1
|
Duan Z, Liao L, Lai T, Yang R, Zhang J, Chen B. Dynamic and intricate regulation by the Csr sRNAs in the Arctic Pseudoalteromonas fuliginea. Commun Biol 2025; 8:369. [PMID: 40044903 PMCID: PMC11882849 DOI: 10.1038/s42003-025-07780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The Csr (Carbon Storage Regulator) system is pivotal in controlling various cellular functions in most bacteria, primarily through the CsrA protein and its antagonistic sRNAs. However, riboregulatory networks are less explored in non-model organisms, particularly those in extreme environments. In this study, we discovered two new sRNAs of the Csr system, Pf2 and Pf3, in the Arctic bacterium Pseudoalteromonas fuliginea BSW20308, along with the previously known Pf1. By studying the impact of these Pf sRNAs on CsrA targetomes and physiological processes, we found a significant influence on various cellular functions and a collective effect on the interaction dynamics between CsrA and RNAs. Furthermore, we identified additional sRNAs that can interact with CsrA and mRNAs. Overall, our results emphasize the growing influence of the Csr system on cellular physiology through intricate sRNA regulation of CsrA, revealing riboregulatory network complexity and significance in non-model organisms.
Collapse
Affiliation(s)
- Zedong Duan
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Li Liao
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China.
| | - Tingyi Lai
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Ruyi Yang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
2
|
Hu Y, Zhang J, Zhang A. Genome-Wide Transcriptome Analysis of a Virulent sRNA, Trans217, in Xanthomonas oryzae pv. oryzae ( Xoo), the Causative Agent of Rice Bacterial Blight. Microorganisms 2024; 12:1684. [PMID: 39203526 PMCID: PMC11357379 DOI: 10.3390/microorganisms12081684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Small non-coding RNAs (sRNAs) act as post-transcriptional regulators to participate in many cellular processes. Among these, sRNA trans217 has been identified as a key virulent factor associated with pathogenicity in rice, triggering hypersensitive reactions in non-host tobacco and facilitating the secretion of the PthXo1 effector in Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99A. Elucidating potential targets and downstream regulatory genes is crucial for understanding cellular networks governing pathogenicity and plant resistance. To explore the targets regulated by sRNA trans217, transcriptome sequencing was carried out to assess differential expression genes (DEGs) between the wild-type strain PXO99A and a mutant lacking the sRNA fragment under both virulence-inducing or normal growth conditions. DEG analysis revealed that sRNA trans217 was responsible for diverse functions, such as type III secretion system (T3SS), glutamate synthase activity, and oxidative stress response. Three genes were selected for further investigation due to their significant differential expression and biological relevance. Deletion of PXO_RS08490 attenuated the pathogenicity of Xoo in rice and reduced the tolerance level of PXO99A to hydrogen peroxide. These findings suggest a regulatory role of sRNA trans217 in modulating bacterial virulence through multiple gene targets, either directly or indirectly.
Collapse
Affiliation(s)
- Yiqun Hu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
| | - Jianjian Zhang
- Department of science research University of Science and Technology of China, Hefei 230026, China;
| | - Aifang Zhang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
| |
Collapse
|
3
|
Warrier I, Perry A, Hubbell SM, Eichelman M, van Opijnen T, Meyer MM. RNA cis-regulators are important for Streptococcus pneumoniae in vivo success. PLoS Genet 2024; 20:e1011188. [PMID: 38442125 PMCID: PMC10942264 DOI: 10.1371/journal.pgen.1011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Bacteria have evolved complex transcriptional regulatory networks, as well as many diverse regulatory strategies at the RNA level, to enable more efficient use of metabolic resources and a rapid response to changing conditions. However, most RNA-based regulatory mechanisms are not well conserved across different bacterial species despite controlling genes important for virulence or essential biosynthetic processes. Here, we characterize the activity of, and assess the fitness benefit conferred by, twelve cis-acting regulatory RNAs (including several riboswitches and a T-box), in the opportunistic pathogen Streptococcus pneumoniae TIGR4. By evaluating native locus mutants of each regulator that result in constitutively active or repressed expression, we establish that growth defects in planktonic culture are associated with constitutive repression of gene expression, while constitutive activation of gene expression is rarely deleterious. In contrast, in mouse nasal carriage and pneumonia models, strains with either constitutively active and repressed gene expression are significantly less fit than matched control strains. Furthermore, two RNA-regulated pathways, FMN synthesis/transport and pyrimidine synthesis/transport display exceptional sensitivity to mis-regulation or constitutive gene repression in both planktonic culture and in vivo environments. Thus, despite lack of obvious phenotypes associated with constitutive gene expression in vitro, the fitness benefit conferred on bacteria via fine-tuned metabolic regulation through cis-acting regulatory RNAs is substantial in vivo, and therefore easily sufficient to drive the evolution and maintenance of diverse RNA regulatory mechanisms.
Collapse
Affiliation(s)
- Indu Warrier
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ariana Perry
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Sara M. Hubbell
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Matthew Eichelman
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michelle M. Meyer
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
4
|
Li G, Huang J, Cai Q, Wei Z, Pen G, Li Z, Wang J, Zhai L. Analysis of Osmotic Tolerance, Physiological Characteristics, and Gene Expression of Salmonella enterica subsp . enterica Serotype Derby. ACS OMEGA 2023; 8:36088-36099. [PMID: 37810736 PMCID: PMC10551921 DOI: 10.1021/acsomega.3c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023]
Abstract
Salmonella is an important foodborne pathogen, and recent epidemiological studies have shown high infection rates of Salmonella enterica subsp. enterica serotype Derby (S.Derby) in poultry in western China and other regions. S.Derby presents increasing concerns with the development of resistance to hypertonic environments; however, there are few reports investigating the mechanism of resistance. Therefore, in this study, we examined hypertonic adaptation in S.Derby at the physiological and molecular levels. The K-B paper method, wiping glass bead method, crystal violet staining, and RT-PCR combined with comparative genomics analysis were employed to characterize virulence, drug resistance, biofilm formation, and changes in gene expression of genes related to hypertonic adaptation in S.Derby. Hypertonic-adapted S.Derby exhibited resistance to OXA, AMP, PEN, and CEP antibiotics, and biofilm-forming ability was 1.25 times that of nonadapted S.Derby. RT-PCR results showed that compared with nonadapted S.Derby, the expression of virulence-related genes in hypertonic-adapted S.Derby increased by 2-3 times, that of biofilm-related genes increased by 2-4 times, and that of OXA, AMP, PEN, and CEP-related drug resistance genes was relatively high. Four hypertonic tolerance-related genes (otsA, proV, proW, omsV) were preliminarily identified in S.Derby. The expression of proW was always relatively high in hypertonic-adapted S.Derby, the expression of otsA gradually became higher than that of proW with increasing time of osmotic stress, and the expression of proV and omsV was only high in non-hypertonic-adapted S.Derby.
Collapse
Affiliation(s)
- Ganghui Li
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Ju Huang
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Qiuhui Cai
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Zhaohui Wei
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Gang Pen
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Zhen Li
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Junying Wang
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| | - Ligong Zhai
- Key Laboratory
of Food Processing
and Safety, College of Food Engineering, Anhui University of Science and Technology, Chuzhou 233100, China
| |
Collapse
|
5
|
Abstract
Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.
Collapse
Affiliation(s)
- Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany;
- Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
6
|
FinO/ProQ-family proteins: an evolutionary perspective. Biosci Rep 2023; 43:232566. [PMID: 36787218 PMCID: PMC9977716 DOI: 10.1042/bsr20220313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins are key actors of post-transcriptional networks. Almost exclusively studied in the light of their interactions with RNA ligands and the associated functional events, they are still poorly understood as evolutionary units. In this review, we discuss the FinO/ProQ family of bacterial RNA chaperones, how they evolve and spread across bacterial populations and what properties and opportunities they provide to their host cells. We reflect on major conserved and divergent themes within the family, trying to understand how the same ancestral RNA-binding fold, augmented with additional structural elements, could yield either highly specialised proteins or, on the contrary, globally acting regulatory hubs with a pervasive impact on gene expression. We also consider dominant convergent evolutionary trends that shaped their RNA chaperone activity and recurrently implicated the FinO/ProQ-like proteins in bacterial DNA metabolism, translation and virulence. Finally, we offer a new perspective in which FinO/ProQ-family regulators emerge as active evolutionary players with both negative and positive roles, significantly impacting the evolutionary modes and trajectories of their bacterial hosts.
Collapse
|
7
|
Wen J, Liao L, Duan Z, Su S, Zhang J, Chen B. Identification and Regulatory Roles of a New Csr Small RNA from Arctic Pseudoalteromonas fuliginea BSW20308 in Temperature Responses. Microbiol Spectr 2023; 11:e0409422. [PMID: 36625662 PMCID: PMC9927453 DOI: 10.1128/spectrum.04094-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Small RNAs (sRNAs) play a very important role in gene regulation at the posttranscriptional level. However, sRNAs from nonmodel microorganisms, extremophiles in particular, have been rarely explored. We discovered a putative sRNA, termed Pf1 sRNA, in Pseudoalteromonas fuliginea BSW20308 isolated from the polar regions in our previous work. In this study, we identified the sRNA and investigated its regulatory role in gene expression under different temperatures. Pf1 sRNA was confirmed to be a new member of the CsrB family but has little sequence similarity with Escherichia coli CsrB. However, Pf1 sRNA was able to bind to CsrA from E. coli and P. fuliginea BSW20308 to regulate glycogen synthesis. The Pf1 sRNA knockout strain (ΔPf1) affected motility, fitness, and global gene expression in transcriptomes and proteomes at 4°C and 32°C. Genes related to carbon metabolism, amino acid metabolism, salinity tolerance, antibiotic resistance, oxidative stress, motility, chemotaxis, biofilm, and secretion systems were differentially expressed in the wild-type strain and the ΔPf1 mutant. Our study suggested that Pf1 sRNA might play an important role in response to environmental changes by regulating global gene expression. Specific targets of the Pf1 sRNA-CsrA system were tentatively proposed, such as genes involved in the type VI secretion system, TonB-dependent receptors, and response regulators, but most of them have an unknown function. Since this is the first study of CsrB family sRNA in Pseudoalteromonas and microbes from the polar regions, it provides a novel insight at the posttranscriptional level into the responses and adaptation to temperature changes in bacteria from extreme environments. This study also sheds light on the evolution of sRNA in extreme environments and expands the bacterial sRNA database. IMPORTANCE Previous research on microbial temperature adaptation has focused primarily on functional genes, with little attention paid to posttranscriptional regulation. Small RNAs, the major posttranscriptional modulators of gene expression, are greatly underexplored, especially in nonpathogenic and nonmodel microorganisms. In this study, we verified the first Csr sRNA, named Pf1 sRNA, from Pseudoalteromonas, a model genus for studying cold adaptation. We revealed that Pf1 sRNA played an important role in global regulation and was indispensable in improving fitness. This study provided us a comprehensive view of sRNAs from Pseudoalteromonas and expanded our understanding of bacterial sRNAs from extreme environments.
Collapse
Affiliation(s)
- Jiao Wen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Li Liao
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Zedong Duan
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Shiyuan Su
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
8
|
A Regulatory SRNA Rli43 Is Involved in the Modulation of Biofilm Formation and Virulence in Listeria monocytogenes. Pathogens 2022; 11:pathogens11101137. [PMID: 36297193 PMCID: PMC9606912 DOI: 10.3390/pathogens11101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Small RNAs (sRNAs) are a kind of regulatory molecule that can modulate gene expression at the post-transcriptional level, thereby involving alteration of the physiological characteristics of bacteria. However, the regulatory roles and mechanisms of most sRNAs remain unknown in Listeria monocytogenes(L. monocytogenes). To explore the regulatory roles of sRNA Rli43 in L. monocytogenes, the rli43 gene deletion strain LM-Δrli43 and complementation strain LM-Δrli43-rli43 were constructed to investigate the effects of Rli43 on responses to environmental stress, biofilm formation, and virulence, respectively. Additionally, Rli43-regulated target genes were identified using bioinformatic analysis tools and a bacterial dual plasmid reporter system based on E. coli. The results showed that the intracellular expression level of the rli43 gene was significantly upregulated compared with those under extracellular conditions. Compared with the parental and complementation strains, the environmental adaptation, motility, biofilm formation, adhesion, invasion, and intracellular survival of LM-Δrli43 were significantly reduced, respectively, whereas the LD50 of LM-Δrli43 was significantly elevated in BALB/c mice. Furthermore, the bacterial loads and pathological damages were alleviated, suggesting that sRNA Rli43 was involved in the modulation of the virulence of L. monocytogenes. It was confirmed that Rli43 may complementarily pair with the 5'-UTR (-47--55) of HtrA mRNA, thereby regulating the expression level of HtrA protein at the post-transcriptional level. These findings suggest that Rli43-mediated control was involved in the modulation of environmental adaptation, biofilm formation, and virulence in L. monocytogenes.
Collapse
|
9
|
Coronel-Tellez RH, Pospiech M, Barrault M, Liu W, Bordeau V, Vasnier C, Felden B, Sargueil B, Bouloc P. sRNA-controlled iron sparing response in Staphylococci. Nucleic Acids Res 2022; 50:8529-8546. [PMID: 35904807 PMCID: PMC9410917 DOI: 10.1093/nar/gkac648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus, a human opportunist pathogen, adjusts its metabolism to cope with iron deprivation within the host. We investigated the potential role of small non-coding RNAs (sRNAs) in dictating this process. A single sRNA, named here IsrR, emerged from a competition assay with tagged-mutant libraries as being required during iron starvation. IsrR is iron-repressed and predicted to target mRNAs expressing iron-containing enzymes. Among them, we demonstrated that IsrR down-regulates the translation of mRNAs of enzymes that catalyze anaerobic nitrate respiration. The IsrR sequence reveals three single-stranded C-rich regions (CRRs). Mutational and structural analysis indicated a differential contribution of these CRRs according to targets. We also report that IsrR is required for full lethality of S. aureus in a mouse septicemia model, underscoring its role as a major contributor to the iron-sparing response for bacterial survival during infection. IsrR is conserved among staphylococci, but it is not ortholog to the proteobacterial sRNA RyhB, nor to other characterized sRNAs down-regulating mRNAs of iron-containing enzymes. Remarkably, these distinct sRNAs regulate common targets, illustrating that RNA-based regulation provides optimal evolutionary solutions to improve bacterial fitness when iron is scarce.
Collapse
Affiliation(s)
- Rodrigo H Coronel-Tellez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Mateusz Pospiech
- CNRS UMR 8038, CitCoM, Université Paris Cité 75006, Paris, France
| | - Maxime Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Wenfeng Liu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Valérie Bordeau
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230 35000, Rennes, France
| | | | - Brice Felden
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230 35000, Rennes, France
| | - Bruno Sargueil
- CNRS UMR 8038, CitCoM, Université Paris Cité 75006, Paris, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Abstract
Small RNAs (sRNAs) are important gene regulators in bacteria, but it is unclear how new sRNAs originate and become part of regulatory networks that coordinate bacterial response to environmental stimuli. Using a covariance modeling-based approach, we analyzed the presence of hundreds of sRNAs in more than a thousand genomes across Enterobacterales, a bacterial order with a confluence of factors that allows robust genome-scale sRNA analyses: several well-studied organisms with fairly conserved genome structures, an established phylogeny, and substantial nucleotide diversity within a narrow evolutionary space. We discovered that a majority of sRNAs arose recently, and uncovered protein-coding genes as a potential source from which new sRNAs arise. A detailed investigation of the emergence of OxyS, a peroxide-responding sRNA, revealed that it evolved from a fragment of a peroxidase messenger RNA. Importantly, although it replaced the ancestral peroxidase, OxyS continues to be part of the ancestral peroxide-response regulon, indicating that an sRNA that arises from a protein-coding gene would inherently be part of the parental protein's regulatory network. This new insight provides a fresh framework for understanding sRNA origin and regulatory integration in bacteria.
Collapse
Affiliation(s)
- Madeline C Krieger
- Department of Biology, Portland State University, Portland, OR, USA
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - H Auguste Dutcher
- Department of Biology, Portland State University, Portland, OR, USA
- Laboratory of Genetics and Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew J Ashford
- Department of Biology, Portland State University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Rahul Raghavan
- Department of Biology, Portland State University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
Svensson SL, Sharma CM. Small RNAs that target G-rich sequences are generated by diverse biogenesis pathways in Epsilonproteobacteria. Mol Microbiol 2021; 117:215-233. [PMID: 34818434 DOI: 10.1111/mmi.14850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators controlling bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologues can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologues in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR of the upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.
Collapse
Affiliation(s)
- Sarah L Svensson
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| |
Collapse
|
12
|
Wright AP, Dutcher HA, Butler B, Nice TJ, Raghavan R. A small RNA is functional in Escherichia fergusonii despite containing a large insertion. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001099. [PMID: 34698627 PMCID: PMC8698209 DOI: 10.1099/mic.0.001099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial small RNAs (sRNAs) are important regulators of gene expression; however, the impact of natural mutations on sRNA functions has not been studied extensively. Here we show that the sRNA MgrR contains a unique 53 bp insertion in Escherichia fergusonii, a close relative of Escherichia coli and Salmonella enterica. The insertion is a repetitive extragenic palindromic (REP) sequence that could block transcription, but full-length MgrR is produced in E. fergusonii, showing that the insertion has not affected sRNA production. Additionally, despite containing the large insertion, the sRNA appears to be functional because deletion of mgrR made E. fergusonii more susceptible to H2O2. The molecular details of MgrR's roles in H2O2defence are yet to be defined, but our results suggest that having an alternative function allowed the sRNA to be retained in E. fergusonii despite it sustaining a large, potentially disruptive mutation.
Collapse
Affiliation(s)
- Austin P Wright
- Department of Biology, Portland State University, Portland, OR, USA,Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR, USA
| | | | - Brianna Butler
- Department of Biology, Portland State University, Portland, OR, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR, USA
| | - Rahul Raghavan
- Department of Biology, Portland State University, Portland, OR, USA,Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA,*Correspondence: Rahul Raghavan,
| |
Collapse
|
13
|
Burning the Candle at Both Ends: Have Exoribonucleases Driven Divergence of Regulatory RNA Mechanisms in Bacteria? mBio 2021; 12:e0104121. [PMID: 34372700 PMCID: PMC8406224 DOI: 10.1128/mbio.01041-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Regulatory RNAs have emerged as ubiquitous gene regulators in all bacterial species studied to date. The combination of sequence-specific RNA interactions and malleable RNA structure has allowed regulatory RNA to adopt different mechanisms of gene regulation in a diversity of genetic backgrounds. In the model GammaproteobacteriaEscherichia coli and Salmonella, the regulatory RNA chaperone Hfq appears to play a global role in gene regulation, directly controlling ∼20 to 25% of the entire transcriptome. While the model FirmicutesBacillus subtilis and Staphylococcus aureus encode a Hfq homologue, its role has been significantly depreciated. These bacteria also have marked differences in RNA turnover. E. coli and Salmonella degrade RNA through internal endonucleolytic and 3′→5′ exonucleolytic cleavage that appears to allow transient accumulation of mRNA 3′ UTR cleavage fragments that contain stabilizing 3′ structures. In contrast, B. subtilis and S. aureus are able to exonucleolytically attack internally cleaved RNA from both the 5′ and 3′ ends, efficiently degrading mRNA 3′ UTR fragments. Here, we propose that the lack of 5′→3′ exoribonuclease activity in Gammaproteobacteria has allowed the accumulation of mRNA 3′ UTR ends as the “default” setting. This in turn may have provided a larger pool of unconstrained RNA sequences that has fueled the expansion of Hfq function and small RNA (sRNA) regulation in E. coli and Salmonella. Conversely, the exoribonuclease RNase J may be a significant barrier to the evolution of 3′ UTR sRNAs in B. subtilis and S. aureus that has limited the pool of RNA ligands available to Hfq and other sRNA chaperones, depreciating their function in these model Firmicutes.
Collapse
|
14
|
Interplay between Non-Coding RNA Transcription, Stringent/Relaxed Phenotype and Antibiotic Production in Streptomyces ambofaciens. Antibiotics (Basel) 2021; 10:antibiotics10080947. [PMID: 34438997 PMCID: PMC8388888 DOI: 10.3390/antibiotics10080947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in the regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: (i) the wild-type strain; (ii) an isogenic pirA-defective mutant with central carbon metabolism imbalance, “relaxed” phenotype, and repression of antibiotic production; and (iii) a pirA-derivative strain harboring a “stringent” RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that the expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
|
15
|
Thairu MW, Meduri VRS, Degnan PH, Hansen AK. Natural selection shapes maintenance of orthologous sRNAs in divergent host-restricted bacterial genomes. Mol Biol Evol 2021; 38:4778-4791. [PMID: 34213555 PMCID: PMC8557413 DOI: 10.1093/molbev/msab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically it has been difficult to study the evolution of bacterial small RNAs (sRNAs) across distantly related species. For example, identifying homologs of sRNAs is often difficult in genomes that have undergone multiple structural rearrangements. Also, some types of regulatory sRNAs evolve at rapid rates. The high degree of genomic synteny among divergent host-restricted bacterial lineages, including intracellular symbionts, is conducive to sRNA maintenance and homolog identification. In turn, symbiont genomes can provide us with novel insights into sRNA evolution. Here, we examine the sRNA expression profile of the obligate symbiont of psyllids, Carsonella ruddii, which has one of the smallest cellular genomes described. Using RNA-seq, we identified 36 and 32 antisense sRNAs (asRNAs) expressed by Carsonella from the psyllids Bactericera cockerelli (Carsonella-BC) and Diaphorina citri (Carsonella-DC), respectively. The majority of these asRNAs were associated with genes that are involved in essential amino acid biosynthetic pathways. Eleven of the asRNAs were conserved in both Carsonella lineages and the majority were maintained by selection. Notably, five of the corresponding coding sequences are also the targets of conserved asRNAs in a distantly related insect symbiont, Buchnera. We detected differential expression of two asRNAs for genes involved in arginine and leucine biosynthesis occurring between two distinct Carsonella-BC life stages. Using asRNAs identified in Carsonella, Buchnera, and Profftella which are all endosymbionts, and Escherichia coli, we determined that regions upstream of these asRNAs encode unique conserved patterns of AT/GC richness, GC skew, and sequence motifs which may be involved in asRNA regulation.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA.,Department of Bacteriology, University of Wisconsin, Madison, Madison, WI
| | | | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA
| |
Collapse
|
16
|
Silva WTAF, Otto SP, Immler S. Evolution of plasticity in production and transgenerational inheritance of small RNAs under dynamic environmental conditions. PLoS Genet 2021; 17:e1009581. [PMID: 34038409 PMCID: PMC8186813 DOI: 10.1371/journal.pgen.1009581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 06/08/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
In a changing environment, small RNAs (sRNAs) play an important role in the post-transcriptional regulation of gene expression and can vary in abundance depending on the conditions experienced by an individual (phenotypic plasticity) and its parents (non-genetic inheritance). Many sRNAs are unusual in that they can be produced in two ways, either using genomic DNA as the template (primary sRNAs) or existing sRNAs as the template (secondary sRNAs). Thus, organisms can evolve rapid plastic responses to their current environment by adjusting the amplification rate of sRNA templates. sRNA levels can also be transmitted transgenerationally by the direct transfer of either sRNAs or the proteins involved in amplification. Theory is needed to describe the selective forces acting on sRNA levels, accounting for the dual nature of sRNAs as regulatory elements and templates for amplification and for the potential to transmit sRNAs and their amplification agents to offspring. Here, we develop a model to study the dynamics of sRNA production and inheritance in a fluctuating environment. We tested the selective advantage of mutants capable of sRNA-mediated phenotypic plasticity within resident populations with fixed levels of sRNA transcription. Even when the resident was allowed to evolve an optimal constant rate of sRNA production, plastic amplification rates capable of responding to environmental conditions were favored. Mechanisms allowing sRNA transcripts or amplification agents to be inherited were favored primarily when parents and offspring face similar environments and when selection acts before the optimal level of sRNA can be reached within the organism. Our study provides a clear set of testable predictions for the evolution of sRNA-related mechanisms of phenotypic plasticity and transgenerational inheritance.
Collapse
Affiliation(s)
| | - Sarah P. Otto
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Simone Immler
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
17
|
Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. Proc Natl Acad Sci U S A 2021; 118:2008498118. [PMID: 33443179 DOI: 10.1073/pnas.2008498118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA polymerase (RNAP) encounters various roadblocks during transcription. These obstacles can impede RNAP movement and influence transcription, ultimately necessitating the activity of RNAP-associated factors. One such factor is the bacterial protein Mfd, a highly conserved DNA translocase and evolvability factor that interacts with RNAP. Although Mfd is thought to function primarily in the repair of DNA lesions that stall RNAP, increasing evidence suggests that it may also be important for transcription regulation. However, this is yet to be fully characterized. To shed light on Mfd's in vivo functions, we identified the chromosomal regions where it associates. We analyzed Mfd's impact on RNAP association and transcription regulation genome-wide. We found that Mfd represses RNAP association at many chromosomal regions. We found that these regions show increased RNAP pausing, suggesting that they are hard to transcribe. Interestingly, we noticed that the majority of the regions where Mfd regulates transcription contain highly structured regulatory RNAs. The RNAs identified regulate a myriad of biological processes, ranging from metabolism to transfer RNA regulation to toxin-antitoxin (TA) functions. We found that cells lacking Mfd are highly sensitive to toxin overexpression. Finally, we found that Mfd promotes mutagenesis in at least one toxin gene, suggesting that its function in regulating transcription may promote evolution of certain TA systems and other regions containing strong RNA secondary structures. We conclude that Mfd is an RNAP cofactor that is important, and at times critical, for transcription regulation at hard-to-transcribe regions, especially those that express structured regulatory RNAs.
Collapse
|
18
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
19
|
Kiselev S, Markelova N, Masulis I. Divergently Transcribed ncRNAs in Escherichia coli: Refinement of the Transcription Starts Assumes Functional Diversification. Front Mol Biosci 2021; 8:610453. [PMID: 33748186 PMCID: PMC7967276 DOI: 10.3389/fmolb.2021.610453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023] Open
Abstract
Non-coding regulatory RNAs (ncRNAs) comprise specialized group of essential genetically encoded biological molecules involved in the wide variety of cellular metabolic processes. The progressive increase in the number of newly identified ncRNAs and the defining of their genome location indicate their predominant nesting in intergenic regions and expression under the control of their own regulatory elements. At the same time, the regulation of ncRNA's transcription cannot be considered in isolation from the processes occurring in the immediate genetic environment. A number of experimental data indicate the notable impact of positional regulation of gene expression mediated by dynamic temporal DNA rearrangements accompanying transcription events in the vicinity of neighboring genes. This issue can be perceived as particularly significant for divergently transcribed ncRNAs being actually subjected to double regulatory pressure. Based on available results of RNAseq experiments for Escherichia coli, we screened out divergent ncRNAs and the adjacent genes for the exact positions of transcription start sites (TSSs) and relative efficiency of RNA production. This analysis revealed extension or shortening of some previously annotated ncRNAs resulting in modified secondary structure, confirmed stable expression of four ncRNAs annotated earlier as putative, and approved the possibility of expression of divergently transcribed ncRNAs containing repetitive extragenic palindromic (REP) elements. The biogenesis of secreted ncRNAs from divergently transcribed ffs, chiX, ralA, and ryhB is discussed taking into account positions of TSSs. Refinement of TSSs for the neighboring genes renders some ncRNAs as true antisense overlapping with 5'UTR of divergently transcribed mRNAs.
Collapse
Affiliation(s)
| | | | - Irina Masulis
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
20
|
Millar JA, Raghavan R. Modulation of Bacterial Fitness and Virulence Through Antisense RNAs. Front Cell Infect Microbiol 2021; 10:596277. [PMID: 33747974 PMCID: PMC7968456 DOI: 10.3389/fcimb.2020.596277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023] Open
Abstract
Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs (asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of their target genes. Typically, these untranslated transcripts bind to cognate mRNAs and rapidly regulate gene expression at the post-transcriptional level. In this article, we review asRNAs that modulate bacterial fitness and increase virulence. We chose examples that underscore the variety observed in nature including, plasmid- and chromosome-encoded asRNAs, a riboswitch-regulated asRNA, and asRNAs that require other RNAs or RNA-binding proteins for stability and activity. We explore how asRNAs improve bacterial fitness and virulence by modulating plasmid acquisition and maintenance, regulating transposon mobility, increasing resistance against bacteriophages, controlling flagellar production, and regulating nutrient acquisition. We conclude with a brief discussion on how this knowledge is helping to inform current efforts to develop new therapeutics.
Collapse
Affiliation(s)
- Jess A Millar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
21
|
Menendez-Gil P, Toledo-Arana A. Bacterial 3'UTRs: A Useful Resource in Post-transcriptional Regulation. Front Mol Biosci 2021; 7:617633. [PMID: 33490108 PMCID: PMC7821165 DOI: 10.3389/fmolb.2020.617633] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Bacterial messenger RNAs (mRNAs) are composed of 5′ and 3′ untranslated regions (UTRs) that flank the coding sequences (CDSs). In eukaryotes, 3′UTRs play key roles in post-transcriptional regulatory mechanisms. Shortening or deregulation of these regions is associated with diseases such as cancer and metabolic disorders. Comparatively, little is known about the functions of 3′UTRs in bacteria. Over the past few years, 3′UTRs have emerged as important players in the regulation of relevant bacterial processes such as virulence, iron metabolism, and biofilm formation. This MiniReview is an update for the different 3′UTR-mediated mechanisms that regulate gene expression in bacteria. Some of these include 3′UTRs that interact with the 5′UTR of the same transcript to modulate translation, 3′UTRs that are targeted by specific ribonucleases, RNA-binding proteins and small RNAs (sRNAs), and 3′UTRs that act as reservoirs of trans-acting sRNAs, among others. In addition, recent findings regarding a differential evolution of bacterial 3′UTRs and its impact in the species-specific expression of orthologous genes are also discussed.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC) - Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
22
|
Aoyama JJ, Raina M, Storz G. Synthetic dual-function RNA reveals features necessary for target regulation. J Bacteriol 2021; 204:JB0034521. [PMID: 34460309 PMCID: PMC8765420 DOI: 10.1128/jb.00345-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Small base pairing RNAs (sRNAs) and small proteins comprise two classes of regulators that allow bacterial cells to adapt to a wide variety of growth conditions. A limited number of transcripts encoding both of these activities, regulation of mRNA expression by base pairing and synthesis of a small regulatory protein, have been identified. Given that few have been characterized, little is known about the interplay between the two regulatory functions. To investigate the competition between the two activities, we constructed synthetic dual-function RNAs, hereafter referred to as MgtSR or MgtRS, comprised of the Escherichia coli sRNA MgrR and the open reading frame encoding the small protein MgtS. MgrR is a 98 nt base pairing sRNA that negatively regulates eptB encoding phosphoethanolamine transferase. MgtS is a 31 aa small inner membrane protein that is required for the accumulation of MgtA, a magnesium (Mg2+) importer. Expression of the separate genes encoding MgrR and MgtS is normally induced in response to low Mg2+ by the PhoQP two-component system. By generating various versions of this synthetic dual-function RNA, we probed how the organization of components and the distance between the coding and base pairing sequences contribute to the proper function of both activities of a dual-function RNA. By understanding the features of natural and synthetic dual-function RNAs, future synthetic molecules can be designed to maximize their regulatory impact. IMPORTANCE Dual-function RNAs in bacteria encode a small protein and also base pair with mRNAs to act as small, regulatory RNAs. Given that only a limited number of dual-function RNAs have been characterized, further study of these regulators is needed to increase understanding of their features. This study demonstrates that a functional synthetic dual-regulator can be constructed from separate components and used to study the functional organization of dual-function RNAs, with the goal of exploiting these regulators.
Collapse
Affiliation(s)
- Jordan J. Aoyama
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Medha Raina
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Ardern Z, Neuhaus K, Scherer S. Are Antisense Proteins in Prokaryotes Functional? Front Mol Biosci 2020; 7:187. [PMID: 32923454 PMCID: PMC7457138 DOI: 10.3389/fmolb.2020.00187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Many prokaryotic RNAs are transcribed from loci outside of annotated protein coding genes. Across bacterial species hundreds of short open reading frames antisense to annotated genes show evidence of both transcription and translation, for instance in ribosome profiling data. Determining the functional fraction of these protein products awaits further research, including insights from studies of molecular interactions and detailed evolutionary analysis. There are multiple lines of evidence, however, that many of these newly discovered proteins are of use to the organism. Condition-specific phenotypes have been characterized for a few. These proteins should be added to genome annotations, and the methods for predicting them standardized. Evolutionary analysis of these typically young sequences also may provide important insights into gene evolution. This research should be prioritized for its exciting potential to uncover large numbers of novel proteins with extremely diverse potential practical uses, including applications in synthetic biology and responding to pathogens.
Collapse
Affiliation(s)
- Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
24
|
Medina-Pérez DN, Wager B, Troy E, Gao L, Norris SJ, Lin T, Hu L, Hyde JA, Lybecker M, Skare JT. The intergenic small non-coding RNA ittA is required for optimal infectivity and tissue tropism in Borrelia burgdorferi. PLoS Pathog 2020; 16:e1008423. [PMID: 32365143 PMCID: PMC7224557 DOI: 10.1371/journal.ppat.1008423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Post-transcriptional regulation via small regulatory RNAs (sRNAs) has been implicated in diverse regulatory processes in bacteria, including virulence. One class of sRNAs, termed trans-acting sRNAs, can affect the stability and/or the translational efficiency of regulated transcripts. In this study, we utilized a collaborative approach that employed data from infection with the Borrelia burgdorferi Tn library, coupled with Tn-seq, together with borrelial sRNA and total RNA transcriptomes, to identify an intergenic trans-acting sRNA, which we designate here as ittA for infectivity-associated and tissue-tropic sRNA locus A. The genetic inactivation of ittA resulted in a significant attenuation in infectivity, with decreased spirochetal load in ear, heart, skin and joint tissues. In addition, the ittA mutant did not disseminate to peripheral skin sites or heart tissue, suggesting a role for ittA in regulating a tissue-tropic response. RNA-Seq analysis determined that 19 transcripts were differentially expressed in the ittA mutant relative to its genetic parent, including vraA, bba66, ospD and oms28 (bba74). Subsequent proteomic analyses also showed a significant decrease of OspD and Oms28 (BBA74) proteins. To our knowledge this is the first documented intergenic sRNA that alters the infectivity potential of B. burgdorferi.
Collapse
Affiliation(s)
- Diana N. Medina-Pérez
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Beau Wager
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, United States of America
| | - Erin Troy
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, United States of America
| | - Lihui Gao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Tao Lin
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Linden Hu
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, United States of America
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Meghan Lybecker
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, Colorado, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| |
Collapse
|
25
|
Thairu MW, Hansen AK. It's a small, small world: unravelling the role and evolution of small RNAs in organelle and endosymbiont genomes. FEMS Microbiol Lett 2019; 366:5371121. [PMID: 30844054 DOI: 10.1093/femsle/fnz049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Organelles and host-restricted bacterial symbionts are characterized by having highly reduced genomes that lack many key regulatory genes and elements. Thus, it has been hypothesized that the eukaryotic nuclear genome is primarily responsible for regulating these symbioses. However, with the discovery of organelle- and symbiont-expressed small RNAs (sRNAs) there is emerging evidence that these sRNAs may play a role in gene regulation as well. Here, we compare the diversity of organelle and bacterial symbiont sRNAs recently identified using genome-enabled '-omic' technologies and discuss their potential role in gene regulation. We also discuss how the genome architecture of small genomes may influence the evolution of these sRNAs and their potential function. Additionally, these new studies suggest that some sRNAs are conserved within organelle and symbiont taxa and respond to changes in the environment and/or their hosts. In summary, these results suggest that organelle and symbiont sRNAs may play a role in gene regulation in addition to nuclear-encoded host mechanisms.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
26
|
Tarallo S, Ferrero G, Gallo G, Francavilla A, Clerico G, Realis Luc A, Manghi P, Thomas AM, Vineis P, Segata N, Pardini B, Naccarati A, Cordero F. Altered Fecal Small RNA Profiles in Colorectal Cancer Reflect Gut Microbiome Composition in Stool Samples. mSystems 2019; 4:e00289-19. [PMID: 31530647 PMCID: PMC6749105 DOI: 10.1128/msystems.00289-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Dysbiotic configurations of the human gut microbiota have been linked to colorectal cancer (CRC). Human small noncoding RNAs are also implicated in CRC, and recent findings suggest that their release in the gut lumen contributes to shape the gut microbiota. Bacterial small RNAs (bsRNAs) may also play a role in carcinogenesis, but their role has been less extensively explored. Here, we performed small RNA and shotgun sequencing on 80 stool specimens from patients with CRC or with adenomas and from healthy subjects collected in a cross-sectional study to evaluate their combined use as a predictive tool for disease detection. We observed considerable overlap and a correlation between metagenomic and bsRNA quantitative taxonomic profiles obtained from the two approaches. We identified a combined predictive signature composed of 32 features from human and microbial small RNAs and DNA-based microbiome able to accurately classify CRC samples separately from healthy and adenoma samples (area under the curve [AUC] = 0.87). In the present study, we report evidence that host-microbiome dysbiosis in CRC can also be observed by examination of altered small RNA stool profiles. Integrated analyses of the microbiome and small RNAs in the human stool may provide insights for designing more-accurate tools for diagnostic purposes.IMPORTANCE The characteristics of microbial small RNA transcription are largely unknown, while it is of primary importance for a better identification of molecules with functional activities in the gut niche under both healthy and disease conditions. By performing combined analyses of metagenomic and small RNA sequencing (sRNA-Seq) data, we characterized both the human and microbial small RNA contents of stool samples from healthy individuals and from patients with colorectal carcinoma or adenoma. With the integrative analyses of metagenomic and sRNA-Seq data, we identified a human and microbial small RNA signature which can be used to improve diagnosis of the disease. Our analysis of human and gut microbiome small RNA expression is relevant to generation of the first hypotheses about the potential molecular interactions occurring in the gut of CRC patients, and it can be the basis for further mechanistic studies and clinical tests.
Collapse
Affiliation(s)
- Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy
| | - Gaetano Gallo
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | | | - Giuseppe Clerico
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | | | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Imperial College, London, United Kingdom
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Francesca Cordero
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Computer Science, University of Turin, Turin, Italy
| |
Collapse
|
27
|
Liu G, Wu J, Qiao M, Zhou J, Wu H, Peng X, Mekchay S, Mei S. Transcription elements AREB6 and miR-34a affect apoptosis of PAMs by regulating the expression of SS2-related gene PPP1R11. Cell Cycle 2019; 18:1033-1044. [PMID: 31014175 DOI: 10.1080/15384101.2019.1610241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In our previous work, gene PPP1R11 (protein phosphatase 1 regulatory subunit 11) was significantly expressed in pigs after Streptococcus suis 2 (SS2) challenged. This study firstly confirmed that SS2 induced significant expression of PPP1R11 gene in porcine alveolar macrophage (PAM) cells, and apoptosis of PAM cells were observed. After that, the core promoter of porcine PPP1R11 was identified and its transcription factor AREB6 which significantly regulated PPP1R11. We also characterized that the PPP1R11 gene is a target of miR-34a. Further, we found that PPP1R11 helped to inhibit apoptosis of PAM cells under SS2 infecting, through transcription factor AREB6 was negatively correlated with apoptosis whereas miR-34a was positively correlated. Those findings provide a functional connection among the transcription factor AREB6, miR-34a, PPP1R11 gene and apoptosis of PAM cells in the pathogenesis of the SS2 infection.
Collapse
Affiliation(s)
- Guisheng Liu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Junjing Wu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Mu Qiao
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Jiawei Zhou
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Huayu Wu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Xianwen Peng
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Supamit Mekchay
- c Department of Animal and Aquatic Sciences, Faculty of Agriculture , Chiang Mai University , Chiang Mai , Thailand
| | - Shuqi Mei
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| |
Collapse
|
28
|
Characterization of the transcriptome of Haloferax volcanii, grown under four different conditions, with mixed RNA-Seq. PLoS One 2019; 14:e0215986. [PMID: 31039177 PMCID: PMC6490895 DOI: 10.1371/journal.pone.0215986] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Haloferax volcanii is a well-established model species for haloarchaea. Small scale RNomics and bioinformatics predictions were used to identify small non-coding RNAs (sRNAs), and deletion mutants revealed that sRNAs have important regulatory functions. A recent dRNA-Seq study was used to characterize the primary transcriptome. Unexpectedly, it was revealed that, under optimal conditions, H. volcanii contains more non-coding sRNAs than protein-encoding mRNAs. However, the dRNA-Seq approach did not contain any length information. Therefore, a mixed RNA-Seq approach was used to determine transcript length and to identify additional transcripts, which are not present under optimal conditions. In total, 50 million paired end reads of 150 nt length were obtained. 1861 protein-coding RNAs (cdRNAs) were detected, which encoded 3092 proteins. This nearly doubled the coverage of cdRNAs, compared to the previous dRNA-Seq study. About 2/3 of the cdRNAs were monocistronic, and 1/3 covered more than one gene. In addition, 1635 non-coding sRNAs were identified. The highest fraction of non-coding RNAs were cis antisense RNAs (asRNAs). Analysis of the length distribution revealed that sRNAs have a median length of about 150 nt. Based on the RNA-Seq and dRNA-Seq results, genes were chosen to exemplify characteristics of the H. volcanii transcriptome by Northern blot analyses, e.g. 1) the transcript patterns of gene clusters can be straightforward, but also very complex, 2) many transcripts differ in expression level under the four analyzed conditions, 3) some genes are transcribed into RNA isoforms of different length, which can be differentially regulated, 4) transcripts with very long 5'-UTRs and with very long 3'-UTRs exist, and 5) about 30% of all cdRNAs have overlapping 3'-ends, which indicates, together with the asRNAs, that H. volcanii makes ample use of sense-antisense interactions. Taken together, this RNA-Seq study, together with a previous dRNA-Seq study, enabled an unprecedented view on the H. volcanii transcriptome.
Collapse
|
29
|
Transcriptional noise and exaptation as sources for bacterial sRNAs. Biochem Soc Trans 2019; 47:527-539. [PMID: 30837318 DOI: 10.1042/bst20180171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/17/2022]
Abstract
Understanding how new genes originate and integrate into cellular networks is key to understanding evolution. Bacteria present unique opportunities for both the natural history and experimental study of gene origins, due to their large effective population sizes, rapid generation times, and ease of genetic manipulation. Bacterial small non-coding RNAs (sRNAs), in particular, many of which operate through a simple antisense regulatory logic, may serve as tractable models for exploring processes of gene origin and adaptation. Understanding how and on what timescales these regulatory molecules arise has important implications for understanding the evolution of bacterial regulatory networks, in particular, for the design of comparative studies of sRNA function. Here, we introduce relevant concepts from evolutionary biology and review recent work that has begun to shed light on the timescales and processes through which non-functional transcriptional noise is co-opted to provide regulatory functions. We explore possible scenarios for sRNA origin, focusing on the co-option, or exaptation, of existing genomic structures which may provide protected spaces for sRNA evolution.
Collapse
|
30
|
Abstract
Small regulatory RNAs play an important role in the adaptation to changing conditions. Here, we describe a differentially expressed small regulatory RNA (sRNA) that affects various cellular processes in the plant pathogen Agrobacterium tumefaciens Using a combination of bioinformatic predictions and comparative proteomics, we identified nine targets, most of which are positively regulated by the sRNA. According to these targets, we named the sRNA PmaR for peptidoglycan biosynthesis, motility, and ampicillin resistance regulator. Agrobacterium spp. are long known to be naturally resistant to high ampicillin concentrations, and we can now explain this phenotype by the positive PmaR-mediated regulation of the beta-lactamase gene ampC Structure probing revealed a spoon-like structure of the sRNA, with a single-stranded loop that is engaged in target interaction in vivo and in vitro Several riboregulators have been implicated in antibiotic resistance mechanisms, such as uptake and efflux transporters, but PmaR represents the first example of an sRNA that directly controls the expression of an antibiotic resistance gene.IMPORTANCE The alphaproteobacterium Agrobacterium tumefaciens is able to infect various eudicots causing crown gall tumor formation. Based on its unique ability of interkingdom gene transfer, Agrobacterium serves as a crucial biotechnological tool for genetic manipulation of plant cells. The presence of hundreds of putative sRNAs in this organism suggests a considerable impact of riboregulation on A. tumefaciens physiology. Here, we characterized the biological function of the sRNA PmaR that controls various processes crucial for growth, motility, and virulence. Among the genes directly targeted by PmaR is ampC coding for a beta-lactamase that confers ampicillin resistance, suggesting that the sRNA is crucial for fitness in the competitive microbial composition of the rhizosphere.
Collapse
|
31
|
Georg J, Hess WR. Widespread Antisense Transcription in Prokaryotes. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0029-2018. [PMID: 30003872 PMCID: PMC11633618 DOI: 10.1128/microbiolspec.rwr-0029-2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
Although bacterial genomes are usually densely protein-coding, genome-wide mapping approaches of transcriptional start sites revealed that a significant fraction of the identified promoters drive the transcription of noncoding RNAs. These can be trans-acting RNAs, mainly originating from intergenic regions and, in many studied examples, possessing regulatory functions. However, a significant fraction of these noncoding RNAs consist of natural antisense transcripts (asRNAs), which overlap other transcriptional units. Naturally occurring asRNAs were first observed to play a role in bacterial plasmid replication and in bacteriophage λ more than 30 years ago. Today's view is that asRNAs abound in all three domains of life. There are several examples of asRNAs in bacteria with clearly defined functions. Nevertheless, many asRNAs appear to result from pervasive initiation of transcription, and some data point toward global functions of such widespread transcriptional activity, explaining why the search for a specific regulatory role is sometimes futile. In this review, we give an overview about the occurrence of antisense transcription in bacteria, highlight particular examples of functionally characterized asRNAs, and discuss recent evidence pointing at global relevance in RNA processing and transcription-coupled DNA repair.
Collapse
MESH Headings
- Bacteria/genetics
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- DNA Repair/physiology
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Plasmids
- RNA, Antisense/genetics
- RNA, Antisense/physiology
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Untranslated
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Jens Georg
- University of Freiburg, Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, D-79104 Freiburg, Germany
| |
Collapse
|