1
|
Memariani H, Memariani M. New Frontiers in Fighting Mycobacterial Infections: Venom-Derived Peptides. Probiotics Antimicrob Proteins 2025; 17:1217-1235. [PMID: 39828882 DOI: 10.1007/s12602-025-10455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Notwithstanding the indefatigable endeavors to develop effective anti-mycobacterial therapies, mycobacterial infections still present a tough problem for medicine today. The problem is further complicated by the disquieting surge of drug-resistant mycobacterial pathogens, which considerably narrows the existing therapeutic options. Thus, there is a genuine need to discover novel anti-mycobacterial drugs. Animal venoms are considered a treasure trove of structurally variable and biologically active peptides, which may hold promise for therapeutic applications. Over the past two decades, abundant evidence has been amassed regarding anti-mycobacterial effects of various peptides derived from the venoms of honeybees, wasps, scorpions, pseudoscorpions, cone snails, and snakes. This review intends to consolidate the state-of-the-art knowledge on the anti-mycobacterial peptides of animal venoms and to sketch potentially fruitful directions for future investigations. The available data indicate that micromolar concentrations of particular venom-derived peptides can effectively inhibit the in vitro growth of Mycobacterium tuberculosis and non-tuberculous mycobacteria. The proposed mechanisms of action of venom-derived peptides include reduced activity of plasma membrane ATPase, depolarization of the cell membrane, disruption of the cell wall, and increased generation of reactive oxygen species. Interestingly, administering certain peptides (≤ 2 mg/kg body weight) through daily intraperitoneal injections to mice for 8 consecutive days resulted in lower levels of mycobacterial infections and inflammation, hitting two targets with one arrow. Indubitably, such peptides can usher in new possibilities for the prevention and treatment of recalcitrant mycobacterial infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Memariani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Dzigba P, Dekhtyar GAT, Hartman MJ, Winstead-Leroy KJ, Greenlee-Wacker MC, Swarts BM. An Antibody-Recruiting Molecule Enhances Fcγ Receptor-Mediated Uptake and Killing of Mycobacterial Pathogens by Macrophages. ACS Infect Dis 2025. [PMID: 40312277 DOI: 10.1021/acsinfecdis.5c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Mycobacteria, which include the infectious agents for tuberculosis (TB) and nontuberculous mycobacteria (NTM) disease, pose a critical health challenge due to traits that allow them to evade host immune clearance and antibiotic action. Toward a novel immunotherapy approach for mycobacteria, we previously reported an antibody-recruiting molecule (ARM) strategy to specifically modify the surface glycans of mycobacteria with exogenous haptens, marking the bacteria for opsonization by endogenous antibodies and enhancing the antibody-mediated immune response. We showed that the ARM, a trehalose-dinitrophenyl conjugate (Tre-DNP), exploited a conserved metabolic pathway to metabolically label the surface of nonpathogenic Mycobacterium smegmatis with DNP, recruited anti-DNP antibodies to the bacterial surface, and enhanced phagocytosis of the bacteria by THP-1 cells. Here, we extend these findings by investigating the ability of the Tre-DNP ARM strategy to increase macrophage-mediated phagocytosis and killing of different pathogenic mycobacterial species and interrogating mechanisms associated with the outcome. We show that Tre-DNP successfully modified the surface of multiple pathogens, including Mycobacterium tuberculosis and the NTM species Mycobacterium abscessus and Mycobacterium avium, and that phagocytosis and killing of intracellular bacteria by differentiated THP-1 cells is significantly enhanced for all species. Furthermore, we find that enhanced uptake is dependent upon the Fcγ receptor (FcγR) and enhanced killing correlates with sustained production of reactive oxygen species (ROS) and increased phagosome-lysosome fusion. Overall, our data demonstrate that Tre-DNP efficiently promotes ingestion of mycobacteria by human macrophages via the FcγR and enhances host effector responses against the pathogen. Thus, ARMs are tools that can be exploited for the purposes of (i) conducting mechanistic studies on immune recognition and elimination of mycobacterial pathogens and (ii) developing immune-targeting strategies against mycobacterial pathogens.
Collapse
Affiliation(s)
- Priscilla Dzigba
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | | | | | | | | | - Benjamin M Swarts
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| |
Collapse
|
3
|
Isbilir B, Yeates A, Alva V, Bharat TAM. Mapping the ultrastructural topology of the corynebacterial cell surface. PLoS Biol 2025; 23:e3003130. [PMID: 40233127 PMCID: PMC12021427 DOI: 10.1371/journal.pbio.3003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/24/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Corynebacterium glutamicum is a diderm bacterium extensively used in the industrial-scale production of amino acids. Corynebacteria belong to the bacterial family Mycobacteriaceae, which is characterized by a highly unusual cell envelope with an outer membrane consisting of mycolic acids, called mycomembrane. The mycomembrane is further coated by a surface (S-)layer array in C. glutamicum, making this cell envelope highly distinctive. Despite the biotechnological significance of C. glutamicum and biomedical significance of mycomembrane-containing pathogens, ultrastructural and molecular details of its distinctive cell envelope remain poorly characterized. To address this, we investigated the cell envelope of C. glutamicum using electron cryotomography and cryomicroscopy of focused ion beam-milled single and dividing cells. Our cellular imaging allowed us to map the different components of the cell envelope onto the tomographic density. Our data reveal that C. glutamicum has a variable cell envelope, with the S-layer decorating the mycomembrane in a patchy manner. We further isolated and resolved the structure of the S-layer at 3.1 Å-resolution using single particle electron cryomicroscopy. Our structure shows that the S-layer of C. glutamicum is composed of a hexagonal array of the PS2 protein, which interacts directly with the mycomembrane via an anchoring segment containing a coiled-coil motif. Bioinformatic analyses revealed that the PS2 S-layer is sparsely yet exclusively present within the Corynebacterium genus and absent in other genera of the Mycobacteriaceae family, suggesting distinct evolutionary pathways in the development of their cell envelopes. Our structural and cellular data collectively provide a topography of the unusual C. glutamicum cell surface, features of which are shared by many pathogenic and microbiome-associated bacteria, as well as by several industrially significant bacterial species.
Collapse
Affiliation(s)
- Buse Isbilir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anna Yeates
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
4
|
Lesur E, Zhang Y, Dautin N, Dietrich C, Li de la Sierra-Gallay I, Augusto LA, Rollando P, Lazar N, Urban D, Doisneau G, Constantinesco-Becker F, Van Tilbeurgh H, Guianvarc'h D, Bourdreux Y, Bayan N. Synthetic mycolates derivatives to decipher protein mycoloylation, a unique post-translational modification in bacteria. J Biol Chem 2025; 301:108243. [PMID: 39880088 PMCID: PMC11927696 DOI: 10.1016/j.jbc.2025.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Protein mycoloylation is a newly characterized post-translational modification (PTM) specifically found in Corynebacteriales, an order of bacteria that includes numerous human pathogens. Their envelope is composed of a unique outer membrane, the so-called mycomembrane made of very-long chain fatty acids, named mycolic acids. Recently, some mycomembrane proteins including PorA have been unambiguously shown to be covalently modified with mycolic acids in the model organism Corynebacterium glutamicum by a mechanism that relies on the mycoloyltransferase MytC. This PTM represents the first example of protein O-acylation in prokaryotes and the first example of protein modification by mycolic acid. Through the design and synthesis of trehalose monomycolate (TMM) analogs, we prove that i) MytC is the mycoloyltransferase directly involved in this PTM, ii) TMM, but not trehalose dimycolate (TDM), is a suitable mycolate donor for PorA mycoloylation, iii) MytC is able to discriminate between an acyl and a mycoloyl chain in vitro unlike other trehalose mycoloyltransferases. We also solved the structure of MytC acyl-enzyme obtained with a soluble short TMM analogs which constitutes the first mycoloyltransferase structure covalently linked to an authentic mycolic acid moiety. These data highlight the great conformational flexibility of the active site of MytC during the reaction cycle and pave the way for a better understanding of the catalytic mechanism of all members of the mycoloyltransferase family including the essential Antigen85 enzymes in Mycobacteria.
Collapse
Affiliation(s)
- Emilie Lesur
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | - Yijie Zhang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nathalie Dautin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christiane Dietrich
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Ines Li de la Sierra-Gallay
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Luis A Augusto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulin Rollando
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | - Noureddine Lazar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dominique Urban
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | - Gilles Doisneau
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | | | - Herman Van Tilbeurgh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Dominique Guianvarc'h
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France.
| | - Yann Bourdreux
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Orsay, France
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Mejia-Santana A, Collins R, Doud EH, Landeta C. Disulfide bonds are required for cell division, cell envelope biogenesis and antibiotic resistance proteins in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635063. [PMID: 39975046 PMCID: PMC11838256 DOI: 10.1101/2025.01.27.635063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mycobacteria, including Mycobacterium tuberculosis-the etiological agent of tuberculosis-have a unique cell envelope critical for their survival and resistance. The cell envelope's assembly and maintenance influence permeability, making it a key target against multidrug-resistant strains. Disulfide bond (DSB) formation is crucial for the folding of cell envelope proteins. The DSB pathway in mycobacteria includes two enzymes, DsbA and VKOR, required for survival. Using bioinformatics and cysteine profiling proteomics, we identified cell envelope proteins dependent on DSBs. We validated via in vivo alkylation that key proteins like LamA (MmpS3), PstP, LpqW, and EmbB rely on DSBs for stability. Furthermore, chemical inhibition of VKOR results in phenotypes similar to those of Δvkor. Thus, targeting DsbA-VKOR systems could compromise both cell division and mycomembrane integrity. These findings emphasize the potential of DSB inhibition as a novel strategy to combat mycobacterial infections.
Collapse
Affiliation(s)
| | - Rebecca Collins
- Department of Biology. Indiana University. Bloomington, IN. U.S.A
| | - Emma H. Doud
- Biochemistry and Molecular Biology. Indiana University School of Medicine. Indianapolis, IN. U.S.A
- Center for Proteome Analysis; Indiana University School of Medicine. Indianapolis, IN. U.S.A
| | - Cristina Landeta
- Department of Biology. Indiana University. Bloomington, IN. U.S.A
| |
Collapse
|
6
|
Diab A, Dickerson H, Al Musaimi O. Targeting the Heart of Mycobacterium: Advances in Anti-Tubercular Agents Disrupting Cell Wall Biosynthesis. Pharmaceuticals (Basel) 2025; 18:70. [PMID: 39861133 PMCID: PMC11768153 DOI: 10.3390/ph18010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Mycobacterium tuberculosis infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved drugs target cell wall biosynthesis in Mycobacterium tuberculosis. This review provides a comprehensive analysis of these drugs and their molecular mechanisms. Isoniazid, thioamides, and delamanid primarily disrupt mycolic acid synthesis, with recent evidence indicating that delamanid also inhibits decaprenylphosphoryl-β-D-ribose-2-epimerase, thereby impairing arabinogalactan biosynthesis. Cycloserine remains the sole approved drug that inhibits peptidoglycan synthesis, the foundational layer of the mycobacterial cell wall. Furthermore, ethambutol interferes with arabinogalactan synthesis by targeting arabinosyl transferase enzymes, particularly embB- and embC-encoded variants. Beyond these, six promising molecules currently in Phase II clinical trials are designed to target arabinan synthesis pathways, sutezolid, TBA 7371, OPC-167832, SQ109, and both benzothiazinone derivatives BTZ043 and PBTZ169, highlighting advancements in the development of cell wall-targeting therapies.
Collapse
Affiliation(s)
- Ahmad Diab
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Henry Dickerson
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
7
|
Byeon CH, Hansen KH, DePas W, Akbey Ü. High-resolution 2D solid-state NMR provides insights into nontuberculous mycobacteria. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101970. [PMID: 39312837 DOI: 10.1016/j.ssnmr.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
We present a high-resolution magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize nontuberculous mycobacteria (NTM). We studied two different NTM strains, Mycobacterium smegmatis, a model, non-pathogenic strain, and Mycobacterium abscessus, an emerging and important human pathogen. Hydrated NTM samples were studied at natural abundance without isotope-labelling, as whole-cells versus cell envelope isolates, and native versus fixed sample preparations. We utilized 1D13C and 2D 1H-13C ssNMR spectra and peak deconvolution to identify NTM cell-wall chemical sites. More than ∼100 distinct 13C signals were identified in the ssNMR spectra. We provide tentative assignments for ∼30 polysaccharides by using well resolved 1H/13C chemical shifts from the 2D INEPT-based 1H-13C ssNMR spectrum. The signals originating from both the flexible and rigid fractions of the whole-cell bacteria samples were selectively analyzed by utilizing either CP or INEPT based 13C ssNMR spectra. CP buildup curves provide insights into the dynamical similarity of the cell-wall components for NTM strains. Signals from peptidoglycan, arabinogalactan and mycolic acid were identified. The majority of the 13C signals were not affected by fixation of the whole cell samples. The isolated cell envelope NMR spectrum overlap with the whole-cell spectrum to a large extent, where the latter has more signals. As an orthogonal way of characterizing these bacteria, electron microscopy (EM) was used to provide spatial information. ssNMR and EM data suggest that the M. abscessus cell-wall is composed of a smaller peptidoglycan layer which is more flexible compared to M. smegmatis, which may be related to its higher pathogenicity. Here in this work, we used high-resolution 2D ssNMR first time to characterize NTM strains and identify chemical sites. These results will aid the development of structure-based approaches to combat NTM infections.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - Kasper Holst Hansen
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - William DePas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States.
| |
Collapse
|
8
|
Davids CJ, Umashankar-Rao K, Kassaliete J, Ahmadi S, Happonen L, Welinder C, Tullberg C, Grey C, Puthia M, Godaly G. The role of antibiotic-derived mycobacterial vesicles in tuberculosis pathogenesis. Sci Rep 2024; 14:28198. [PMID: 39548211 PMCID: PMC11568285 DOI: 10.1038/s41598-024-79215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Pulmonary tuberculosis (TB) causes progressive and irreversible damage to lung tissue, a damage that may not fully resolve after treatment. Mycobacterial vesicles (MVs), which are poorly understood, may contribute to TB pathology. This study investigated the effects of stress, such as treatment with conventional TB antibiotics rifampicin, isoniazid, ethambutol, or treatment with an antimycobacterial peptide (NZX), on mycobacterial vesiculation. Stress from minimal inhibitory concentrations of antibiotics, or peptide all increased MV formation. Electron microscopy and lipid profiling revealed that these vesicles, about 40 nm in size, were released from the bacterial inner membrane and consisted of apolar lipids. Using mass spectrometry, the study identified key differences in MVs protein cargo dependent on the antibiotic used, especially with ethambutol-induced MVs that contained proteins from several mycobacterial pathways. Additionally, toxicology analysis using different concentrations of MVs on primary human macrophages and the monocytic cells indicated that MVs from the different treatments were not toxic to human cells, however induced specific inflammatory profiles. In conclusion, this study identified mycobacterial vesicles to be a potential contributor to tuberculosis pathology.
Collapse
Affiliation(s)
- C J Davids
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - K Umashankar-Rao
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - J Kassaliete
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - S Ahmadi
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - L Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - C Welinder
- Swedish National Infrastructure for Biological Mass Spectrometry, BioMS, Lund, Sweden
| | - C Tullberg
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - C Grey
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - M Puthia
- Department of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
Li D, Zhang X, Yao Y, Sun X, Sun J, Ma X, Yuan K, Bai G, Pang X, Hua R, Guo T, Mi Y, Wu L, Zhang J, Wu Y, Liu Y, Wang P, Wong CCL, Chen XW, Xiao H, Gao GF, Gao F. Structure and function of Mycobacterium tuberculosis EfpA as a lipid transporter and its inhibition by BRD-8000.3. Proc Natl Acad Sci U S A 2024; 121:e2412653121. [PMID: 39441632 PMCID: PMC11536138 DOI: 10.1073/pnas.2412653121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
EfpA, the first major facilitator superfamily (MFS) protein identified in Mycobacterium tuberculosis (Mtb), is an essential efflux pump implicated in resistance to multiple drugs. EfpA-inhibitors have been developed to kill drug-tolerant Mtb. However, the biological function of EfpA has not yet been elucidated. Here, we present the cryo-EM structures of EfpA complexed with lipids or the inhibitor BRD-8000.3 at resolutions of 2.9 Å and 3.4 Å, respectively. Unexpectedly, EfpA forms an antiparallel dimer. Functional studies reveal that EfpA is a lipid transporter and BRD-8000.3 inhibits its lipid transport activity. Intriguingly, the mutation V319F, known to confer resistance to BRD-8000.3, alters the expression level and oligomeric state of EfpA. Based on our results and the observation of other antiparallel dimers in the MFS family, we propose an antiparallel-function model of EfpA. Collectively, our work provides structural and functional insights into EfpA's role in lipid transport and drug resistance, which would accelerate the development of antibiotics against this promising drug target.
Collapse
Affiliation(s)
- Delin Li
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan030032, China
| | - Xiaokang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yuanhang Yao
- College of Future Technology, Peking University, Beijing100871, China
| | - Xue Sun
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing100871, China
| | - Junqing Sun
- Shanxi Academy of Advanced Research and Innovation, Taiyuan030032, China
- Shanxi Agricultural University, Jinzhong, Shanxi030801, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen518055, China
| | - Kai Yuan
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Guijie Bai
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Xuefei Pang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Rongmao Hua
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Tianling Guo
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Yuqian Mi
- Shanxi Academy of Advanced Research and Innovation, Taiyuan030032, China
| | - Lingzhi Wu
- College of Future Technology, Peking University, Beijing100871, China
| | - Jie Zhang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen518112, China
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen518055, China
| | - Catherine C. L. Wong
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing100871, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing100730, China
| | - Xiao-wei Chen
- College of Future Technology, Peking University, Beijing100871, China
- State Key Laboratory of Membrane Biology, Peking University, Center for Life Sciences, Peking University, Beijing100871, China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - George Fu Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| |
Collapse
|
10
|
Menon AP, Lee TH, Aguilar MI, Kapoor S. Decoding the role of mycobacterial lipid remodelling and membrane dynamics in antibiotic tolerance. Chem Sci 2024:d4sc06618a. [PMID: 39483253 PMCID: PMC11520350 DOI: 10.1039/d4sc06618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Current treatments for tuberculosis primarily target Mycobacterium tuberculosis (Mtb) infections, often neglecting the emerging issue of latent tuberculosis infection (LTBI) which are characterized by reduced susceptibility to antibiotics. The bacterium undergoes multiple adaptations during dormancy within host granulomas, leading to the development of antibiotic-tolerant strains. The mycobacterial membrane plays a crucial role in drug permeability, and this study aims to characterize membrane lipid deviations during dormancy through extensive lipidomic analysis of bacteria cultivated in distinct media and growth stages. The results revealed that specific lipids localize in different regions of the membrane envelope, allowing the bacterium to adapt to granuloma conditions. These lipid modifications were then correlated with the biophysical properties of the mycomembrane, which may affect interactions with antibiotics. Overall, our findings offer a deeper understanding of the bacterial adaptations during dormancy, highlighting the role of lipids in modulating membrane behaviour and drug permeability, ultimately providing the groundwork for the development of more effective treatments tailored to combat latent infections.
Collapse
Affiliation(s)
- Anjana P Menon
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay Mumbai 400076 India
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Tzong-Hsien Lee
- IITB-Monash Research Academy, Indian Institute of Technology Bombay Mumbai 400076 India
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Marie-Isabel Aguilar
- IITB-Monash Research Academy, Indian Institute of Technology Bombay Mumbai 400076 India
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
11
|
Lee JYH, Porter JL, Hobbs EC, Whiteley P, Buultjens AH, Stinear TP. A low-cost and versatile paramagnetic bead DNA extraction method for Mycobacterium ulcerans environmental surveillance. Appl Environ Microbiol 2024; 90:e0102124. [PMID: 39254328 PMCID: PMC11497799 DOI: 10.1128/aem.01021-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
In Australia, native possums are a major wildlife reservoir for Mycobacterium ulcerans, the causative agent of the neglected tropical skin disease Buruli ulcer (BU). Large-scale possum excreta surveys that use PCR to detect M. ulcerans in 100-1,000 s of excreta specimens are an important tool that can inform geospatial modeling and predict locations of future human BU risk. However, the significant expense of commercial kits used to extract DNA from specimens is a major barrier to routine implementation. Here, we developed a low-cost method for DNA extraction from possum excreta, possum tissue, and pure mycobacterial cultures, using a guanidinium isothiocyanate lysis solution and paramagnetic beads. In a 96-well plate format for high-throughput processing, the paramagnetic bead DNA extraction method was threefold less sensitive but only 1/6 the cost of a commonly used commercial kit. Applied to tissue swabs, the method was fourfold more sensitive and 1/5 the cost of a commercial kit. When used for preparing DNA from pure mycobacterial cultures, the method yielded purified genomic DNA with quality metrics comparable to more lengthy techniques. Our paramagnetic bead method is an economical means to undertake large-scale M. ulcerans environmental surveillance that will directly inform efforts to halt the spread of BU in Victoria, Australia, with potential for applicability in other endemic countries. IMPORTANCE Buruli ulcer (BU) is a neglected tropical skin disease, with an incidence that has dramatically increased in temperate southeastern Australia over the last decade. In southeastern Australia, BU is a zoonosis with native possums the major wildlife reservoir of the causative pathogen, Mycobacterium ulcerans. Infected possums shed M. ulcerans in their excreta, and excreta surveys using PCR to screen for the presence of pathogen DNA are a powerful means to predict future areas of Buruli ulcer risk for humans. However, excreta surveys across large geographic areas require testing of many thousands of samples. The cost of commercial DNA extraction reagents used for preparing samples for PCR testing can thus become prohibitive to effective surveillance. Here, we describe a simple, low-cost method for extracting DNA from possum excreta using paramagnetic beads. The method is versatile and adaptable to a variety of other sample types including swabs collected from possum tissues and pure cultures of mycobacteria.
Collapse
Affiliation(s)
- Jean Y. H. Lee
- Department of Microbiology and Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Victoria, Australia
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Emma C. Hobbs
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Pam Whiteley
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Andrew H. Buultjens
- Department of Microbiology and Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Victoria, Australia
- World Health Organisation Collaborating Centre for Mycobacterium ulcerans, Victorian Infectious Diseases Laboratory, Doherty Institute, Melbourne Health, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Hashimi A, Tocheva EI. Cell envelope diversity and evolution across the bacterial tree of life. Nat Microbiol 2024; 9:2475-2487. [PMID: 39294462 DOI: 10.1038/s41564-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved.
Collapse
Affiliation(s)
- Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Seitz C, Ahn SH, Wei H, Kyte M, Cook GM, Krause KL, McCammon JA. Targeting Tuberculosis: Novel Scaffolds for Inhibiting Cytochrome bd Oxidase. J Chem Inf Model 2024; 64:5232-5241. [PMID: 38874541 DOI: 10.1021/acs.jcim.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Discovered in the 1920s, cytochrome bd is a terminal oxidase that has received renewed attention as a drug target since its atomic structure was first determined in 2016. Only found in prokaryotes, we study it here as a drug target for Mycobacterium tuberculosis (Mtb). Most previous drug discovery efforts toward cytochrome bd have involved analogues of the canonical substrate quinone, known as Aurachin D. Here, we report six new cytochrome bd inhibitor scaffolds determined from a computational screen and confirmed on target activity through in vitro testing. These scaffolds provide new avenues for lead optimization toward Mtb therapeutics.
Collapse
Affiliation(s)
- Christian Seitz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Surl-Hee Ahn
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Haixin Wei
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Matson Kyte
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kurt L Krause
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
14
|
Meyer FM, Bramkamp M. Cell wall synthesizing complexes in Mycobacteriales. Curr Opin Microbiol 2024; 79:102478. [PMID: 38653035 DOI: 10.1016/j.mib.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Fabian M Meyer
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
| |
Collapse
|
15
|
Bannantine JP, Duffy SC, Colombatti Olivieri MA, Behr MA, Biet F, Price NPJ. Genetic and chemical control of tuberculostearic acid production in Mycobacterium avium subspecies paratuberculosis. Microbiol Spectr 2024; 12:e0050824. [PMID: 38501867 PMCID: PMC11064506 DOI: 10.1128/spectrum.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Tuberculostearic acid (TBSA) is a fatty acid unique to mycobacteria and some corynebacteria and has been studied due to its diagnostic value, biofuel properties, and role in membrane dynamics. In this study, we demonstrate that TBSA production can be abrogated either by addition of pivalic acid to mycobacterial growth cultures or by a bfaA gene knockout encoding a flavin adenine dinucleotide (FAD)-binding oxidoreductase. Mycobacterium avium subspecies paratuberculosis (Map) growth and TBSA production were inhibited in 0.5-mg/mL pivalic acid-supplemented cultures, but higher concentrations were needed to have a similar effect in other mycobacteria, including Mycobacterium smegmatis. While Map C-type strains, isolated from cattle and other ruminants, will produce TBSA in the absence of pivalic acid, the S-type Map strains, typically isolated from sheep, do not produce TBSA in any condition. A SAM-dependent methyltransferase encoded by bfaB and FAD-binding oxidoreductase are both required in the two-step biosynthesis of TBSA. However, S-type strains contain a single-nucleotide polymorphism in the bfaA gene, rendering the oxidoreductase enzyme vestigial. This results in the production of an intermediate, termed 10-methylene stearate, which is detected only in S-type strains. Fatty acid methyl ester analysis of a C-type Map bfaA knockout revealed the loss of TBSA production, but the intermediate was present, similar to the S-type strains. Collectively, these results demonstrate the subtle biochemical differences between two primary genetic lineages of Map and other mycobacteria as well as explain the resulting phenotype at the genetic level. These data also suggest that TBSA should not be used as a diagnostic marker for Map.IMPORTANCEBranched-chain fatty acids are a predominant cell wall component among species belonging to the Mycobacterium genus. One of these is TBSA, which is a long-chain middle-branched fatty acid used as a diagnostic marker for Mycobacterium tuberculosis. This fatty acid is also an excellent biolubricant. Control of its production is important for industrial purposes as well as understanding the biology of mycobacteria. In this study, we discovered that a carboxylic acid compound termed pivalic acid inhibits TBSA production in mycobacteria. Furthermore, Map strains from two separate genetic lineages (C-type and S-type) showed differential production of TBSA. Cattle-type strains of Mycobacterium avium subspecies paratuberculosis produce TBSA, while the sheep-type strains do not. This important phenotypic difference is attributed to a single-nucleotide deletion in sheep-type strains of Map. This work sheds further light on the mechanism used by mycobacteria to produce tuberculostearic acid.
Collapse
Affiliation(s)
- John P. Bannantine
- National Animal Disease Center, USDA Agricultural Research Service, Ames, Iowa, USA
| | - Shannon C. Duffy
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - María A. Colombatti Olivieri
- National Animal Disease Center, USDA Agricultural Research Service, Ames, Iowa, USA
- ARS Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Franck Biet
- INRAE, ISP, Université de Tours, Nouzilly, France
| | - Neil P. J. Price
- National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Peoria, Illinois, USA
| |
Collapse
|
16
|
Lu Y, Chen H, Shao Z, Sun L, Li C, Lu Y, You X, Yang X. Deletion of the Mycobacterium tuberculosis cyp138 gene leads to changes in membrane-related lipid composition and antibiotic susceptibility. Front Microbiol 2024; 15:1301204. [PMID: 38591032 PMCID: PMC10999552 DOI: 10.3389/fmicb.2024.1301204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), the main cause of tuberculosis (TB), has brought a great burden to the world's public health. With the widespread use of Mtb drug-resistant strains, the pressure on anti-TB treatment is increasing. Anti-TB drugs with novel structures and targets are urgently needed. Previous studies have revealed a series of CYPs with important roles in the survival and metabolism of Mtb. However, there is little research on the structure and function of CYP138. Methods In our study, to discover the function and targetability of CYP138, a cyp138-knockout strain was built, and the function of CYP138 was speculated by the comparison between cyp138-knockout and wild-type strains through growth curves, growth status under different carbon sources, infection curves, SEM, MIC tests, quantitative proteomics, and lipidomics. Results and discussion The knockout of cyp138 was proven to affect the Mtb's macrophage infection, antibiotics susceptibility, and the levels of fatty acid metabolism, membrane-related proteins, and lipids such as triacylglycerol. We proposed that CYP138 plays an important role in the synthesis and decomposition of lipids related to the cell membrane structure as a new potential anti-tuberculosis drug target.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyuan Shao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| |
Collapse
|
17
|
Jaisinghani N, Previti ML, Andrade J, Askenazi M, Ueberheide B, Seeliger JC. Proteomics from compartment-specific APEX2 labeling in Mycobacterium tuberculosis reveals Type VII secretion substrates in the cell wall. Cell Chem Biol 2024; 31:523-533.e4. [PMID: 37967559 PMCID: PMC11106752 DOI: 10.1016/j.chembiol.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
The cell wall of mycobacteria plays a key role in interactions with the environment. Its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites, from ions to lipids to proteins. Identifying cell wall proteins is an important step in assigning function, especially as many mycobacterial proteins lack functionally characterized homologues. Current methods for protein localization have inherent limitations that reduce accuracy. Here we showed that although chemical labeling of live cells did not exclusively label surface proteins, protein tagging by the engineered peroxidase APEX2 within live Mycobacterium tuberculosis accurately identified the cytosolic and cell wall proteomes. Our data indicate that substrates of the virulence-associated Type VII ESX secretion system are exposed to the periplasm, providing insight into the currently unknown mechanism by which these proteins cross the mycobacterial cell envelope.
Collapse
Affiliation(s)
- Neetika Jaisinghani
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mary L Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Beatrix Ueberheide
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
18
|
Savková K, Danchenko M, Fabianová V, Bellová J, Bencúrová M, Huszár S, Korduláková J, Siváková B, Baráth P, Mikušová K. Compartmentalization of galactan biosynthesis in mycobacteria. J Biol Chem 2024; 300:105768. [PMID: 38367664 PMCID: PMC10951656 DOI: 10.1016/j.jbc.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
Galactan polymer is a prominent component of the mycobacterial cell wall core. Its biogenesis starts at the cytoplasmic side of the plasma membrane by a build-up of the linker disaccharide [rhamnosyl (Rha) - N-acetyl-glucosaminyl (GlcNAc) phosphate] on the decaprenyl-phosphate carrier. This decaprenyl-P-P-GlcNAc-Rha intermediate is extended by two bifunctional galactosyl transferases, GlfT1 and GlfT2, and then it is translocated to the periplasmic space by an ABC transporter Wzm-Wzt. The cell wall core synthesis is finalized by the action of an array of arabinosyl transferases, mycolyl transferases, and ligases that catalyze an attachment of the arabinogalactan polymer to peptidoglycan through the linker region. Based on visualization of the GlfT2 enzyme fused with fluorescent tags it was proposed that galactan polymerization takes place in a specific compartment of the mycobacterial cell envelope, the intracellular membrane domain, representing pure plasma membrane free of cell wall components (previously denoted as the "PMf" domain), which localizes to the polar region of mycobacteria. In this work, we examined the activity of the galactan-producing cellular machine in the cell-wall containing cell envelope fraction and in the cell wall-free plasma membrane fraction prepared from Mycobacterium smegmatis by the enzyme assays using radioactively labeled substrate UDP-[14C]-galactose as a tracer. We found that despite a high abundance of GlfT2 in both of these fractions as confirmed by their thorough proteomic analyses, galactan is produced only in the reaction mixtures containing the cell wall components. Our findings open the discussion about the distribution of GlfT2 and the regulation of its activity in mycobacteria.
Collapse
Affiliation(s)
- Karin Savková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktória Fabianová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jana Bellová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Bencúrová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Huszár
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Barbara Siváková
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
19
|
Bigi MM, Forrellad MA, García JS, Blanco FC, Vázquez CL, Bigi F. An update on Mycobacterium tuberculosis lipoproteins. Future Microbiol 2023; 18:1381-1398. [PMID: 37962486 DOI: 10.2217/fmb-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/29/2023] [Indexed: 11/15/2023] Open
Abstract
Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.
Collapse
Affiliation(s)
- María M Bigi
- Instituto de Investigaciones Biomédicas, CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
| | - Marina A Forrellad
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Julia S García
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Federico C Blanco
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Cristina L Vázquez
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| |
Collapse
|
20
|
Mishra R, Hannebelle M, Patil VP, Dubois A, Garcia-Mouton C, Kirsch GM, Jan M, Sharma K, Guex N, Sordet-Dessimoz J, Perez-Gil J, Prakash M, Knott GW, Dhar N, McKinney JD, Thacker VV. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell 2023; 186:5135-5150.e28. [PMID: 37865090 PMCID: PMC10642369 DOI: 10.1016/j.cell.2023.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
Collapse
Affiliation(s)
- Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Hannebelle
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anaëlle Dubois
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Gabriela M Kirsch
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kunal Sharma
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jesus Perez-Gil
- Department of Biochemistry, University Complutense Madrid, 28040 Madrid, Spain
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Graham W Knott
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Neeraj Dhar
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - John D McKinney
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
21
|
Liu D, Yuan C, Guo C, Huang M, Lin D. Structural and Functional Insights into the Stealth Protein CpsY of Mycobacterium tuberculosis. Biomolecules 2023; 13:1611. [PMID: 38002293 PMCID: PMC10668966 DOI: 10.3390/biom13111611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an important and harmful intracellular pathogen that is responsible for the cause of tuberculosis (TB). Mtb capsular polysaccharides can misdirect the host's immune response pathways, resulting in additional challenges in TB treatment. These capsule polysaccharides are biosynthesized by stealth proteins, including CpsY. The structure and functional mechanism of Mtb CpsY are not completely delineated. Here, we reported the crystal structure of CpsY201-520 at 1.64 Å. CpsY201-520 comprises three β-sheets with five α-helices on one side and three on the other. Four conserved regions (CR1-CR4) are located near and at the base of its catalytic cavity, and three spacer segments (S1-S3) surround the catalytic cavity. Site-directed mutagenesis demonstrated the strict conservation of R419 at CR3 and S1-S3 in regulating the phosphotransferase activity of CpsY201-520. In addition, deletion of S2 or S3 (∆S2 or ∆S3) dramatically increased the activity compared to the wild-type (WT) CpsY201-520. Results from molecular dynamics (MD) simulations showed that S2 and S3 are highly flexible. Our study provides new insights for the development of new vaccines and targeted immunotherapy against Mtb.
Collapse
Affiliation(s)
- Dafeng Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (D.L.); (C.G.)
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (D.L.); (C.G.)
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (D.L.); (C.G.)
| |
Collapse
|
22
|
Torrelles JB, Chatterjee D. Collected Thoughts on Mycobacterial Lipoarabinomannan, a Cell Envelope Lipoglycan. Pathogens 2023; 12:1281. [PMID: 38003746 PMCID: PMC10675199 DOI: 10.3390/pathogens12111281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The presence of lipoarabinomannan (LAM) in the Mycobacterium tuberculosis (Mtb) cell envelope was first reported close to 100 years ago. Since then, numerous studies have been dedicated to the isolation, purification, structural definition, and elucidation of the biological properties of Mtb LAM. In this review, we present a brief historical perspective on the discovery of Mtb LAM and the herculean efforts devoted to structurally characterizing the molecule because of its unique structural and biological features. The significance of LAM remains high to this date, mainly due to its distinct immunological properties in conjunction with its role as a biomarker for diagnostic tests due to its identification in urine, and thus can serve as a point-of-care diagnostic test for tuberculosis (TB). In recent decades, LAM has been thoroughly studied and massive amounts of information on this intriguing molecule are now available. In this review, we give the readers a historical perspective and an update on the current knowledge of LAM with information on the inherent carbohydrate composition, which is unique due to the often puzzling sugar residues that are specifically found on LAM. We then guide the readers through the complex and myriad immunological outcomes, which are strictly dependent on LAM's chemical structure. Furthermore, we present issues that remain unresolved and represent the immediate future of LAM research. Addressing the chemistry, functions, and roles of LAM will lead to innovative ways to manipulate the processes that involve this controversial and fascinating biomolecule.
Collapse
Affiliation(s)
- Jordi B. Torrelles
- International Center for the Advancement of Research and Education (I • Care), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Yang D, Zhang Y, Sow IS, Liang H, El Manssouri N, Gelbcke M, Dong L, Chen G, Dufrasne F, Fontaine V, Li R. Antimycobacterial Activities of Hydroxamic Acids and Their Iron(II/III), Nickel(II), Copper(II) and Zinc(II) Complexes. Microorganisms 2023; 11:2611. [PMID: 37894269 PMCID: PMC10609363 DOI: 10.3390/microorganisms11102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Hydroxamic acid (HA) derivatives display antibacterial and antifungal activities. HA with various numbers of carbon atoms (C2, C6, C8, C10, C12 and C17), complexed with different metal ions, including Fe(II/III), Ni(II), Cu(II) and Zn(II), were evaluated for their antimycobacterial activities and their anti-biofilm activities. Some derivatives showed antimycobacterial activities, especially in biofilm growth conditions. For example, 20-100 µM of HA10Fe2, HA10FeCl, HA10Fe3, HA10Ni2 or HA10Cu2 inhibited Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium marinum biofilm development. HA10Fe2, HA12Fe2 and HA12FeCl could even attack pre-formed Pseudomonas aeruginosa biofilms at higher concentrations (around 300 µM). The phthiocerol dimycocerosate (PDIM)-deficient Mycobacterium tuberculosis H37Ra was more sensitive to the ion complexes of HA compared to other mycobacterial strains. Furthermore, HA10FeCl could increase the susceptibility of Mycobacterium bovis BCG to vancomycin. Proteomic profiles showed that the potential targets of HA10FeCl were mainly related to mycobacterial stress adaptation, involving cell wall lipid biosynthesis, drug resistance and tolerance and siderophore metabolism. This study provides new insights regarding the antimycobacterial activities of HA and their complexes, especially about their potential anti-biofilm activities.
Collapse
Affiliation(s)
- Dong Yang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Yanfang Zhang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Ibrahima Sory Sow
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Hongping Liang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Naïma El Manssouri
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Michel Gelbcke
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - François Dufrasne
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Rongshan Li
- Department of Nephrology, Shanxi Kidney Disease Institute, The Affiliated People’s Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan 030001, China
| |
Collapse
|
24
|
Verma A, Kumar V, Naik B, Masood Khan J, Singh P, Erik Joakim Saris P, Gupta S. Screening and molecular dynamics simulation of compounds inhibiting MurB enzyme of drug-resistant Mycobacterium tuberculosis: An in-silico approach. Saudi J Biol Sci 2023; 30:103730. [PMID: 37483837 PMCID: PMC10362793 DOI: 10.1016/j.sjbs.2023.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is becoming more and more resistant to drugs and it is a common problem, making current antimicrobials ineffective and highlighting the need for new TB drugs. One of the promising targets for treating MTB is MurB enzymes. This study aimed to identify potential inhibitors of MurB enzymes in M. tuberculosis, as drug resistance among MTB is a significant problem. Attempts are being made to conduct a virtual screening of 30,417 compounds, and thirty-two compounds were chosen for further analysis based on their binding conformations. The selected compounds were assessed for their drug-likeness, pharmacokinetics, and physiochemical characteristics, and seven compounds with binding energy lower than flavin (FAD) were identified. Further, molecular dynamics simulation analysis of these seven compounds found that four of them, namely DB12983, DB15688, ZINC084726167, and ZINC254071113 formed stable complexes with the MurB binding site, exhibiting promising inhibitory activity. These compounds have not been mentioned in any other study, indicating their novelty. The study suggests that these four compounds could be promising candidates for treating MTB, but their effectiveness needs to be validated through in vitro and in vivo experiments. Overall, the findings of this study provide new insight into potential drug targets and candidates for combating drug-resistant MTB.
Collapse
Affiliation(s)
- Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, India 248140
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, India 248140
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement town, 248002 Dehradun, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, India 248140
| |
Collapse
|
25
|
Chauhan A, Singh N, Kumar R, Kushwaha NK, Prajapati VM, Singh SK. GlfT1 down-regulation affects Mycobacterium tuberculosis biofilm formation and its in-vitro and in-vivo survival. Tuberculosis (Edinb) 2023; 141:102352. [PMID: 37267752 DOI: 10.1016/j.tube.2023.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Mycobacterial galactan biosynthesis is critical for cell viability and growth, therefore an effort was made to study galactofuranosyl transferase 1, encoded by MRA_3822 in Mycobacterium tuberculosis H37Ra (Mtb-Ra). Galactofuranosyl transferases are involved in the biosynthesis of mycobacterial cell wall galactan chain and have been shown to be essential for in-vitro growth of Mycobacterium tuberculosis. In Mtb-Ra and Mycobacterium tuberculosis H37Rv (Mtb-Rv), two galactofuranosyl transferases are present, GlfT1 acts as initiator of galactan biosynthesis and GlfT2 continues with the subsequent polymerization events. GlfT2 has been well studied however GlfT1 inhibition/down-regulation and its effect on mycobacterial survival fitness has not been evaluated. To study the Mtb-Ra survival after GlfT1 silencing, Mtb-Ra knockdown and complemented strains were developed. In this study we show that GlfT1 down-regulation leads to increased susceptibility to ethambutol. Expression of glfT1 was up-regulated in the presence of ethambutol, and also in the presence of oxidative and nitrosative stress and upon exposure to low pH. Also, reduced biofilm formation, increased accumulation of ethidium bromide, and reduced tolerance to peroxide, nitric oxide and acid stress, were observed. The present study also demonstrates that GlfT1 down-regulation leads to reduced survival of Mtb-Ra in macrophages and in mice.
Collapse
Affiliation(s)
- Anu Chauhan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nirbhay Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ram Kumar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Neeti Kumari Kushwaha
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - V M Prajapati
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sudheer Kumar Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
26
|
Alcaraz M, Edwards TE, Kremer L. New therapeutic strategies for Mycobacterium abscessus pulmonary diseases - untapping the mycolic acid pathway. Expert Rev Anti Infect Ther 2023; 21:813-829. [PMID: 37314394 PMCID: PMC10529309 DOI: 10.1080/14787210.2023.2224563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Treatment options against Mycobacterium abscessus infections are very limited. New compounds are needed to cure M. abscessus pulmonary diseases. While the mycolic acid biosynthetic pathway has been largely exploited for the treatment of tuberculosis, this metabolic process has been overlooked in M. abscessus, although it offers many potential drug targets for the treatment of this opportunistic pathogen. AREAS COVERED Herein, the authors review the role of the MmpL3 membrane protein and the enoyl-ACP reductase InhA involved in the transport and synthesis of mycolic acids, respectively. They discuss their importance as two major vulnerable drug targets in M. abscessus and report the activity of MmpL3 and InhA inhibitors. In particular, they focus on NITD-916, a direct InhA inhibitor against M. abscessus, particularly warranted in the context of multidrug resistance. EXPERT OPINION There is an increasing body of evidence validating the mycolic acid pathway as an attractive drug target to be further exploited for M. abscessus lung disease treatments. The NITD-916 studies provide a proof-of-concept that direct inhibitors of InhA are efficient in vitro, in macrophages and in zebrafish. Future work is now required to improve the activity and pharmacological properties of these inhibitors and their evaluation in pre-clinical models.
Collapse
Affiliation(s)
- Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Thomas E. Edwards
- UCB BioSciences, Bainbridge Island, WA 98109 USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109 USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
27
|
Gong Y, Wang J, Li F, Zhu B. Polysaccharides and glycolipids of Mycobacterium tuberculosis and their induced immune responses. Scand J Immunol 2023; 97:e13261. [PMID: 39008002 DOI: 10.1111/sji.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 07/16/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis (M. tuberculosis). The structures of polysaccharides and glycolipids at M. tuberculosis cell wall vary among different strains, which affect the physiology and pathogenesis of mycobacteria by activating or inhibiting innate and acquired immunity. Among them, some components such as lipomannan (LM) and lipoarabinomannan (LAM) activate innate immunity by recognizing some kinds of pattern recognition receptors (PRRs) like Toll-like receptors, while other components like mannose-capped lipoarabinomannan (ManLAM) could prevent innate immune responses by inhibiting the secretion of pro-inflammatory cytokines and maturation of phagosomes. In addition, many glycolipids can activate natural killer T (NKT) cells and CD1-restricted T cells to produce interferon-γ (IFN-γ). Furthermore, humoral immunity against cell wall components, such as antibodies against LAM, plays a role in immunity against M. tuberculosis infection. Cell wall polysaccharides and glycolipids of M. tuberculosis have potential applications as antigens and adjuvants for novel TB subunit vaccines.
Collapse
Affiliation(s)
- Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
28
|
Thouvenel L, Rech J, Guilhot C, Bouet JY, Chalut C. In vivo imaging of MmpL transporters reveals distinct subcellular locations for export of mycolic acids and non-essential trehalose polyphleates in the mycobacterial outer membrane. Sci Rep 2023; 13:7045. [PMID: 37120636 PMCID: PMC10148836 DOI: 10.1038/s41598-023-34315-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
The mycobacterial cell envelope consists of a typical plasma membrane, surrounded by a complex cell wall and a lipid-rich outer membrane. The biogenesis of this multilayer structure is a tightly regulated process requiring the coordinated synthesis and assembly of all its constituents. Mycobacteria grow by polar extension and recent studies showed that cell envelope incorporation of mycolic acids, the major constituent of the cell wall and outer membrane, is coordinated with peptidoglycan biosynthesis at the cell poles. However, there is no information regarding the dynamics of incorporation of other families of outer membrane lipids during cell elongation and division. Here, we establish that the translocation of non-essential trehalose polyphleates (TPP) occurs at different subcellular locations than that of the essential mycolic acids. Using fluorescence microscopy approaches, we investigated the subcellular localization of MmpL3 and MmpL10, respectively involved in the export of mycolic acids and TPP, in growing cells and their colocalization with Wag31, a protein playing a critical role in regulating peptidoglycan biosynthesis in mycobacteria. We found that MmpL3, like Wag31, displays polar localization and preferential accumulation at the old pole whereas MmpL10 is more homogenously distributed in the plasma membrane and slightly accumulates at the new pole. These results led us to propose a model in which insertion of TPP and mycolic acids into the mycomembrane is spatially uncoupled.
Collapse
Affiliation(s)
- Laurie Thouvenel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative de Toulouse, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative de Toulouse, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
29
|
Cambillau C, Goulet A. Exploring Host-Binding Machineries of Mycobacteriophages with AlphaFold2. J Virol 2023; 97:e0179322. [PMID: 36916948 PMCID: PMC10062164 DOI: 10.1128/jvi.01793-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Although more than 12,000 bacteriophages infecting mycobacteria (mycobacteriophages) have been isolated so far, there is a knowledge gap on their structure-function relationships. Here, we have explored the architecture of host-binding machineries from seven representative mycobacteriophages of the Siphoviridae family infecting Mycobacterium smegmatis, Mycobacterium abscessus, and Mycobacterium tuberculosis, using AlphaFold2 (AF2). AF2 enables confident structural analyses of large and flexible biological assemblies resistant to experimental methods, thereby opening new avenues to shed light on phage structure and function. Our results highlight the modularity and structural diversity of siphophage host-binding machineries that recognize host-specific receptors at the onset of viral infection. Interestingly, the studied mycobacteriophages' host-binding machineries present unique features compared with those of phages infecting other Gram-positive actinobacteria. Although they all assemble the classical Dit (distal tail), Tal (tail-associated lysin), and receptor-binding proteins, five of them contain two potential additional adhesion proteins. Moreover, we have identified brush-like domains formed of multiple polyglycine helices which expose hydrophobic residues as potential receptor-binding domains. These polyglycine-rich domains, which have been observed in only five native proteins, may be a hallmark of mycobacteriophages' host-binding machineries, and they may be more common in nature than expected. Altogether, the unique composition of mycobacteriophages' host-binding machineries indicate they might have evolved to bind to the peculiar mycobacterial cell envelope, which is rich in polysaccharides and mycolic acids. This work provides a rational framework to efficiently produce recombinant proteins or protein domains and test their host-binding function and, hence, to shed light on molecular mechanisms used by mycobacteriophages to infect their host. IMPORTANCE Mycobacteria include both saprophytes, such as the model system Mycobacterium smegmatis, and pathogens, such as Mycobacterium tuberculosis and Mycobacterium abscessus, that are poorly responsive to antibiotic treatments and pose a global public health problem. Mycobacteriophages have been collected at a very large scale over the last decade, and they have proven to be valuable tools for mycobacteria genetic manipulation, rapid diagnostics, and infection treatment. Yet, molecular mechanisms used by mycobacteriophages to infect their host remain poorly understood. Therefore, exploring the structural diversity of mycobacteriophages' host-binding machineries is important not only to better understand viral diversity and bacteriophage-host interactions, but also to rationally develop biotechnological tools. With the powerful protein structure prediction software AlphaFold2, which was publicly released a year ago, it is now possible to gain structural and functional insights on such challenging assemblies.
Collapse
Affiliation(s)
- Christian Cambillau
- School of Microbiology, University College Cork, Cork, Ireland
- AlphaGraphix, Formiguères, France
| | - Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, CNRS and Aix-Marseille Université, Marseille, France
| |
Collapse
|
30
|
Jaisinghani N, Previti ML, Andrade J, Askenazi M, Ueberheide B, Seeliger JC. Cell wall proteomics in live Mycobacterium tuberculosis uncovers exposure of ESX substrates to the periplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534792. [PMID: 37034674 PMCID: PMC10081232 DOI: 10.1101/2023.03.29.534792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The cell wall of mycobacteria plays a key role in interactions with the environment and its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites from ions to lipids to proteins. Accurately identifying cell wall proteins is an important step in assigning function, especially as many mycobacterial proteins lack functionally characterized homologues. Current methods for protein localization have inherent limitations that reduce accuracy. Here we showed that protein tagging by the engineered peroxidase APEX2 within live Mycobacterium tuberculosis enabled the accurate identification of the cytosolic and cell wall proteomes. Our data indicate that substrates of the virulence-associated Type VII ESX secretion system are exposed to the Mtb periplasm, providing insight into the currently unknown mechanism by which these proteins cross the mycobacterial cell envelope.
Collapse
Affiliation(s)
- Neetika Jaisinghani
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Mary L Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Beatrix Ueberheide
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
31
|
Valdemar-Aguilar CM, Manisekaran R, Acosta-Torres LS, López-Marín LM. Spotlight on mycobacterial lipid exploitation using nanotechnology for diagnosis, vaccines, and treatments. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102653. [PMID: 36646193 PMCID: PMC9839462 DOI: 10.1016/j.nano.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Tuberculosis (TB), historically the most significant cause of human morbidity and mortality, has returned as the top infectious disease worldwide, under circumstances worsened by the COVID-19 pandemic's devastating effects on public health. Although Mycobacterium tuberculosis, the causal agent, has been known of for more than a century, the development of tools to control it has been largely neglected. With the advancement of nanotechnology, the possibility of engineering tools at the nanoscale creates unique opportunities to exploit any molecular type. However, little attention has been paid to one of the major attributes of the pathogen, represented by the atypical coat and its abundant lipids. In this review, an overview of the lipids encountered in M. tuberculosis and interest in exploiting them for the development of TB control tools are presented. Then, the amalgamation of nanotechnology with mycobacterial lipids from both reported and future works are discussed.
Collapse
Affiliation(s)
- Carlos M. Valdemar-Aguilar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico.
| | - Laura S. Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico
| | - Luz M. López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Corresponding authors
| |
Collapse
|
32
|
Corrigan DT, Ishida E, Chatterjee D, Lowary TL, Achkar JM. Monoclonal antibodies to lipoarabinomannan/arabinomannan - characteristics and implications for tuberculosis research and diagnostics. Trends Microbiol 2023; 31:22-35. [PMID: 35918247 PMCID: PMC9771891 DOI: 10.1016/j.tim.2022.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
Antibodies to the mycobacterial surface lipoglycan lipoarabinomannan (LAM) and its related capsular polysaccharide arabinomannan (AM) are increasingly important for investigations focused on both understanding mechanisms of protection against Mycobacterium tuberculosis (Mtb) and developing next-generation point-of-care tuberculosis (TB) diagnostics. We provide here an overview of the growing pipeline of monoclonal antibodies (mAbs) to LAM/AM. Old and new methodologies for their generation are reviewed and we outline and discuss their glycan epitope specificity and other features with implications for the TB field.
Collapse
Affiliation(s)
- Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
33
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
34
|
Abstract
This review focuses on nonlytic outer membrane vesicles (OMVs), a subtype of bacterial extracellular vesicles (BEVs) produced by Gram-negative organisms focusing on the mechanisms of their biogenesis, cargo, and function. Throughout, we highlight issues concerning the characterization of OMVs and distinguishing them from other types of BEVs. We also highlight the shortcomings of commonly used methodologies for the study of BEVs that impact the interpretation of their functionality and suggest solutions to standardize protocols for OMV studies.
Collapse
Affiliation(s)
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
35
|
Correia-Neves M, Nigou J, Mousavian Z, Sundling C, Källenius G. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol 2022; 13:1035122. [PMID: 36544778 PMCID: PMC9761185 DOI: 10.3389/fimmu.2022.1035122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Glycolipids constitute a major part of the cell envelope of Mycobacterium tuberculosis (Mtb). They are potent immunomodulatory molecules recognized by several immune receptors like pattern recognition receptors such as TLR2, DC-SIGN and Dectin-2 on antigen-presenting cells and by T cell receptors on T lymphocytes. The Mtb glycolipids lipoarabinomannan (LAM) and its biosynthetic relatives, phosphatidylinositol mannosides (PIMs) and lipomannan (LM), as well as other Mtb glycolipids, such as phenolic glycolipids and sulfoglycolipids have the ability to modulate the immune response, stimulating or inhibiting a pro-inflammatory response. We explore here the downmodulating effect of Mtb glycolipids. A great proportion of the studies used in vitro approaches although in vivo infection with Mtb might also lead to a dampening of myeloid cell and T cell responses to Mtb glycolipids. This dampened response has been explored ex vivo with immune cells from peripheral blood from Mtb-infected individuals and in mouse models of infection. In addition to the dampening of the immune response caused by Mtb glycolipids, we discuss the hyporesponse to Mtb glycolipids caused by prolonged Mtb infection and/or exposure to Mtb antigens. Hyporesponse to LAM has been observed in myeloid cells from individuals with active and latent tuberculosis (TB). For some myeloid subsets, this effect is stronger in latent versus active TB. Since the immune response in individuals with latent TB represents a more protective profile compared to the one in patients with active TB, this suggests that downmodulation of myeloid cell functions by Mtb glycolipids may be beneficial for the host and protect against active TB disease. The mechanisms of this downmodulation, including tolerance through epigenetic modifications, are only partly explored.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B's), Portuguese (PT) Government Associate Laboratory, Braga, Portugal,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Gunilla Källenius,
| |
Collapse
|
36
|
Pohane AA, Moore DJ, Lepori I, Gordon RA, Nathan TO, Gepford DM, Kavunja HW, Gaidhane IV, Swarts BM, Siegrist MS. A Bifunctional Chemical Reporter for in Situ Analysis of Cell Envelope Glycan Recycling in Mycobacteria. ACS Infect Dis 2022; 8:2223-2231. [PMID: 36288262 PMCID: PMC9924612 DOI: 10.1021/acsinfecdis.2c00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In mycobacteria, the glucose-based disaccharide trehalose cycles between the cytoplasm, where it is a stress protectant and carbon source, and the cell envelope, where it is released as a byproduct of outer mycomembrane glycan biosynthesis and turnover. Trehalose recycling via the LpqY-SugABC transporter promotes virulence, antibiotic recalcitrance, and efficient adaptation to nutrient deprivation. The source(s) of trehalose and the regulation of recycling under these and other stressors are unclear. A key technical gap in addressing these questions has been the inability to trace trehalose recycling in situ, directly from its site of liberation from the cell envelope. Here we describe a bifunctional chemical reporter that simultaneously marks mycomembrane biosynthesis and subsequent trehalose recycling with alkyne and azide groups. Using this probe, we discovered that the recycling efficiency for trehalose increases upon carbon starvation, concomitant with an increase in LpqY-SugABC expression. The ability of the bifunctional reporter to probe multiple, linked steps provides a more nuanced understanding of mycobacterial cell envelope metabolism and its plasticity under stress.
Collapse
Affiliation(s)
- Amol Arunrao Pohane
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
| | - Devin J. Moore
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Irene Lepori
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
| | - Rebecca A. Gordon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003 USA
| | - Temitope O. Nathan
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Dana M. Gepford
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Ishani V. Gaidhane
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 United States
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003 USA
| |
Collapse
|
37
|
Ashby LV, Springer R, Loi VV, Antelmann H, Hampton MB, Kettle AJ, Dickerhof N. Oxidation of bacillithiol during killing of Staphylococcus aureus USA300 inside neutrophil phagosomes. J Leukoc Biol 2022; 112:591-605. [PMID: 35621076 PMCID: PMC9796752 DOI: 10.1002/jlb.4hi1021-538rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
Targeting immune evasion tactics of pathogenic bacteria may hold the key to treating recalcitrant bacterial infections. Staphylococcus aureus produces bacillithiol (BSH), its major low-molecular-weight thiol, which is thought to protect this opportunistic human pathogen against the bombardment of oxidants inside neutrophil phagosomes. Here, we show that BSH was oxidized when human neutrophils phagocytosed S. aureus, but provided limited protection to the bacteria. We used mass spectrometry to measure the oxidation of BSH upon exposure of S. aureus USA300 to either a bolus of hypochlorous acid (HOCl) or a flux generated by the neutrophil enzyme myeloperoxidase. Oxidation of BSH and loss of bacterial viability were strongly correlated (r = 0.99, p < 0.001). BSH was fully oxidized after exposure of S. aureus to lethal doses of HOCl. However, there was no relationship between the initial BSH levels and the dose of HOCl required for bacterial killing. In contrast to the HOCl systems, only 50% of total BSH was oxidized when neutrophils killed the majority of phagocytosed bacteria. Oxidation of BSH was decreased upon inhibition of myeloperoxidase, implicating HOCl in phagosomal BSH oxidation. A BSH-deficient S. aureus USA300 mutant was slightly more susceptible to treatment with either HOCl or ammonia chloramine, or to killing within neutrophil phagosomes. Collectively, our data show that myeloperoxidase-derived oxidants react with S. aureus inside neutrophil phagosomes, leading to partial BSH oxidation, and contribute to bacterial killing. However, BSH offers only limited protection against the neutrophil's multifaceted killing mechanisms.
Collapse
Affiliation(s)
- Louisa V Ashby
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Reuben Springer
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Vu Van Loi
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Haike Antelmann
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
38
|
Bisht D, Singh R, Sharma D, Sharma D, Gautam S, Gupta MK. Unraveling Major Proteins of Mycobacterium tuberculosis Envelope. CURR PROTEOMICS 2022; 19:372-379. [DOI: 10.2174/1570164619666220908141130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Although treatable, resistant form of tuberculosis (TB) has posed a major impediment to the
effective TB control programme. As the Mycobacterium tuberculosis cell envelope is closely associated
with its virulence and resistance, it is very important to understand the cell envelope for better
treatment of causative pathogens. Cell membrane plays a crucial role in imparting various cell functions.
Proteins being the functional moiety, it is impossible to characterize the functional properties
based on genetic analysis alone. Proteomic based research has indicated mycobacterial envelope as a
good source of antigens/proteins. Envelope/membrane and associated proteins have an anticipated role
in biological processes, which could be of vital importance to the microbe, and hence could qualify as
drug targets. This review provides an overview of the prominent and biologically important cell envelope
and highlights the different functions offered by the proteins associated with it. Selective targeting
of the mycobacterial envelope offers an untapped opportunity to address the problems associated
with the current drug regimen and also will lead to the development of more potent and safer drugs
against all forms of tuberculous infections.
Collapse
Affiliation(s)
- Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Rananjay Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, Bahadur Shah Zafar Marg,
New Delhi-110002, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | | |
Collapse
|
39
|
Di Capua CB, Belardinelli JM, Carignano HA, Buchieri MV, Suarez CA, Morbidoni HR. Unveiling the Biosynthetic Pathway for Short Mycolic Acids in Nontuberculous Mycobacteria: Mycobacterium smegmatis MSMEG_4301 and Its Ortholog Mycobacterium abscessus MAB_1915 Are Essential for the Synthesis of α'-Mycolic Acids. Microbiol Spectr 2022; 10:e0128822. [PMID: 35862962 PMCID: PMC9431677 DOI: 10.1128/spectrum.01288-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022] Open
Abstract
Mycolic acids, a hallmark of the genus Mycobacterium, are unique branched long-chain fatty acids produced by a complex biosynthetic pathway. Due to their essentiality and involvement in various aspects of mycobacterial pathogenesis, the synthesis of mycolic acids-and the identification of the enzymes involved-is a valuable target for drug development. Although most of the core pathway is comparable between species, subtle structure differences lead to different structures delineating the mycolic acid repertoire of tuberculous and some nontuberculous mycobacteria. We here report the characterization of an α'-mycolic acid-deficient Mycobacterium smegmatis mutant obtained by chemical mutagenesis. Whole-genome sequencing and bioinformatic analysis identified a premature stop codon in MSMEG_4301, encoding an acyl-CoA synthetase. Orthologs of MSMEG_4301 are present in all mycobacterial species containing α'-mycolic acids. Deletion of the Mycobacterium abscessus ortholog MAB_1915 abrogated synthesis of α'-mycolic acids; likewise, deletion of MSMEG_4301 in an otherwise wild-type M. smegmatis background also caused loss of these short mycolates. IMPORTANCE Mycobacterium abscessus is a nontuberculous mycobacterium responsible for an increasing number of hard-to-treat infections due to the impervious nature of its cell envelope, a natural barrier to several antibiotics. Mycolic acids are key components of that envelope; thus, their synthesis is a valuable target for drug development. Our results identify the first enzyme involved in α'-mycolic acids, a short-chain member of mycolic acids, loss of which greatly affects growth of this opportunistic pathogen.
Collapse
Affiliation(s)
- Cecilia B. Di Capua
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan M. Belardinelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo A. Carignano
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María V. Buchieri
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cristian A. Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R. Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
40
|
Le NH, Constant P, Tranier S, Nahoum V, Guillet V, Maveyraud L, Daffé M, Mourey L, Verhaeghe P, Marrakchi H. Drug screening approach against mycobacterial fatty acyl-AMP ligase FAAL32 renews the interaest of the salicylanilide pharmacophore in the fight against tuberculosis. Bioorg Med Chem 2022; 71:116938. [DOI: 10.1016/j.bmc.2022.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
|
41
|
Filloux A. Bacterial protein secretion systems: Game of types. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35536734 DOI: 10.1099/mic.0.001193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein trafficking across the bacterial envelope is a process that contributes to the organisation and integrity of the cell. It is the foundation for establishing contact and exchange between the environment and the cytosol. It helps cells to communicate with one another, whether they establish symbiotic or competitive behaviours. It is instrumental for pathogenesis and for bacteria to subvert the host immune response. Understanding the formation of envelope conduits and the manifold strategies employed for moving macromolecules across these channels is a fascinating playground. The diversity of the nanomachines involved in this process logically resulted in an attempt to classify them, which is where the protein secretion system types emerged. As our knowledge grew, so did the number of types, and their rightful nomenclature started to be questioned. While this may seem a semantic or philosophical issue, it also reflects scientific rigour when it comes to assimilating findings into textbooks and science history. Here I give an overview on bacterial protein secretion systems, their history, their nomenclature and why it can be misleading for newcomers in the field. Note that I do not try to suggest a new nomenclature. Instead, I explore the reasons why naming could have escaped our control and I try to reiterate basic concepts that underlie protein trafficking cross membranes.
Collapse
Affiliation(s)
- Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
42
|
de Sousa-d'Auria C, Constantinesco F, Bayan N, Constant P, Tropis M, Daffé M, Graille M, Houssin C. Cg1246, a new player in mycolic acid biosynthesis in Corynebacterium glutamicum. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394419 DOI: 10.1099/mic.0.001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycolic acids are key components of the complex cell envelope of Corynebacteriales. These fatty acids, conjugated to trehalose or to arabinogalactan form the backbone of the mycomembrane. While mycolic acids are essential to the survival of some species, such as Mycobacterium tuberculosis, their absence is not lethal for Corynebacterium glutamicum, which has been extensively used as a model to depict their biosynthesis. Mycolic acids are first synthesized on the cytoplasmic side of the inner membrane and transferred onto trehalose to give trehalose monomycolate (TMM). TMM is subsequently transported to the periplasm by dedicated transporters and used by mycoloyltransferase enzymes to synthesize all the other mycolate-containing compounds. Using a random transposition mutagenesis, we recently identified a new uncharacterized protein (Cg1246) involved in mycolic acid metabolism. Cg1246 belongs to the DUF402 protein family that contains some previously characterized nucleoside phosphatases. In this study, we performed a functional and structural characterization of Cg1246. We showed that absence of the protein led to a significant reduction in the pool of TMM in C. glutamicum, resulting in a decrease in all other mycolate-containing compounds. We found that, in vitro, Cg1246 has phosphatase activity on organic pyrophosphate substrates but is most likely not a nucleoside phosphatase. Using a computational approach, we identified important residues for phosphatase activity and constructed the corresponding variants in C. glutamicum. Surprisingly complementation with these non-functional proteins fully restored the defect in TMM of the Δcg1246 mutant strain, suggesting that in vivo, the phosphatase activity is not involved in mycolic acid biosynthesis.
Collapse
Affiliation(s)
- Célia de Sousa-d'Auria
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Florence Constantinesco
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Patricia Constant
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maryelle Tropis
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau Cedex, Paris, France
| | - Christine Houssin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
43
|
Mycobacterium tuberculosis EspK Has Active but Distinct Roles in the Secretion of EsxA and EspB. J Bacteriol 2022; 204:e0006022. [PMID: 35315684 DOI: 10.1128/jb.00060-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Mycobacterium tuberculosis type-7 protein secretion system ESX-1 is a major driver of its virulence. While the functions of most ESX-1 components are characterized, many others remain poorly defined. In this study, we examined the role of EspK, an ESX-1-associated protein that is thought to be dispensable for ESX-1 activity in members of the Mycobacterium tuberculosis complex. We show that EspK is needed for the timely and optimal secretion of EsxA and absolutely essential for EspB secretion in M. tuberculosis Erdman. We demonstrate that only the EsxA secretion defect can be alleviated in EspK-deficient M. tuberculosis by culturing it in media containing detergents like Tween 80 or tyloxapol. Subcellular fractionation experiments reveal EspK is exported by M. tuberculosis in an ESX-1-independent manner and localized to its cell wall. We also show a conserved W-X-G motif in EspK is important for its interaction with EspB and enabling its secretion. The same motif, however, is not important for EspK localization in the cell wall. Finally, we show EspB in EspK-deficient M. tuberculosis tends to adopt higher-order oligomeric conformations, more so than EspB in wild-type M. tuberculosis. These results suggest EspK interacts with EspB and prevents it from assembling prematurely into macromolecular complexes that are presumably too large to pass through the membrane-spanning ESX-1 translocon assembly. Collectively, our findings indicate M. tuberculosis EspK has a far more active role in ESX-1-mediated secretion than was previously appreciated and underscores the complex nature of this secretion apparatus. IMPORTANCE Mycobacterium tuberculosis uses its ESX-1 system to secrete EsxA and EspB into a host to cause disease. We show that EspK, a protein whose role in the ESX-1 machinery was thought to be nonessential, is needed by M. tuberculosis for optimal EsxA and EspB secretion. Culturing EspK-deficient M. tuberculosis with detergents alleviates EsxA but not EspB secretion defects. We also show that EspK, which is exported by M. tuberculosis in an ESX-1-independent manner to the cell wall, interacts with and prevents EspB from assembling into large structures inside the M. tuberculosis cell that are nonsecretable. Collectively, our observations demonstrate EspK is an active component of the ESX-1 secretion machinery of the tubercle bacillus.
Collapse
|
44
|
Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms 2022; 10:microorganisms10020454. [PMID: 35208908 PMCID: PMC8875947 DOI: 10.3390/microorganisms10020454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adhesion is crucial for the infective lifestyles of bacterial pathogens. Adhesion to non-living surfaces, other microbial cells, and components of the biofilm extracellular matrix are crucial for biofilm formation and integrity, plus adherence to host factors constitutes a first step leading to an infection. Adhesion is, therefore, at the core of pathogens’ ability to contaminate, transmit, establish residency within a host, and cause an infection. Several mycobacterial species cause diseases in humans and animals with diverse clinical manifestations. Mycobacterium tuberculosis, which enters through the respiratory tract, first adheres to alveolar macrophages and epithelial cells leading up to transmigration across the alveolar epithelium and containment within granulomas. Later, when dissemination occurs, the bacilli need to adhere to extracellular matrix components to infect extrapulmonary sites. Mycobacteria causing zoonotic infections and emerging nontuberculous mycobacterial pathogens follow divergent routes of infection that probably require adapted adhesion mechanisms. New evidence also points to the occurrence of mycobacterial biofilms during infection, emphasizing a need to better understand the adhesive factors required for their formation. Herein, we review the literature on tuberculous and nontuberculous mycobacterial adhesion to living and non-living surfaces, to themselves, to host cells, and to components of the extracellular matrix.
Collapse
|
45
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
46
|
Galy R, Ballereau S, Génisson Y, Mourey L, Plaquevent JC, Maveyraud L. Fragment-Based Ligand Discovery Applied to the Mycolic Acid Methyltransferase Hma (MmaA4) from Mycobacterium tuberculosis: A Crystallographic and Molecular Modelling Study. Pharmaceuticals (Basel) 2021; 14:ph14121282. [PMID: 34959681 PMCID: PMC8708032 DOI: 10.3390/ph14121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
The mycolic acid biosynthetic pathway represents a promising source of pharmacological targets in the fight against tuberculosis. In Mycobacterium tuberculosis, mycolic acids are subject to specific chemical modifications introduced by a set of eight S-adenosylmethionine dependent methyltransferases. Among these, Hma (MmaA4) is responsible for the introduction of oxygenated modifications. Crystallographic screening of a library of fragments allowed the identification of seven ligands of Hma. Two mutually exclusive binding modes were identified, depending on the conformation of residues 147–154. These residues are disordered in apo-Hma but fold upon binding of the S-adenosylmethionine (SAM) cofactor as well as of analogues, resulting in the formation of the short η1-helix. One of the observed conformations would be incompatible with the presence of the cofactor, suggesting that allosteric inhibitors could be designed against Hma. Chimeric compounds were designed by fusing some of the bound fragments, and the relative binding affinities of initial fragments and evolved compounds were investigated using molecular dynamics simulation and generalised Born and Poisson–Boltzmann calculations coupled to the surface area continuum solvation method. Molecular dynamics simulations were also performed on apo-Hma to assess the structural plasticity of the unliganded protein. Our results indicate a significant improvement in the binding properties of the designed compounds, suggesting that they could be further optimised to inhibit Hma activity.
Collapse
Affiliation(s)
- Romain Galy
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France; (R.G.); (L.M.)
| | - Stéphanie Ballereau
- Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31062 Toulouse, France; (S.B.); (Y.G.); (J.-C.P.)
| | - Yves Génisson
- Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31062 Toulouse, France; (S.B.); (Y.G.); (J.-C.P.)
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France; (R.G.); (L.M.)
| | - Jean-Christophe Plaquevent
- Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31062 Toulouse, France; (S.B.); (Y.G.); (J.-C.P.)
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France; (R.G.); (L.M.)
- Correspondence: ; Tel.: +33-561-17-54-35
| |
Collapse
|
47
|
Fluorescence Imaging-Based Discovery of Membrane Domain-Associated Proteins in Mycobacterium smegmatis. J Bacteriol 2021; 203:e0041921. [PMID: 34516286 DOI: 10.1128/jb.00419-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacteria spatially organize their plasma membrane, and many enzymes involved in envelope biosynthesis associate with a membrane compartment termed the intracellular membrane domain (IMD). The IMD is concentrated in the polar regions of growing cells and becomes less polarized under nongrowing conditions. Because mycobacteria elongate from the poles, the observed polar localization of the IMD during growth likely supports the localized biosynthesis of envelope components. While we have identified more than 300 IMD-associated proteins by proteomic analyses, only a few of these have been verified by independent experimental methods. Furthermore, some IMD-associated proteins may have escaped proteomic identification and remain to be identified. Here, we visually screened an arrayed library of 523 Mycobacterium smegmatis strains, each producing a Dendra2-FLAG-tagged recombinant protein. We identified 29 fusion proteins that showed polar fluorescence patterns characteristic of IMD proteins. Twenty of these had previously been suggested to localize to the IMD based on proteomic data. Of the nine remaining IMD candidate proteins, three were confirmed by biochemical methods to be associated with the IMD. Taken together, this new colocalization strategy is effective in verifying the IMD association of proteins found by proteomic analyses while facilitating the discovery of additional IMD-associated proteins. IMPORTANCE The intracellular membrane domain (IMD) is a membrane subcompartment found in Mycobacterium smegmatis cells. Proteomic analysis of purified IMD identified more than 300 proteins, including enzymes involved in cell envelope biosynthesis. However, proteomics on its own is unlikely to detect every IMD-associated protein because of technical and biological limitations. Here, we describe fluorescent protein colocalization as an alternative, independent approach. Using a combination of fluorescence microscopy, proteomics, and subcellular fractionation, we identified three new proteins associated with the IMD. Such a robust method to rigorously define IMD proteins will benefit future investigations to decipher the synthesis, maintenance, and functions of this membrane domain and help delineate a more general mechanism of subcellular protein localization in mycobacteria.
Collapse
|
48
|
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567-584. [PMID: 34040228 DOI: 10.1038/s41579-021-00560-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany. .,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany.
| |
Collapse
|
49
|
Abstract
The type VII protein secretion system (T7SS) of Staphylococcus aureus is encoded at the ess locus. T7 substrate recognition and protein transport are mediated by EssC, a membrane-bound multidomain ATPase. Four EssC sequence variants have been identified across S. aureus strains, each accompanied by a specific suite of substrate proteins. The ess genes are upregulated during persistent infection, and the secretion system contributes to virulence in disease models. It also plays a key role in intraspecies competition, secreting nuclease and membrane-depolarizing toxins that inhibit the growth of strains lacking neutralizing immunity proteins. A genomic survey indicates that the T7SS is widely conserved across staphylococci and is encoded in clusters that contain diverse arrays of toxin and immunity genes. The presence of genomic islands encoding multiple immunity proteins in species such as Staphylococcus warneri that lack the T7SS points to a major role for the secretion system in bacterial antagonism. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Bowman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| |
Collapse
|
50
|
Biegas KJ, Swarts BM. Chemical probes for tagging mycobacterial lipids. Curr Opin Chem Biol 2021; 65:57-65. [PMID: 34216933 DOI: 10.1016/j.cbpa.2021.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Mycobacteria, which cause tuberculosis and related diseases, possess a diverse set of complex envelope lipids that provide remarkable tolerance to antibiotics and are major virulence factors that drive pathogenesis. Recently, metabolic labeling and bio-orthogonal chemistry have been harnessed to develop chemical probes for tagging specific lipids in live mycobacteria, enabling a range of new basic and translational research avenues. A toolbox of probes has been developed for labeling mycolic acids and their derivatives, including trehalose-, arabinogalactan-, and protein-linked mycolates, as well as newer probes for labeling phthiocerol dimycocerosates (PDIMs) and potentially other envelope lipids. These lipid-centric tools have yielded fresh insights into mycobacterial growth and host interactions, provided new avenues for drug target discovery and characterization, and inspired innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|