1
|
Antunes SS, Forn-Cuní G, Romeiro NC, Spaink HP, Verbeek FJ, Muzitano MF. Embryonic and larval zebrafish models for the discovery of new bioactive compounds against tuberculosis. Drug Discov Today 2024; 29:104163. [PMID: 39245344 DOI: 10.1016/j.drudis.2024.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Tuberculosis (TB) is a world health challenge the treatment of which is impacted by the rise of drug-resistant strains. Thus, there is an urgent need for new antitubercular compounds and novel approaches to improve current TB therapy. The zebrafish animal model has become increasingly relevant as an experimental system. It has proven particularly useful during early development for aiding TB drug discovery, supporting both the discovery of new insights into mycobacterial pathogenesis and the evaluation of therapeutical toxicity and efficacy in vivo. In this review, we summarize the past two decades of zebrafish-Mycobacterium marinum research and discuss its contribution to the field of bioactive antituberculosis therapy development.
Collapse
Affiliation(s)
- Stella S Antunes
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nelilma C Romeiro
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Fons J Verbeek
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
| | - Michelle F Muzitano
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Sibley L, Sarfas C, Morrison AL, Williams J, Gkolfinos K, Mabbutt A, Eckworth W, Lawrence S, Dennis M, White A, Sharpe S. Immune cell population dynamics following neonatal BCG vaccination and aerosol BCG revaccination in rhesus macaques. Sci Rep 2024; 14:16993. [PMID: 39043848 PMCID: PMC11266652 DOI: 10.1038/s41598-024-67861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
The BCG vaccine is given to millions of children globally but efficacy wanes over time and differences in the immune systems between infants and adults can influence vaccine efficacy. To this end, 34 rhesus macaques were vaccinated with BCG within seven days of birth and blood samples were collected over 88 weeks for quantification of blood cell populations. Overall, the composition of cell populations did not change significantly between BCG vaccinated and unvaccinated groups, and that BCG vaccination did not perturb normal development. In comparison to adult macaques, higher numbers of CD4+ T-cells, Tregs and NK cells were measured in the infant age group, suggesting a potential bias towards immunosuppressive and innate immune populations. Antigen-specific IFNγ secreting cell frequencies in infant BCG vaccinated animals were detectable in peripheral blood samples for 36 weeks after vaccination but declined following this. To evaluate the long-term impact of infant BCG vaccination on subsequent revaccination with BCG, a pilot study of three adult macaques received an aerosol BCG revaccination approximately 3 years after their initial BCG vaccination as infants. This induced an increase in PPD-specific IFNγ secreting cells, and increased secretion of the cytokines IFNγ and IL-1β, following stimulation with other microorganisms, which are signals associated with trained innate immunity.
Collapse
Affiliation(s)
- Laura Sibley
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | | | | | | | | | - Adam Mabbutt
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | | | - Steve Lawrence
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - Mike Dennis
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - Andrew White
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK.
| | - Sally Sharpe
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| |
Collapse
|
3
|
Hunter L, Ruedas-Torres I, Agulló-Ros I, Rayner E, Salguero FJ. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci 2023; 10:1264833. [PMID: 37901102 PMCID: PMC10602689 DOI: 10.3389/fvets.2023.1264833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Research in human tuberculosis (TB) is limited by the availability of human tissues from patients, which is often altered by therapy and treatment. Thus, the use of animal models is a key tool in increasing our understanding of the pathogenesis, disease progression and preclinical evaluation of new therapies and vaccines. The granuloma is the hallmark lesion of pulmonary tuberculosis, regardless of the species or animal model used. Although animal models may not fully replicate all the histopathological characteristics observed in natural, human TB disease, each one brings its own attributes which enable researchers to answer specific questions regarding TB immunopathogenesis. This review delves into the pulmonary pathology induced by Mycobacterium tuberculosis complex (MTBC) bacteria in different animal models (non-human primates, rodents, guinea pigs, rabbits, cattle, goats, and others) and compares how they relate to the pulmonary disease described in humans. Although the described models have demonstrated some histopathological features in common with human pulmonary TB, these data should be considered carefully in the context of this disease. Further research is necessary to establish the most appropriate model for the study of TB, and to carry out a standard characterisation and score of pulmonary lesions.
Collapse
Affiliation(s)
- Laura Hunter
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Inés Ruedas-Torres
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Irene Agulló-Ros
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Emma Rayner
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Francisco J. Salguero
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
4
|
Bloom BR. A half-century of research on tuberculosis: Successes and challenges. J Exp Med 2023; 220:e20230859. [PMID: 37552470 PMCID: PMC10407785 DOI: 10.1084/jem.20230859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
Great progress has been made over the past half-century, but TB remains a formidable global health problem, particularly in low- and middle-income countries. Understanding the mechanisms of pathogenesis and necessary and sufficient conditions for protection are critical. The need for inexpensive and sensitive point-of-care diagnostic tests for earlier detection of infection and disease, shorter and less-toxic drug regimens for drug-sensitive and -resistant TB, and a more effective vaccine than BCG is immense. New and better tools, greater support for international research, collaborations, and training will be required to dramatically reduce the burden of this devastating disease which still kills 1.6 million people annually.
Collapse
Affiliation(s)
- Barry R. Bloom
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Zhang Y, Xu JC, Hu ZD, Fan XY. Advances in protein subunit vaccines against tuberculosis. Front Immunol 2023; 14:1238586. [PMID: 37654500 PMCID: PMC10465801 DOI: 10.3389/fimmu.2023.1238586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Tuberculosis (TB), also known as the "White Plague", is caused by Mycobacterium tuberculosis (Mtb). Before the COVID-19 epidemic, TB had the highest mortality rate of any single infectious disease. Vaccination is considered one of the most effective strategies for controlling TB. Despite the limitations of the Bacille Calmette-Guérin (BCG) vaccine in terms of protection against TB among adults, it is currently the only licensed TB vaccine. Recently, with the evolution of bioinformatics and structural biology techniques to screen and optimize protective antigens of Mtb, the tremendous potential of protein subunit vaccines is being exploited. Multistage subunit vaccines obtained by fusing immunodominant antigens from different stages of TB infection are being used both to prevent and to treat TB. Additionally, the development of novel adjuvants is compensating for weaknesses of immunogenicity, which is conducive to the flourishing of subunit vaccines. With advances in the development of animal models, preclinical vaccine protection assessments are becoming increasingly accurate. This review summarizes progress in the research of protein subunit TB vaccines during the past decades to facilitate the further optimization of protein subunit vaccines that may eradicate TB.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jin-chuan Xu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhi-dong Hu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Xiao-yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Li YH, Huang WW, He WQ, He XY, Wang XH, Lin YL, Zhao ZJ, Zheng YT, Pang W. Longitudinal analysis of immunocyte responses and inflammatory cytokine profiles in SFTSV-infected rhesus macaques. Front Immunol 2023; 14:1143796. [PMID: 37033979 PMCID: PMC10073517 DOI: 10.3389/fimmu.2023.1143796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging bunyavirus, causes severe fever with thrombocytopenia syndrome (SFTS), with a high fatality rate of 20%-30%. At present, however, the pathogenesis of SFTSV remains largely unclear and no specific therapeutics or vaccines against its infection are currently available. Therefore, animal models that can faithfully recapitulate human disease are important to help understand and treat SFTSV infection. Here, we infected seven Chinese rhesus macaques (Macaca mulatta) with SFTSV. Virological and immunological changes were monitored over 28 days post-infection. Results showed that mild symptoms appeared in the macaques, including slight fever, thrombocytopenia, leukocytopenia, increased aspartate aminotransferase (AST) and creatine kinase (CK) in the blood. Viral replication was persistently detectable in lymphoid tissues and bone marrow even after viremia disappeared. Immunocyte detection showed that the number of T cells (mainly CD8+ T cells), B cells, natural killer (NK) cells, and monocytes decreased during infection. In detail, effector memory CD8+ T cells declined but showed increased activation, while both the number and activation of effector memory CD4+ T cells increased significantly. Furthermore, activated memory B cells decreased, while CD80+/CD86+ B cells and resting memory B cells (CD27+CD21+) increased significantly. Intermediate monocytes (CD14+CD16+) increased, while myeloid dendritic cells (mDCs) rather than plasmacytoid dendritic cells (pDCs) markedly declined during early infection. Cytokines, including interleukin-6 (IL-6), interferon-inducible protein-10 (IP-10), and macrophage inflammatory protein 1 (MCP-1), were substantially elevated in blood and were correlated with activated CD4+ T cells, B cells, CD16+CD56+ NK cells, CD14+CD16+ monocytes during infection. Thus, this study demonstrates that Chinese rhesus macaques infected with SFTSV resemble mild clinical symptoms of human SFTS and provides detailed virological and immunological parameters in macaques for understanding the pathogenesis of SFTSV infection.
Collapse
Affiliation(s)
- Yi-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Wu Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Office of Science and Technology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Qiang He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Yan He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue-Hui Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Ya-Long Lin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zu-Jiang Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yong-Tang Zheng, ; Wei Pang,
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yong-Tang Zheng, ; Wei Pang,
| |
Collapse
|
7
|
Adapen C, Réot L, Menu E. Role of the human vaginal microbiota in the regulation of inflammation and sexually transmitted infection acquisition: Contribution of the non-human primate model to a better understanding? FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:992176. [PMID: 36560972 PMCID: PMC9763629 DOI: 10.3389/frph.2022.992176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
The human vaginal microbiota has a central role in the regulation of the female reproductive tract (FRT) inflammation. Indeed, on one hand an optimal environment leading to a protection against sexually transmitted infections (STI) is associated with a high proportion of Lactobacillus spp. (eubiosis). On the other hand, a more diverse microbiota with a high amount of non-Lactobacillus spp. (dysbiosis) is linked to a higher local inflammation and an increased STI susceptibility. The composition of the vaginal microbiota is influenced by numerous factors that may lead to a dysbiotic environment. In this review, we first discuss how the vaginal microbiota composition affects the local inflammation with a focus on the cytokine profiles, the immune cell recruitment/phenotype and a large part devoted on the interactions between the vaginal microbiota and the neutrophils. Secondly, we analyze the interplay between STI and the vaginal microbiota and describe several mechanisms of action of the vaginal microbiota. Finally, the input of the NHP model in research focusing on the FRT health including vaginal microbiota or STI acquisition/control and treatment is discussed.
Collapse
Affiliation(s)
- Cindy Adapen
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Louis Réot
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)/Department of Infectious Disease Models and Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)/Department of Infectious Disease Models and Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
8
|
Niewold P, Ijsselsteijn ME, Verreck FAW, Ottenhoff THM, Joosten SA. An imaging mass cytometry immunophenotyping panel for non-human primate tissues. Front Immunol 2022; 13:915157. [PMID: 35911721 PMCID: PMC9334813 DOI: 10.3389/fimmu.2022.915157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
It has recently become clear that spatial organization contributes to cellular function and that expanding our knowledge on cellular organization is essential to further our understanding of processes in health and disease. Imaging mass cytometry enables high dimensional imaging of tissue while preserving spatial context and is therefore a suitable tool to unravel spatial relationships between cells. As availability of human tissue collected over the course of disease or infection is limited, preclinical models are a valuable source of such material. Non-human primate models are used for translational research as their anatomy, physiology and immune system closely resemble those of humans due to close evolutionary proximity. Tissue from non-human primate studies is often preserved large archives encompassing a range of conditions and organs. However, knowledge on antibody clones suitable for FFPE tissue of non-human primate origin is very limited. Here, we present an imaging mass cytometry panel development pipeline which enables the selection and incorporation of antibodies for imaging of non-human primate tissue. This has resulted in an 18-marker backbone panel which enables visualization of a broad range of leukocyte subsets in rhesus and cynomolgus macaque tissues. This high-dimensional imaging mass cytometry panel can be used to increase our knowledge of cellular organization within tissues and its effect on outcome of disease.
Collapse
Affiliation(s)
- Paula Niewold
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Frank A. W. Verreck
- Section of Tuberculosis (TB) Research and Immunology, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
- *Correspondence: Simone A. Joosten,
| |
Collapse
|
9
|
Yang J, Okyere SK, Zheng J, Cao B, Hu Y. Seasonal Prevalence of Gastrointestinal Parasites in Macaques ( Macaca thibetana) at Mount Emei Scenic Area in China. Animals (Basel) 2022; 12:1816. [PMID: 35883363 PMCID: PMC9311871 DOI: 10.3390/ani12141816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to elucidate the prevalence of intestinal parasites in macaques at the Mt. Emei Scenic Area of Sichuan, China. A total of 168 fecal samples were collected from yellow (n = 31), black (n = 19), new (n = 57), Leidongping (n = 57) and Wuxiangang (n = 4) macaques from 2019 to 2020. The fecal samples were tested for various gastrointestinal parasites following the microscopic detection method. The results showed that the total prevalence rate of the intestinal parasite was 51.19% (86/168), whereas the intestinal parasite with the highest prevalence was Gongylonema spp. (26.79%) for helminth and Entamoeba spp. (18.45%) for protozoa. Interestingly, the highest prevalence of intestinal parasites was observed during the summer season (86.21%), and the lowest was observed during the winter season (7.14%). There was a positive correlation observed between the human contact frequency and total prevalence rate of the intestinal parasites (p < 0.05); however, there was no correlation between the human contact frequency and total prevalence of the intestinal parasites at different seasons (p > 0.05). In conclusion, the dominant parasites Gongylonema spp. and Entamoeba spp. cause various diseases that may be transmitted to humans and other animals; therefore, there is a need for a proper management system, such as parasite control measures and population protection in the Mt. Emei Scenic Area of Sichuan, China.
Collapse
Affiliation(s)
- Jiandong Yang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.K.O.); (B.C.)
| | - Jie Zheng
- Forestry Management Agency of Mount Meishan, Meishan 614200, China;
| | - Buyuan Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.K.O.); (B.C.)
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.K.O.); (B.C.)
| |
Collapse
|
10
|
Hunter L, Hingley-Wilson S, Stewart GR, Sharpe SA, Salguero FJ. Dynamics of Macrophage, T and B Cell Infiltration Within Pulmonary Granulomas Induced by Mycobacterium tuberculosis in Two Non-Human Primate Models of Aerosol Infection. Front Immunol 2022; 12:776913. [PMID: 35069548 PMCID: PMC8770544 DOI: 10.3389/fimmu.2021.776913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
Non-human primate models of Tuberculosis (TB) are one of the most commonly used within the experimental TB field because they closely mimic the whole spectrum of disease progression of human TB. However, the early cellular interactions of the pulmonary granuloma are still not well understood. The use of this model allows investigation into the early interactions of cells within pulmonary granulomas which cannot be undertaken in human samples. Pulmonary granulomas from rhesus and cynomolgus macaques from two timepoints post infection were categorised into categories 1 – 6 (early to late stage granulomas) and immunohistochemistry was used to identify CD68+ macrophages, CD3+ T cells and CD20+ B cells. Multinucleated giant cells and acid-fast bacilli were also quantified. At week four post infection, cynomolgus macaques were found to have more CD68+ cells than rhesus in all but category 1 granulomas. Cynomolgus also had a significantly higher percentage of CD20+ B cells in category 1 granulomas. At week twelve post infection, CD68+ cells were most abundant in category 4 and 5 granulomas in both species; however, there were no significant differences between them. CD3+ T cells and CD20+ B cells were significantly higher in the majority of granuloma categories in cynomolgus compared to rhesus. Multinucleated giant cells and acid-fast bacilli were most abundant in categories 5 and 6 at week 12 post challenge in both species. This study has identified the basic cellular composition and spatial distribution of immune cells within pulmonary granulomas in both rhesus and cynomolgus macaques over time. The data from this study will add to the knowledge already gained in this field and may inform future research on vaccines and therapeutics for TB.
Collapse
Affiliation(s)
- Laura Hunter
- Research and Evaluation, UK Health Security Agency (UKHSA), Salisbury, United Kingdom.,School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Suzie Hingley-Wilson
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Graham R Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Sally A Sharpe
- Research and Evaluation, UK Health Security Agency (UKHSA), Salisbury, United Kingdom
| | | |
Collapse
|
11
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Qu M, Zhou X, Li H. BCG vaccination strategies against tuberculosis: updates and perspectives. Hum Vaccin Immunother 2021; 17:5284-5295. [PMID: 34856853 DOI: 10.1080/21645515.2021.2007711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB). However, BCG has variable efficacy and cannot completely prevent TB infection and transmission. Therefore, the worldwide prevalence of TB calls for urgent development of a more effective TB vaccine. In the absence of other approved vaccines, it is also necessary to improve the efficacy of BCG itself. Intravenous (IV) BCG administration and BCG revaccination strategies have recently shown promising results for clinical usage. Therefore, it is necessary for us to revisit the BCG vaccination strategies and summarize the current research updates related to BCG vaccination. This literature review provides an updated overview and perspectives of the immunization strategies against TB using BCG, which may inspire the following research on TB vaccine development.
Collapse
Affiliation(s)
- Mengjin Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Quantitative Rapid Test for Detection and Monitoring of Active Pulmonary Tuberculosis in Nonhuman Primates. BIOLOGY 2021; 10:biology10121260. [PMID: 34943175 PMCID: PMC8698365 DOI: 10.3390/biology10121260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022]
Abstract
Nonhuman primates (NHPs) are relevant models to study the pathogenesis of tuberculosis (TB) and evaluate the potential of TB therapies, but rapid tools allowing diagnosis of active pulmonary TB in NHPs are lacking. This study investigates whether low complexity lateral flow assays utilizing upconverting reporter particles (UCP-LFAs) developed for rapid detection of human serum proteins can be applied to detect and monitor active pulmonary TB in NHPs. UCP-LFAs were used to assess serum proteins levels and changes in relation to the MTB challenge dosage, lung pathology, treatment, and disease outcome in experimentally MTB-infected macaques. Serum levels of SAA1, IP-10, and IL-6 showed a significant increase after MTB infection in rhesus macaques and correlated with disease severity as determined by pathology scoring. Moreover, these biomarkers could sensitively detect the reduction of bacterial levels in the lungs of macaques due to BCG vaccination or drug treatment. Quantitative measurements by rapid UCP-LFAs specific for SAA1, IP-10, and IL-6 in serum can be utilized to detect active progressive pulmonary TB in macaques. The UCP-LFAs thus offer a low-cost, convenient, and minimally invasive diagnostic tool that can be applied in studies on TB vaccine and drug development involving macaques.
Collapse
|
14
|
High-dose Mycobacterium tuberculosis aerosol challenge cannot overcome BCG-induced protection in Chinese origin cynomolgus macaques; implications of natural resistance for vaccine evaluation. Sci Rep 2021; 11:12274. [PMID: 34112845 PMCID: PMC8192909 DOI: 10.1038/s41598-021-90913-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/19/2021] [Indexed: 12/01/2022] Open
Abstract
This study describes the use of cynomolgus macaques of Chinese origin (CCM) to evaluate the efficacy and immunogenicity of the BCG vaccine against high dose aerosol Mycobacterium tuberculosis challenge. Progressive disease developed in three of the unvaccinated animals within 10 weeks of challenge, whereas all six vaccinated animals controlled disease for 26 weeks. Three unvaccinated animals limited disease progression, highlighting the intrinsic ability of this macaque species to control disease in comparison to macaques of other species and genotypes. Low levels of IFNγ were induced by BCG vaccination in CCM suggesting that IFNγ alone does not provide a sufficiently sensitive biomarker of vaccination in this model. An early response after challenge, together with the natural bias towards terminal effector memory T-cell populations and the contribution of monocytes appears to enhance the ability of CCM to naturally control infection. The high dose aerosol challenge model of CCM has value for examination of the host immune system to characterise control of infection which would influence future vaccine design. Although it may not be the preferred platform for the assessment of prophylactic vaccine candidates, the model could be well suited for testing post-exposure vaccination strategies and drug evaluation studies.
Collapse
|
15
|
Perumal P, Abdullatif MB, Garlant HN, Honeyborne I, Lipman M, McHugh TD, Southern J, Breen R, Santis G, Ellappan K, Kumar SV, Belgode H, Abubakar I, Sinha S, Vasan SS, Joseph N, Kempsell KE. Validation of Differentially Expressed Immune Biomarkers in Latent and Active Tuberculosis by Real-Time PCR. Front Immunol 2021; 11:612564. [PMID: 33841389 PMCID: PMC8029985 DOI: 10.3389/fimmu.2020.612564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) remains a major global threat and diagnosis of active TB ((ATB) both extra-pulmonary (EPTB), pulmonary (PTB)) and latent TB (LTBI) infection remains challenging, particularly in high-burden countries which still rely heavily on conventional methods. Although molecular diagnostic methods are available, e.g., Cepheid GeneXpert, they are not universally available in all high TB burden countries. There is intense focus on immune biomarkers for use in TB diagnosis, which could provide alternative low-cost, rapid diagnostic solutions. In our previous gene expression studies, we identified peripheral blood leukocyte (PBL) mRNA biomarkers in a non-human primate TB aerosol-challenge model. Here, we describe a study to further validate select mRNA biomarkers from this prior study in new cohorts of patients and controls, as a prerequisite for further development. Whole blood mRNA was purified from ATB patients recruited in the UK and India, LTBI and two groups of controls from the UK (i) a low TB incidence region (CNTRLA) and (ii) individuals variably-domiciled in the UK and Asia ((CNTRLB), the latter TB high incidence regions). Seventy-two mRNA biomarker gene targets were analyzed by qPCR using the Roche Lightcycler 480 qPCR platform and data analyzed using GeneSpring™ 14.9 bioinformatics software. Differential expression of fifty-three biomarkers was confirmed between MTB infected, LTBI groups and controls, seventeen of which were significant using analysis of variance (ANOVA): CALCOCO2, CD52, GBP1, GBP2, GBP5, HLA-B, IFIT3, IFITM3, IRF1, LOC400759 (GBP1P1), NCF1C, PF4V1, SAMD9L, S100A11, TAF10, TAPBP, and TRIM25. These were analyzed using receiver operating characteristic (ROC) curve analysis. Single biomarkers and biomarker combinations were further assessed using simple arithmetic algorithms. Minimal combination biomarker panels were delineated for primary diagnosis of ATB (both PTB and EPTB), LTBI and identifying LTBI individuals at high risk of progression which showed good performance characteristics. These were assessed for suitability for progression against the standards for new TB diagnostic tests delineated in the published World Health Organization (WHO) technology product profiles (TPPs).
Collapse
Affiliation(s)
- Prem Perumal
- Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | | | - Harriet N. Garlant
- Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Isobella Honeyborne
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Marc Lipman
- UCL Respiratory, University College London, Royal Free Campus, London, United Kingdom
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Jo Southern
- Institute for Global Health, University College London, London, United Kingdom
| | - Ronan Breen
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - George Santis
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Kalaiarasan Ellappan
- Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Gorimedu, Puducherry, India
| | - Saka Vinod Kumar
- Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Gorimedu, Puducherry, India
| | - Harish Belgode
- Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Gorimedu, Puducherry, India
| | - Ibrahim Abubakar
- Institute for Global Health, University College London, London, United Kingdom
| | - Sanjeev Sinha
- Department of Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Seshadri S. Vasan
- Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
- Department of Health Sciences, University of York, York, United Kingdom
| | - Noyal Joseph
- Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Gorimedu, Puducherry, India
| | - Karen E. Kempsell
- Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| |
Collapse
|
16
|
Ramos L, Lunney JK, Gonzalez-Juarrero M. Neonatal and infant immunity for tuberculosis vaccine development: importance of age-matched animal models. Dis Model Mech 2020; 13:dmm045740. [PMID: 32988990 PMCID: PMC7520460 DOI: 10.1242/dmm.045740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neonatal and infant immunity differs from that of adults in both the innate and adaptive arms, which are critical contributors to immune-mediated clearance of infection and memory responses elicited during vaccination. The tuberculosis (TB) research community has openly admitted to a vacuum of knowledge about neonatal and infant immune responses to Mycobacterium tuberculosis (Mtb) infection, especially in the functional and phenotypic attributes of memory T cell responses elicited by the only available vaccine for TB, the Bacillus Calmette-Guérin (BCG) vaccine. Although BCG vaccination has variable efficacy in preventing pulmonary TB during adolescence and adulthood, 80% of endemic TB countries still administer BCG at birth because it has a good safety profile and protects children from severe forms of TB. As such, new vaccines must work in conjunction with BCG at birth and, thus, it is essential to understand how BCG shapes the immune system during the first months of life. However, many aspects of the neonatal and infant immune response elicited by vaccination with BCG remain unknown, as only a handful of studies have followed BCG responses in infants. Furthermore, most animal models currently used to study TB vaccine candidates rely on adult-aged animals. This presents unique challenges when transitioning to human trials in neonates or infants. In this Review, we focus on vaccine development in the field of TB and compare the relative utility of animal models used thus far to study neonatal and infant immunity. We encourage the development of neonatal animal models for TB, especially the use of pigs.
Collapse
Affiliation(s)
- Laylaa Ramos
- Mycobacteria Research Laboratories, Microbiology Immunology and Pathology Department, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA Building 1040, Room 103, Beltsville, MD 20705, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Microbiology Immunology and Pathology Department, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
17
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
18
|
Tsenova L, Fallows D, Kolloli A, Singh P, O'Brien P, Kushner N, Kaplan G, Subbian S. Inoculum size and traits of the infecting clinical strain define the protection level against Mycobacterium tuberculosis infection in a rabbit model. Eur J Immunol 2020; 50:858-872. [PMID: 32130727 DOI: 10.1002/eji.201948448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/27/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
Abstract
Host protective immunity against pathogenic Mycobacterium tuberculosis (Mtb) infection is variable and poorly understood. Both prior Mtb infection and BCG vaccination have been reported to confer some protection against subsequent infection and/or disease. However, the immune correlates of host protection with or without BCG vaccination remain poorly understood. Similarly, the host response to concomitant infection with mixed Mtb strains is unclear. In this study, we used the rabbit model to examine the host response to various infectious doses of virulent Mtb HN878 with and without prior BCG vaccination, as well as simultaneous infection with a mixture of two Mtb clinical isolates HN878 and CDC1551. We demonstrate that both the ability of host immunity to control pulmonary Mtb infection and the protective efficacy of BCG vaccination against the progression of Mtb infection to disease is dependent on the infectious inoculum. The host response to infection with mixed Mtb strains mirrors the differential responses seen during infection with each of the strains alone. The protective response mounted against a hyperimmunogenic Mtb strain has a limited impact on the control of disease caused by a hypervirulent strain. This preclinical study will aid in predicting the success of any vaccination strategy and in optimizing TB vaccines.
Collapse
Affiliation(s)
- Liana Tsenova
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Biological Sciences, NYC College of Technology, Brooklyn, NY, USA
| | - Dorothy Fallows
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Celgene Corporation, Summit, NJ, USA
| | - Afsal Kolloli
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Pooja Singh
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Paul O'Brien
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers University, Newark, NJ, USA
| | - Nicole Kushner
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Gilla Kaplan
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Selvakumar Subbian
- The Public Health Research Institute (PHRI) of New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
19
|
Salina EG, Grigorov AS, Bychenko OS, Skvortsova YV, Mamedov IZ, Azhikina TL, Kaprelyants AS. Resuscitation of Dormant "Non-culturable" Mycobacterium tuberculosis Is Characterized by Immediate Transcriptional Burst. Front Cell Infect Microbiol 2019; 9:272. [PMID: 31428590 PMCID: PMC6689984 DOI: 10.3389/fcimb.2019.00272] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 01/23/2023] Open
Abstract
Under unfavorable conditions such as host immune responses and environmental stresses, human pathogen Mycobacterium tuberculosis may acquire the dormancy phenotype characterized by "non-culturability" and a substantial decrease of metabolic activity and global transcription rates. Here, we found that the transition of M. tuberculosis from the dormant "non-culturable" (NC) cells to fully replicating population in vitro occurred not earlier than 7 days after the start of the resuscitation process, with predominant resuscitation over this time interval evidenced by shortening apparent generation time up to 2.8 h at the beginning of resuscitation. The early resuscitation phase was characterized by constant, albeit low, incorporation of radioactive uracil, indicating de novo transcription immediately after the removal of the stress factor, which resulted in significant changes of the M. tuberculosis transcriptional profile already after the first 24 h of resuscitation. This early response included transcriptional upregulation of genes encoding enzymes of fatty acid synthase system type I (FASI) and type II (FASII) responsible for fatty acid/mycolic acid biosynthesis, and regulatory genes, including whiB6 encoding a redox-sensing transcription factor. The second resuscitation phase took place 4 days after the resuscitation onset, i.e., still before the start of active cell division, and included activation of central metabolism genes encoding NADH dehydrogenases, ATP-synthases, and ribosomal proteins. Our results demonstrate, for the first time, that the resuscitation of dormant NC M. tuberculosis is characterized by immediate activation of de novo transcription followed by the upregulation of genes controlling key metabolic pathways and then, cell multiplication.
Collapse
Affiliation(s)
- Elena G Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Artem S Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oksana S Bychenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia V Skvortsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilgar Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Arseny S Kaprelyants
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Firrman J, Liu L, Tanes C, Bittinger K, Mahalak K, Rinaldi W. Metagenomic assessment of the Cebus apella gut microbiota. Am J Primatol 2019; 81:e23023. [PMID: 31240754 DOI: 10.1002/ajp.23023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/13/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
Cebus Apella (C. apella) is a species of Nonhuman Primate (NHP) used for biomedical research because it is phylogenetically similar and shares anatomical commonalities with humans. Here, the gut microbiota of three C. apella were examined in the different regions of the intestinal tract. Using metagenomics, the gut microbiota associated with the luminal content and mucus layer for each intestinal region was identified, and functionality was investigated by quantifying the levels of short chain fatty acids (SCFAs) produced. The results of this study show a high degree of similarity in the intestinal communities among C. apella subjects, with multiple shared characteristics. First, the communities in the lumen were more phylogenetically diverse and rich compared to the mucus layer communities throughout the entire intestinal tract. The small intestine communities in the lumen displayed a higher Shannon diversity index compared to the colon communities. Second, all the communities were dominated by aero-tolerant taxa such as Streptococcus, Enterococcus, Abiotrophia, and Lactobacillus, although there was preferential colonization of specific taxa observed. Finally, the primary SCFA produced throughout the intestinal tract was acetic acid, with some propionic acid and butyric acid detected in the colon regions. The small intestine microbiota produced significantly less SCFAs compared to the communities in the colon. Collectively, these data provide an in-depth report on the composition, distribution, and SCFA production of the gut microbiota along the intestinal tract of the C. apella NHP animal model.
Collapse
Affiliation(s)
- Jenni Firrman
- United States Department of Agriculture, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, Pennsylvania
| | - LinShu Liu
- United States Department of Agriculture, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, Pennsylvania
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Karley Mahalak
- United States Department of Agriculture, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, Pennsylvania
| | | |
Collapse
|
21
|
Foreman TW, Mehra S, Lackner AA, Kaushal D. Translational Research in the Nonhuman Primate Model of Tuberculosis. ILAR J 2018; 58:151-159. [PMID: 28575319 DOI: 10.1093/ilar/ilx015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/10/2017] [Indexed: 11/14/2022] Open
Abstract
Infection with Mycobacterium tuberculosis predominantly establishes subclinical latent infection over the lifetime of an individual, with a fraction of infected individuals rapidly progressing to active disease. The immune control in latent infection can be perturbed by comorbidities such as diabetes mellitus, obesity, smoking, and coinfection with helminthes or HIV. Modeling the varying aspects of natural infection remains incomplete when using zebrafish and mice. However, the nonhuman primate model of tuberculosis offers a unique and accurate model to investigate host responses to infection, test novel therapeutics, and thoroughly assess preclinical vaccine candidates. Rhesus macaques and cynomolgus macaques manifest the full gamut of clinical and pathological findings in human Mycobacterium tuberculosis infection, including the ability to co-infect macaques with Simian Immunodeficiency Virus to model HIV co-infection. Here we discuss advanced techniques to assay various clinical outcomes of the natural progression of infection as well as therapeutics in development and novel preclinical vaccines. Finally, we survey the translational aspects of nonhuman primate research and argue the urgent need to thoroughly examine preclinical therapeutics and vaccines using this model prior to clinical implementation.
Collapse
Affiliation(s)
- Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana.,Tulane University School of Medicine, New Orleans, Louisiana
| | - Smriti Mehra
- Louisiana State University School, Veterinary Medicine, Baton Rouge, Louisiana.,Tulane National Primate Research Center in Covington, Louisiana
| | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana.,Immunology and Pathology at Tulane University School of Medicine in New Orleans, Louisiana
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana.,Immunology at Tulane University School of Medicine, New Orleans, Louisiana.,Department of Medicine, Tulane University School of Medicine in New Orleans, Louisiana
| |
Collapse
|
22
|
Veatch AV, Kaushal D. Opening Pandora's Box: Mechanisms of Mycobacterium tuberculosis Resuscitation. Trends Microbiol 2017; 26:145-157. [PMID: 28911979 DOI: 10.1016/j.tim.2017.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) characteristically causes an asymptomatic infection. While this latent tuberculosis infection (LTBI) is not contagious, reactivation to active tuberculosis disease (TB) causes the patient to become infectious. A vaccine has existed for TB for a century, while drug treatments have been available for over 70 years; despite this, TB remains a major global health crisis. Understanding the factors which allow the bacillus to control responses to host stress and mechanisms leading to latency are critical for persistence. Similarly, molecular switches which respond to reactivation are important. Recently, research in the field has sought to focus on reactivation, employing system-wide approaches and animal models. Here, we describe the current work that has been done to elucidate the mechanisms of reactivation and stop reactivation in its tracks.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
23
|
Izzo AA. Tuberculosis vaccines - perspectives from the NIH/NIAID Mycobacteria vaccine testing program. Curr Opin Immunol 2017; 47:78-84. [PMID: 28750280 PMCID: PMC5626602 DOI: 10.1016/j.coi.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
The development of novel vaccine candidates against infections with Mycobacterium tuberculosis has highlighted our limited understanding of immune mechanisms required to kill M. tuberculosis. The induction of a Th1 immunity is vital, but new studies are required to identify other mechanisms that may be necessary. Novel vaccines formulations that invoke effector cells such as innate lymphoid cells may provide an environment that promote effector mechanisms including T cell and B cell mediated immunity. Identifying pathways associated with killing this highly successful infectious agent has become critical to achieving the goal of reducing the global tuberculosis burden.
Collapse
Affiliation(s)
- Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology & Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, United States.
| |
Collapse
|
24
|
Grover A, Troy A, Rowe J, Troudt JM, Creissen E, McLean J, Banerjee P, Feuer G, Izzo AA. Humanized NOG mice as a model for tuberculosis vaccine-induced immunity: a comparative analysis with the mouse and guinea pig models of tuberculosis. Immunology 2017; 152:150-162. [PMID: 28502122 DOI: 10.1111/imm.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/09/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022] Open
Abstract
The humanized mouse model has been developed as a model to identify and characterize human immune responses to human pathogens and has been used to better identify vaccine candidates. In the current studies, the humanized mouse was used to determine the ability of a vaccine to affect the immune response to infection with Mycobacterium tuberculosis. Both human CD4+ and CD8+ T cells responded to infection in humanized mice as a result of infection. In humanized mice vaccinated with either BCG or with CpG-C, a liposome-based formulation containing the M. tuberculosis antigen ESAT-6, both CD4 and CD8 T cells secreted cytokines that are known to be required for induction of protective immunity. In comparison to the C57BL/6 mouse model and Hartley guinea pig model of tuberculosis, data obtained from humanized mice complemented the data observed in the former models and provided further evidence that a vaccine can induce a human T-cell response. Humanized mice provide a crucial pre-clinical platform for evaluating human T-cell immune responses in vaccine development against M. tuberculosis.
Collapse
Affiliation(s)
- Ajay Grover
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amber Troy
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jenny Rowe
- HuMurine Technologies, La Verne, CA, USA
| | - JoLynn M Troudt
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth Creissen
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer McLean
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Angelo A Izzo
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
25
|
Abstract
ABSTRACT
Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to
Mycobacterium tuberculosis
infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.
Collapse
|