. [PMID: 31465434 PMCID: PMC6738647 DOI: 10.1371/journal.ppat.1008031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/11/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is a human intestinal pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. No vaccines or specific therapies are currently available to prevent or treat these infections. EHEC tightly attaches to the intestinal epithelium by injecting the intimin receptor Tir into the host cell via a type III secretion system (T3SS). In this project, we identified a camelid single domain antibody (nanobody), named TD4, that recognizes a conserved Tir epitope overlapping the binding site of its natural ligand intimin with high affinity and stability. We show that TD4 inhibits attachment of EHEC to cultured human HeLa cells by preventing Tir clustering by intimin, activation of downstream actin polymerization and pedestal formation. Furthermore, we demonstrate that TD4 significantly reduces EHEC adherence to human colonic mucosa in in vitro organ cultures. Altogether, these results suggest that nanobody-based therapies hold potential in the development of much needed treatment and prevention strategies against EHEC infection. Currently, there is no effective treatment or vaccine against enterohemorrhagic E. coli (EHEC), a bacterial pathogen that infects human colon after the ingestion of contaminated food. It thrives in the colon thanks to its ability to attach intimately to the intestinal epithelium. Here, we have identified and characterised a small antibody fragment (nanobody) that recognises Tir, a receptor injected by the bacterium into the host cell to mediate intimate attachment. This nanobody shows higher affinity against Tir than its natural bacterial ligand (intimin) and, most importantly, blocks the intimate attachment of the pathogen to the human colonic tissue. Our results show the potential of this nanobody to prevent and treat EHEC infection.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM-Cantoblanco, Madrid, Spain
- MRC Centre for Molecular Bacteriology and Infection, Life Sciences Department, Imperial College London, London, United Kingdom
| | - Daniel A. Yara
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Lorenza Di Ianni
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM-Cantoblanco, Madrid, Spain
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Life Sciences Department, Imperial College London, London, United Kingdom
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM-Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Da Silva WM, Bei J, Amigo N, Valacco MP, Amadio A, Zhang Q, Wu X, Yu T, Larzabal M, Chen Z, Cataldi A. Quantification of enterohemorrhagic Escherichia coli O157:H7 protein abundance by high-throughput proteome. PLoS One 2018; 13:e0208520. [PMID: 30596662 PMCID: PMC6312284 DOI: 10.1371/journal.pone.0208520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen responsible for diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). To promote a comprehensive insight into the molecular basis of EHEC O157:H7 physiology and pathogenesis, the combined proteome of EHEC O157:H7 strains, Clade 8 and Clade 6 isolated from cattle in Argentina, and the standard EDL933 (clade 3) strain has been analyzed. From shotgun proteomic analysis a total of 2,644 non-redundant proteins of EHEC O157:H7 were identified, which correspond approximately 47% of the predicted proteome of this pathogen. Normalized spectrum abundance factor analysis was performed to estimate the protein abundance. According this analysis, 50 proteins were detected as the most abundant of EHEC O157:H7 proteome. COG analysis showed that the majority of the most abundant proteins are associated with translation processes. A KEGG enrichment analysis revealed that Glycolysis / Gluconeogenesis was the most significant pathway. On the other hand, the less abundant detected proteins are those related to DNA processes, cell respiration and prophage. Among the proteins that composed the Type III Secretion System, the most abundant protein was EspA. Altogether, the results show a subset of important proteins that contribute to physiology and pathogenicity of EHEC O157:H7.
Collapse
Affiliation(s)
- Wanderson Marques Da Silva
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Jinlong Bei
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Natalia Amigo
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - María Pía Valacco
- CEQUIBIEM (Mass Spectrometry Facility), Faculty of Exact and Natural Sciences, University of Buenos Aires and CONICET (National Research Council), Buenos Aires, Argentina
| | - Ariel Amadio
- Rafaela Experimental Station, National Institute of Agricultural Technology, Rafaela, Santa Fe, Argentina
| | - Qi Zhang
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Xiuju Wu
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Ting Yu
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Mariano Larzabal
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Zhuang Chen
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Angel Cataldi
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
16
|
Dextran Sulfate Sodium Colitis Facilitates Colonization with Shiga Toxin-Producing Escherichia coli: a Novel Murine Model for the Study of Shiga Toxicosis. Infect Immun 2018; 86:IAI.00530-18. [PMID: 30150257 DOI: 10.1128/iai.00530-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/23/2018] [Indexed: 12/23/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) bacteria are globally important gastrointestinal pathogens causing hemorrhagic gastroenteritis with variable progression to potentially fatal Shiga toxicosis. Little is known about the potential effects of E. coli-derived Shiga-like toxins (STXs) on host gastrointestinal immune responses during infection, in part due to the lack of a reproducible immunocompetent-animal model of STEC infection without depleting the commensal microbiota. Here, we describe a novel and reproducible murine model utilizing dextran sulfate sodium (DSS) colitis to induce susceptibility to colonization with clinical-isolate STEC strains. After exposure to DSS and subsequent oral STEC challenge, all the mice were colonized, and 66% of STEC-infected mice required early euthanasia. Morbidity during STEC infection, but not infection with an isogenic STEC mutant with toxin deleted, was associated with increased renal transcripts of the injury markers KIM1 and NGAL, histological evidence of renal tubular injury, and increased renal interleukin 6 gene (IL-6) and CXCL1 inflammatory transcripts. Interestingly, the intestinal burden of STEC during infection was increased compared to its isogenic Shiga toxin deletion strain. Increased bacterial burdens during Shiga toxin production coincided with decreased induction of colonic IL-23 axis transcripts known to be critical for clearance of similar gastrointestinal pathogens in mice, suggesting a previously undescribed role for STEC Shiga toxins in suppressing host immune responses during STEC infection and survival. The DSS+STEC model establishes infection with clinical-isolate strains of STEC in immunocompetent mice without depleting the gastrointestinal microbiota, enabling characterization of the effects of STXs on the IL-23 axis and other gastrointestinal pathogen-host interactions.
Collapse
|
17
|
Hernandez-Doria JD, Sperandio V. Bacteriophage Transcription Factor Cro Regulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli. Cell Host Microbe 2018; 23:607-617.e6. [PMID: 29746832 DOI: 10.1016/j.chom.2018.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 04/16/2018] [Indexed: 10/16/2022]
Abstract
Bacteriophage-encoded genetic elements control bacterial biological functions. Enterohemorrhagic Escherichia coli (EHEC) strains harbor lambda-phages encoding the Shiga-toxin (Stx), which is expressed during the phage lytic cycle and associated with exacerbated disease. Phages also reside dormant within bacterial chromosomes through their lysogenic cycle, but how this impacts EHEC virulence remains unknown. We find that during lysogeny the phage transcription factor Cro activates the EHEC type III secretion system (T3SS). EHEC lambdoid phages are lysogenic under anaerobic conditions when Cro binds to and activates the promoters of T3SS genes. Interestingly, the Cro sequence varies among phages carried by different EHEC outbreak strains, and these changes affect Cro-dependent T3SS regulation. Additionally, infecting mice with the related pathogen C. rodentium harboring the bacteriophage cro from EHEC results in greater T3SS gene expression and enhanced virulence. Collectively, these findings reveal the role of phages in impacting EHEC virulence and their potential to affect outbreak strains.
Collapse
Affiliation(s)
- Juan D Hernandez-Doria
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA.
| |
Collapse
|
18
|
Allué-Guardia A, Koenig SSK, Quirós P, Muniesa M, Bono JL, Eppinger M. Closed Genome and Comparative Phylogenetic Analysis of the Clinical Multidrug Resistant Shigella sonnei Strain 866. Genome Biol Evol 2018; 10:2241-2247. [PMID: 30060169 PMCID: PMC6128377 DOI: 10.1093/gbe/evy168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 01/10/2023] Open
Abstract
Shigella sonnei is responsible for the majority of shigellosis infections in the US with over 500,000 cases reported annually. Here, we present the complete genome of the clinical multidrug resistant (MDR) strain 866, which is highly susceptible to bacteriophage infections. The strain has a circular chromosome of 4.85 Mb and carries a 113 kb MDR plasmid. This IncB/O/K/Z-type plasmid, termed p866, confers resistance to five different classes of antibiotics including ß-lactamase, sulfonamide, tetracycline, aminoglycoside, and trimethoprim. Comparative analysis of the plasmid architecture and gene inventory revealed that p866 shares its plasmid backbone with previously described IncB/O/K/Z-type Shigella spp. and Escherichia coli plasmids, but is differentiated by the insertion of antibiotic resistance cassettes, which we found associated with mobile genetic elements such as Tn3, Tn7, and Tn10. A whole genome-derived phylogenetic reconstruction showed the evolutionary relationships of S. sonnei strain 866 and the four established Shigella species, highlighting the clonal nature of S. sonnei.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| | - Sara S K Koenig
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| | - Pablo Quirós
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - James L Bono
- Agricultural Research Service, United States Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - Mark Eppinger
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| |
Collapse
|
19
|
Abstract
Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence factors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required for the pathogen to colonize the intestine and cause diarrheal disease. Here, we carried out a genome-wide CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats with Cas9) loss-of-function screen to identify host loci that facilitate EHEC infection of intestinal epithelial cells. Many of the guide RNAs identified targeted loci known to be associated with sphingolipid biosynthesis, particularly for production of globotriaosylceramide (Gb3), the Stx receptor. Two loci (TM9SF2 and LAPTM4A) with largely unknown functions were also targeted. Mutations in these loci not only rescued cells from Stx-mediated cell death, but also prevented cytotoxicity associated with the EHEC T3SS. These mutations interfered with early events associated with T3SS and Stx pathogenicity, markedly reducing entry of T3SS effectors into host cells and binding of Stx. The convergence of Stx and T3SS onto overlapping host targets provides guidance for design of new host-directed therapeutic agents to counter EHEC infection. Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence factors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required for colonizing the intestine and causing diarrheal disease. We screened a genome-wide collection of CRISPR mutants derived from intestinal epithelial cells and identified mutants with enhanced survival following EHEC infection. Many had mutations that disrupted synthesis of a subset of lipids (sphingolipids) that includes the Stx receptor globotriaosylceramide (Gb3) and hence protect against Stx intoxication. Unexpectedly, we found that sphingolipids also mediate early events associated with T3SS pathogenicity. Since antibiotics are contraindicated for the treatment of EHEC, therapeutics targeting sphingolipid biosynthesis are a promising alternative, as they could provide protection against both of the pathogen’s key virulence factors.
Collapse
|
20
|
Hücker SM, Vanderhaeghen S, Abellan-Schneyder I, Scherer S, Neuhaus K. The Novel Anaerobiosis-Responsive Overlapping Gene ano Is Overlapping Antisense to the Annotated Gene ECs2385 of Escherichia coli O157:H7 Sakai. Front Microbiol 2018; 9:931. [PMID: 29867840 PMCID: PMC5960689 DOI: 10.3389/fmicb.2018.00931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Current notion presumes that only one protein is encoded at a given bacterial genetic locus. However, transcription and translation of an overlapping open reading frame (ORF) of 186 bp length were discovered by RNAseq and RIBOseq experiments. This ORF is almost completely embedded in the annotated L,D-transpeptidase gene ECs2385 of Escherichia coli O157:H7 Sakai in the antisense reading frame -3. The ORF is transcribed as part of a bicistronic mRNA, which includes the annotated upstream gene ECs2384, encoding a murein lipoprotein. The transcriptional start site of the operon resides 38 bp upstream of the ECs2384 start codon and is driven by a predicted σ70 promoter, which is constitutively active under different growth conditions. The bicistronic operon contains a ρ-independent terminator just upstream of the novel gene, significantly decreasing its transcription. The novel gene can be stably expressed as an EGFP-fusion protein and a translationally arrested mutant of ano, unable to produce the protein, shows a growth advantage in competitive growth experiments compared to the wild type under anaerobiosis. Therefore, the novel antisense overlapping gene is named ano (anaerobiosis responsive overlapping gene). A phylostratigraphic analysis indicates that ano originated very recently de novo by overprinting after the Escherichia/Shigella clade separated from other enterobacteria. Therefore, ano is one of the very rare cases of overlapping genes known in the genus Escherichia.
Collapse
Affiliation(s)
- Sarah M Hücker
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Sonja Vanderhaeghen
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | | | - Siegfried Scherer
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.,Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.,Core Facility Microbiome/NGS, Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
21
|
Bai X, Mernelius S, Jernberg C, Einemo IM, Monecke S, Ehricht R, Löfgren S, Matussek A. Shiga Toxin-Producing Escherichia coli Infection in Jönköping County, Sweden: Occurrence and Molecular Characteristics in Correlation With Clinical Symptoms and Duration of stx Shedding. Front Cell Infect Microbiol 2018; 8:125. [PMID: 29765909 PMCID: PMC5939558 DOI: 10.3389/fcimb.2018.00125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause bloody diarrhea (BD), hemorrhagic colitis (HC), and even hemolytic uremic syndrome (HUS). In Nordic countries, STEC are widely spread and usually associated with gastrointestinal symptoms and HUS. The objective of this study was to investigate the occurrence of STEC in Swedish patients over 10 years of age from 2003 through 2015, and to analyze the correlation of critical STEC virulence factors with clinical symptoms and duration of stx shedding. Diarrheal stool samples were screened for presence of stx by real-time PCR. All STEC isolates were characterized by DNA microarray assay and PCR to determine serogenotypes, stx subtypes, and presence of intimin gene eae and enterohaemolysin gene ehxA. Multilocus sequencing typing (MLST) was used to assess phylogenetic relationships. Clinical features were collected and analyzed using data from the routine infection control measures in the county. A total of 14,550 samples were enrolled in this 12-years period study, and 175 (1.2%) stools were stx positive by real-time PCR. The overall incidence of STEC infection was 4.9 cases per 100,000 person-years during the project period. Seventy-five isolates, with one isolate per sample were recovered, among which 43 were from non-bloody stools, 32 from BD, and 3 out of the 75 STEC positive patients developed HUS. The presence of stx2 in both stools and isolates were associated with BD (p = 0.008, p = 0.05), and the presence of eae in isolates was related to BD (p = 0.008). The predominant serogenotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Isolates from HUS were O104:H4 and O98: H21 serotypes. Phylogenetic analysis revealed our strains were highly diverse, and showed close relatedness to HUS-associated STEC collection strains. In conclusion, the presence of stx2 in stool was related to BD already at the initial diagnostic procedure, thus could be used as risk predictor at an early stage. STEC isolates with stx2 and eae were significantly associated with BD. The predominant serotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Nevertheless, the pathogenic potential of other serotypes and genotypes should not be neglected.
Collapse
Affiliation(s)
- Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | | | | | | | - Stefan Monecke
- Abbott (Alere Technologies GmbH), Jena, Germany
- Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Ralf Ehricht
- Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Sture Löfgren
- Department of Laboratory Medicine, Jönköping, Sweden
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
- Department of Laboratory Medicine, Jönköping, Sweden
- Karolinska University Laboratory, Stockholm, Sweden
| |
Collapse
|
22
|
Thuraisamy T, Lodato PB. Influence of RNase E deficiency on the production of stx2-bearing phages and Shiga toxin in an RNase E-inducible strain of enterohaemorrhagic Escherichia coli (EHEC) O157:H7. J Med Microbiol 2018; 67:724-732. [PMID: 29620505 PMCID: PMC7001489 DOI: 10.1099/jmm.0.000728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In enterohaemorrhagic Escherichia coli (EHEC), stx1 or stx2 genes encode Shiga toxin (Stx1 or Stx2, respectively) and are carried by prophages. The production and release of both stx phages and toxin occur upon initiation of the phage lytic cycle. Phages can further disseminate stx genes by infecting naïve bacteria in the intestine. Here, the effect of RNase E deficiency on these two virulence traits was investigated. METHODOLOGY Cultures of the EHEC strains TEA028-rne containing low versus normal RNase E levels or the parental strain (TEA028) were treated with mitomycin C (MMC) to induce the phage lytic cycle. Phages and Stx2 titres were quantified by the double-agar assay and the receptor ELISA technique, respectively. RESULTS RNase E deficiency in MMC-treated cells significantly reduced the yield of infectious stx2 phages. Delayed cell lysis and the appearance of encapsidated phage DNA copies suggest a slow onset of the lytic cycle. However, these observations do not entirely explain the decrease of phage yields. stx1 phages were not detected under normal or deficient RNase E levels. After an initial delay, high levels of toxin were finally produced in MMC-treated cultures. CONCLUSION RNase E scarcity reduces stx2 phage production but not toxin. Normal concentrations of RNase E are likely required for correct phage morphogenesis. Our future work will address the mechanism of RNase E action on phage morphogenesis.
Collapse
|
23
|
Peritz A, Paoli GC, Chen CY, Gehring AG. Serogroup-level resolution of the "Super-7" Shiga toxin-producing Escherichia coli using nanopore single-molecule DNA sequencing. Anal Bioanal Chem 2018; 410:5439-5444. [PMID: 29374775 DOI: 10.1007/s00216-018-0877-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 01/05/2023]
Abstract
DNA sequencing and other DNA-based methods are now broadly used for detection and identification of bacterial foodborne pathogens. For the identification of foodborne bacterial pathogens, taxonomic assignments must be made to the species or even subspecies level. Long-read DNA sequencing provides finer taxonomic resolution than short-read sequencing. Here, we demonstrate the potential of long-read shotgun sequencing obtained from the Oxford Nanopore Technologies (ONT) MinION single-molecule sequencer, in combination with the Basic Local Alignment Search Tool (BLAST) with custom sequence databases, for foodborne pathogen identification. A library of mixed DNA from strains of the "Super-7" Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157[:H7]) was sequenced using the ONT MinION resulting in 44,245 long-read sequences. The ONT MinION sequences were compared to a custom database composed of the E. coli O-antigen gene clusters. A vast majority of the sequence reads were from outside of the O-antigen cluster and did not align to any sequences in the O-antigen database. However, 58 sequences (0.13% of the total sequence reads) did align to a specific Super-7 O-antigen gene cluster, with each O-antigen cluster aligning to at least four sequence reads. BLAST analysis against a custom whole-genome database revealed that 5096 (11.5%) of the MinION sequence reads aligned to one and only one sequence in the database, of which 99.6% aligned to a sequence from a "Super-7" STEC. These results demonstrate the ability of the method to resolve STEC to the serogroup level and the potential general utility of the MinION for the detection and typing of foodborne pathogens.
Collapse
Affiliation(s)
- Adam Peritz
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - George C Paoli
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - Chin-Yi Chen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Andrew G Gehring
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| |
Collapse
|
24
|
Saier MH, Trevors JT. Science, Innovation and the Future of Humanity. J Mol Microbiol Biotechnol 2017; 27:128-132. [PMID: 28448972 DOI: 10.1159/000467401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | | |
Collapse
|
25
|
Godfrey RE, Lee DJ, Busby SJW, Browning DF. Regulation of nrf operon expression in pathogenic enteric bacteria: sequence divergence reveals new regulatory complexity. Mol Microbiol 2017; 104:580-594. [PMID: 28211111 PMCID: PMC5434802 DOI: 10.1111/mmi.13647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 12/11/2022]
Abstract
The Escherichia coli K‐12 nrf operon encodes a periplasmic nitrite reductase, the expression of which is driven from a single promoter, pnrf. Expression from pnrf is activated by the FNR transcription factor in response to anaerobiosis and further increased in response to nitrite by the response regulator proteins, NarL and NarP. FNR‐dependent transcription is suppressed by the binding of two nucleoid associated proteins, IHF and Fis. As Fis levels increase in cells grown in rich medium, the positioning of its binding site, overlapping the promoter −10 element, ensures that pnrf is sharply repressed. Here, we investigate the expression of the nrf operon promoter from various pathogenic enteric bacteria. We show that pnrf from enterohaemorrhagic E. coli is more active than its K‐12 counterpart, exhibits substantial FNR‐independent activity and is insensitive to nutrient quality, due to an improved −10 element. We also demonstrate that the Salmonella enterica serovar Typhimurium core promoter is more active than previously thought, due to differences around the transcription start site, and that its expression is repressed by downstream sequences. We identify the CsrA RNA binding protein as being responsible for this, and show that CsrA differentially regulates the E. coli K‐12 and Salmonella nrf operons.
Collapse
Affiliation(s)
- Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David J Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
26
|
Sanjar F, Rusconi B, Hazen TH, Koenig SSK, Mammel MK, Feng PCH, Rasko DA, Eppinger M. Characterization of the pathogenome and phylogenomic classification of enteropathogenic Escherichia coli of the O157:non-H7 serotypes. Pathog Dis 2015; 73:ftv033. [PMID: 25962987 DOI: 10.1093/femspd/ftv033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli of the O157 serogroup are comprised of a diverse collection of more than 100 O157:non-H7 serotypes that are found in the environment, animal reservoir and infected patients and some have been linked to severe outbreaks of human disease. Among these, the enteropathogenic E. coli O157:non-H7 serotypes carry virulence factors that are hallmarks of enterohemorrhagic E. coli, such as causing attaching and effacing lesions during human gastrointestinal tract infections. Given the shared virulence gene pool between O157:H7 and O157:non-H7 serotypes, our objective was to examine the prevalence of virulence traits of O157:non-H7 serotypes within and across their H-serotype and when compared to other E. coli pathovars. We sequenced six O157:non-H7 genomes complemented by four genomes from public repositories in an effort to determine their virulence state and genetic relatedness to the highly pathogenic enterohemorrhagic O157:H7 lineage and its ancestral O55:H7 serotype. Whole-genome-based phylogenomic analysis and molecular typing is indicative of a non-monophyletic origin of the heterogeneous O157:non-H7 serotypes that are only distantly related to the O157:H7 serotype. The availability of multiple genomes enables robust phylogenomic placement of these strains into their evolutionary context, and the assessment of the pathogenic potential of the O157:non-H7 strains in causing human disease.
Collapse
Affiliation(s)
- Fatemeh Sanjar
- Department of Biology & South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Brigida Rusconi
- Department of Biology & South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Tracy H Hazen
- Institute for Genome Sciences (IGS), University of Maryland, School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21021, USA
| | - Sara S K Koenig
- Department of Biology & South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Mark K Mammel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Peter C H Feng
- Division of Microbiology, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - David A Rasko
- Institute for Genome Sciences (IGS), University of Maryland, School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21021, USA
| | - Mark Eppinger
- Department of Biology & South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
27
|
Kaper JB, O'Brien AD. Overview and Historical Perspectives. Microbiol Spectr 2014; 2:10.1128/microbiolspec.EHEC-0028-2014. [PMID: 25590020 PMCID: PMC4290666 DOI: 10.1128/microbiolspec.ehec-0028-2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 12/16/2022] Open
Abstract
In this overview, we describe the history of Shiga toxin (Stx)-producing Escherichia coli (STEC) in two phases. In phase one, between 1977 and 2011, we learned that E. coli could produce Shiga toxin and cause both hemorrhagic colitis and the hemolytic-uremic syndrome in humans and that the prototype STEC-E. coli O157:H7-adheres to and effaces intestinal epithelial cells by a mechanism similar to that of enteropathogenic E. coli. We also recognized that the genes for Stx are typically encoded on a lysogenic phage; that STEC O157:H7 harbors a large pathogenicity island that encodes the elements needed for the characteristic attaching and effacing lesion; and that the most severe cases of human disease are linked to production of Stx type 2a, not Stx type 1a. Phase two began with a large food-borne outbreak of hemorrhagic colitis and hemolytic-uremic syndrome in Germany in 2011. That outbreak was caused by a novel strain consisting of enteroaggregative E. coli O104:H4 transduced by a Stx2a-converting phage. From this outbreak we learned that any E. coli strain that can adhere tightly to the human bowel (either by a biofilm-like mechanism as in E. coli O104:H4 or by an attaching and effacing mechanism as in E. coli O157:H7) can cause severe diarrheal and systemic illness when it acquires the capacity to produce Stx2a. This overview provides the basis for the review of current information regarding these fascinating and complex pathogens.
Collapse
Affiliation(s)
- James B Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21122
| | - Alison D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|