1
|
Qian H, Xiao Z, Cheng L, Geng R, Ma Y, Bi Y, Liang W, Yang A. A Novel Secreted Protein of Fusarium oxysporum Promotes Infection by Inhibiting PR-5 Protein in Plant. PLANT, CELL & ENVIRONMENT 2025; 48:1021-1036. [PMID: 39400398 DOI: 10.1111/pce.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Fusarium oxysporum, an important soilborne fungal pathogen that causes serious Fusarium wilt disease, secretes diverse effectors during the infection. In this study, we identified a novel secreted cysteine-rich protein, FolSCP1, which contains unknown protein functional domain. Here, we characterized FolSCP1 as a secreted virulence factor that promotes the pathogen infection of host plants by inhibiting diverse plant defence responses. FolSCP1 interacted with the pathogenesis-related 5 (PR-5) protein SlPR5, a positive regulator of tomato plant immunity against multiple tomato pathogens, and effectively attenuated the antifungal activity of the tomato PR-5 protein. FoSCP1, a homologue of FolSCP1, was secreted by a F. oxysporum isolate from infected tobacco and targeted the tobacco PR-5 protein NtPR5 to suppress plant defence for further infection. In summary, our study revealed a fungal virulence strategy in which F. oxysporum secrete effectors that interfere with plant immunity by binding to the PR-5 protein of the host plant and inhibiting its biological activity, thereby promoting fungal infection.
Collapse
Affiliation(s)
- Hengwei Qian
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiliang Xiao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lirui Cheng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ruimei Geng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yan Ma
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yanxiao Bi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
2
|
Kronmiller BA, Feau N, Shen D, Tabima JF, Ali SS, Armitage AD, Arredondo F, Bailey BA, Bollmann SR, Dale A, Harrison RJ, Hrywkiw K, Kasuga T, McDougal R, Nellist CF, Panda P, Tripathy S, Williams NM, Ye W, Wang Y, Hamelin RC, Grünwald NJ. Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:26-46. [PMID: 36306437 DOI: 10.1094/mpmi-06-22-0133-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Brent A Kronmiller
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Javier F Tabima
- Department of Biology, Clark University, Worcester, MA, U.S.A
| | - Shahin S Ali
- Sustainable Perennial Crops Laboratory, Northeast Area, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, U.S.A
| | - Andrew D Armitage
- Natural Resources Institute, University of Greenwich, Chatham Maritime, U.K
| | - Felipe Arredondo
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Bryan A Bailey
- Sustainable Perennial Crops Laboratory, Northeast Area, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, U.S.A
| | - Stephanie R Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, OR, U.S.A
| | - Angela Dale
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
- SC-New Construction Materials, FPInnovations, Vancouver, V6T 1Z4, Canada
| | | | - Kelly Hrywkiw
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, CA, U.S.A
| | - Rebecca McDougal
- Scion (Zealand Forest Research Institute), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
| | | | - Preeti Panda
- The New Zealand Institute for Plant and Food Research Ltd, 74 Gerald Street, Lincoln, 7608, New Zealand
| | | | - Nari M Williams
- Scion (Zealand Forest Research Institute), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
- Department of Pathogen Ecology and Control, Plant and Food Research, Private Bag 1401, Havelock North, New Zealand
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Canada
| | - Niklaus J Grünwald
- Horticultural Crop Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|
3
|
Helliwell EE, Lafayette P, Kronmiller BN, Arredondo F, Duquette M, Co A, Vega-Arreguin J, Porter SS, Borrego EJ, Kolomiets MV, Parrott WA, Tyler BM. Transgenic Soybeans Expressing Phosphatidylinositol-3-Phosphate-Binding Proteins Show Enhanced Resistance Against the Oomycete Pathogen Phytophthora sojae. Front Microbiol 2022; 13:923281. [PMID: 35783378 PMCID: PMC9243418 DOI: 10.3389/fmicb.2022.923281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycete and fungal pathogens cause billions of dollars of damage to crops worldwide annually. Therefore, there remains a need for broad-spectrum resistance genes, especially ones that target pathogens but do not interfere with colonization by beneficial microbes. Motivated by evidence suggesting that phosphatidylinositol-3-phosphate (PI3P) may be involved in the delivery of some oomycete and fungal virulence effector proteins, we created stable transgenic soybean plants that express and secrete two different PI3P-binding proteins, GmPH1 and VAM7, in an effort to interfere with effector delivery and confer resistance. Soybean plants expressing the two PI3P-binding proteins exhibited reduced infection by the oomycete pathogen Phytophthora sojae compared to control lines. Measurements of nodulation by nitrogen-fixing mutualistic bacterium Bradyrhizobium japonicum, which does not produce PI3P, revealed that the two lines with the highest levels of GmPH1 transcripts exhibited reductions in nodulation and in benefits from nodulation. Transcriptome and plant hormone measurements were made of soybean lines with the highest transcript levels of GmPH1 and VAM7, as well as controls, following P. sojae- or mock-inoculation. The results revealed increased levels of infection-associated transcripts in the transgenic lines, compared to controls, even prior to P. sojae infection, suggesting that the plants were primed for increased defense. The lines with reduced nodulation exhibited elevated levels of jasmonate-isoleucine and of transcripts of a JAR1 ortholog encoding jasmonate-isoleucine synthetase. However, lines expressing VAM7 transgenes exhibited normal nodulation and no increases in jasmonate-isoleucine. Overall, together with previously published data from cacao and from P. sojae transformants, the data suggest that secretion of PI3P-binding proteins may confer disease resistance through a variety of mechanisms.
Collapse
Affiliation(s)
- Emily E. Helliwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
- *Correspondence: Emily E. Helliwell,
| | - Peter Lafayette
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brent N. Kronmiller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Madeleine Duquette
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Anna Co
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Julio Vega-Arreguin
- Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de México, León, Mexico
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - Eli J. Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Wayne A. Parrott
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brett M. Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Fang Y, Wang Z, Liu X, Tyler BM. Biogenesis and Biological Functions of Extracellular Vesicles in Cellular and Organismal Communication With Microbes. Front Microbiol 2022; 13:817844. [PMID: 35250933 PMCID: PMC8895202 DOI: 10.3389/fmicb.2022.817844] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) represent a prominent mechanism of transport and interaction between cells, especially microbes. Increasing evidence indicates that EVs play a key role in the physiological and pathological processes of pathogens and other symbionts. Recent research has focused on the specific functions of these vesicles during pathogen-host interactions, including trans-kingdom delivery of small RNAs, proteins and metabolites. Much current research on the function of EVs is focused on immunity and the interactions of microbes with human cells, while the roles of EVs during plant-microbe interactions have recently emerged in importance. In this review, we summarize recent research on the biogenesis of these vesicles and their functions in biology and pathology. Many key questions remain unclear, including the full structural and functional diversity of EVs, the roles of EVs in communication among microbes within microbiomes, how specific cargoes are targeted to EVs, whether EVs are targeted to specific destinations, and the full scope of EVs' transport of virulence effectors and of RNA and DNA molecules.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Zhiwen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Brett M. Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
5
|
Qi T, Guo J, Liu P, He F, Wan C, Islam MA, Tyler BM, Kang Z, Guo J. Stripe Rust Effector PstGSRE1 Disrupts Nuclear Localization of ROS-Promoting Transcription Factor TaLOL2 to Defeat ROS-Induced Defense in Wheat. MOLECULAR PLANT 2019; 12:1624-1638. [PMID: 31606466 DOI: 10.1016/j.molp.2019.09.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 05/27/2023]
Abstract
Puccinia striiformis f. sp. tritici (Pst), a biotrophic plant pathogen, secretes numerous effectors to modulate host defense systems. Understanding the molecular mechanisms by which Pst effectors regulate wheat immunity is of great importance for the development of novel strategies for durable control of stripe rust. In this study, we identified a glycine-serine-rich effector gene, PstGSRE1, which is highly induced during early infection. Transgenic expression of PstGSRE1 RNAi constructs in wheat significantly reduced virulence of Pst and increased H2O2 accumulation in wheat. PstGSRE1 was shown to target the reactive oxygen species (ROS)-associated transcription factor TaLOL2, a positive regulator of wheat immunity. PstGSRE1 disrupted nuclear localization of TaLOL2 and suppressed ROS-mediated cell death induced by TaLOL2, thus compromising host immunity. This work reveals a previously unrecognized strategy whereby rust fungi exploit the PstGSRE1 effector to defeat ROS-associated plant defense by modulating the subcellular compartment of a host immune regulator and facilitate pathogen infection.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Fuxin He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Cuiping Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Md Ashraful Islam
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China.
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China.
| |
Collapse
|
6
|
Helliwell EE, Vega-Arreguín J, Shi Z, Bailey B, Xiao S, Maximova SN, Tyler BM, Guiltinan MJ. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:875-86. [PMID: 26214158 PMCID: PMC11389135 DOI: 10.1111/pbi.12436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/08/2023]
Abstract
The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens.
Collapse
Affiliation(s)
- Emily E Helliwell
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Julio Vega-Arreguín
- Virginia Bioinformatics Institute and Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Zi Shi
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bryan Bailey
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Siela N Maximova
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Virginia Bioinformatics Institute and Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark J Guiltinan
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Foulger RE, Osumi-Sutherland D, McIntosh BK, Hulo C, Masson P, Poux S, Le Mercier P, Lomax J. Representing virus-host interactions and other multi-organism processes in the Gene Ontology. BMC Microbiol 2015; 15:146. [PMID: 26215368 PMCID: PMC4517558 DOI: 10.1186/s12866-015-0481-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/10/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The Gene Ontology project is a collaborative effort to provide descriptions of gene products in a consistent and computable language, and in a species-independent manner. The Gene Ontology is designed to be applicable to all organisms but up to now has been largely under-utilized for prokaryotes and viruses, in part because of a lack of appropriate ontology terms. METHODS To address this issue, we have developed a set of Gene Ontology classes that are applicable to microbes and their hosts, improving both coverage and quality in this area of the Gene Ontology. Describing microbial and viral gene products brings with it the additional challenge of capturing both the host and the microbe. Recognising this, we have worked closely with annotation groups to test and optimize the GO classes, and we describe here a set of annotation guidelines that allow the controlled description of two interacting organisms. CONCLUSIONS Building on the microbial resources already in existence such as ViralZone, UniProtKB keywords and MeGO, this project provides an integrated ontology to describe interactions between microbial species and their hosts, with mappings to the external resources above. Housing this information within the freely-accessible Gene Ontology project allows the classes and annotation structure to be utilized by a large community of biologists and users.
Collapse
Affiliation(s)
- R E Foulger
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - D Osumi-Sutherland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - B K McIntosh
- Department of Biochemistry and Biophysics, Texas Agrilife Research, Texas A&M University, College Station, TX, 77843, USA.
| | - C Hulo
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| | - P Masson
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| | - S Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| | - P Le Mercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| | - J Lomax
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
8
|
Lerksuthirat T, Lohnoo T, Inkomlue R, Rujirawat T, Yingyong W, Khositnithikul R, Phaonakrop N, Roytrakul S, Sullivan TD, Krajaejun T. The elicitin-like glycoprotein, ELI025, is secreted by the pathogenic oomycete Pythium insidiosum and evades host antibody responses. PLoS One 2015; 10:e0118547. [PMID: 25793767 PMCID: PMC4368664 DOI: 10.1371/journal.pone.0118547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022] Open
Abstract
Pythium insidiosum is a unique oomycete that can infect humans and animals. Patients with a P. insidiosum infection (pythiosis) have high rates of morbidity and mortality. The pathogen resists conventional antifungal drugs. Information on the biology and pathogenesis of P. insidiosum is limited. Many pathogens secrete proteins, known as effectors, which can affect the host response and promote the infection process. Elicitins are secretory proteins and are found only in the oomycetes, primarily in Phytophthora and Pythium species. In plant-pathogenic oomycetes, elicitins function as pathogen-associated molecular pattern molecules, sterol carriers, and plant defense stimulators. Recently, we reported a number of elicitin-encoding genes from the P. insidiosum transcriptome. The function of elicitins during human infections is unknown. One of the P. insidiosum elicitin-encoding genes, ELI025, is highly expressed and up-regulated at body temperature. This study aims to characterize the biochemical, immunological, and genetic properties of the elicitin protein, ELI025. A 12.4-kDa recombinant ELI025 protein (rELI025) was expressed in Escherichia coli. Rabbit anti-rELI025 antibodies reacted strongly with the native ELI025 in P. insidiosum’s culture medium. The detected ELI025 had two isoforms: glycosylated and non-glycosylated. ELI025 was not immunoreactive with sera from pythiosis patients. The region near the transcriptional start site of ELI025 contained conserved oomycete core promoter elements. In conclusion, ELI025 is a small, abundant, secreted glycoprotein that evades host antibody responses. ELI025 is a promising candidate for development of diagnostic and therapeutic targets for pythiosis.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tassanee Lohnoo
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ruchuros Inkomlue
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thidarat Rujirawat
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wanta Yingyong
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rommanee Khositnithikul
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, Genome Institute, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thomas D. Sullivan
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
9
|
Tyler BM, Kale SD, Wang Q, Tao K, Clark HR, Drews K, Antignani V, Rumore A, Hayes T, Plett JM, Fudal I, Gu B, Chen Q, Affeldt KJ, Berthier E, Fischer GJ, Dou D, Shan W, Keller NP, Martin F, Rouxel T, Lawrence CB. Microbe-Independent Entry of Oomycete RxLR Effectors and Fungal RxLR-Like Effectors Into Plant and Animal Cells Is Specific and Reproducible. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:51-56. [PMID: 27839069 DOI: 10.1094/mpmi-99-99-0002.testissue] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Brett M Tyler
- 1 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Shiv D Kale
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Qunqing Wang
- 1 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Kai Tao
- 1 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Helen R Clark
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Kelly Drews
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Vincenzo Antignani
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Amanda Rumore
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Tristan Hayes
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Jonathan M Plett
- 3 Lab of Excellence ARBRE, UMR INRA/UHP 1136, Interactions Arbres/Micro-organismes, Centre INRA de Nancy, 54280 Champenoux, France
| | - Isabelle Fudal
- 4 INRA-Bioger, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - Biao Gu
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
- 5 College of Plant Protection and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinghe Chen
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Katharyn J Affeldt
- 6 Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Erwin Berthier
- 6 Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Gregory J Fischer
- 6 Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Daolong Dou
- 2 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, U.S.A
- 7 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixing Shan
- 5 College of Plant Protection and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nancy P Keller
- 6 Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Francis Martin
- 3 Lab of Excellence ARBRE, UMR INRA/UHP 1136, Interactions Arbres/Micro-organismes, Centre INRA de Nancy, 54280 Champenoux, France
| | - Thierry Rouxel
- 4 INRA-Bioger, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | | |
Collapse
|
10
|
Fletcher J, Leach JE, Eversole K, Tauxe R. Human Pathogens on Plants: Designing a Multidisciplinary Strategy for Research. PHYTOPATHOLOGY 2014:PHYTO09120236RVWtest. [PMID: 27454683 PMCID: PMC10962904 DOI: 10.1094/phyto-09-12-0236-rvw.test] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.
Collapse
Affiliation(s)
- Jacqueline Fletcher
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Jan E Leach
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Kellye Eversole
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Robert Tauxe
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| |
Collapse
|
11
|
Fletcher J, Leach JE, Eversole K, Tauxe R. Human Pathogens on Plants: Designing a Multidisciplinary Strategy for Research. PHYTOPATHOLOGY 2014:PHYTO09120236IAtest. [PMID: 27454682 DOI: 10.1094/phyto-09-12-0236-ia.test] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define cross-over issues that pertain also to HPOP research, and can suggest logical strategies for minimizing the risk of microbial contamination. Continued interactions and communication among these two disciplinary communities is essential and can be achieved by the creation of an interdisciplinary research coordination network. We hope that this article, an introduction to the multidisciplinary HPOP arena, will be useful to researchers in many related fields.
Collapse
Affiliation(s)
- Jacqueline Fletcher
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Jan E Leach
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Kellye Eversole
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| | - Robert Tauxe
- First author: National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, OK; second author: Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins, CO; third author: Eversole Associates, Bethesda, MD; and fourth author: Centers for Disease Control & Prevention, Atlanta, GA
| |
Collapse
|
12
|
Nunney L, Elfekih S, Stouthamer R. The Importance of Multilocus Sequence Typing: Cautionary Tales from the Bacterium Xylella fastidiosa. PHYTOPATHOLOGY 2014:PHYTO10110298Rtest. [PMID: 27454684 DOI: 10.1094/phyto-10-11-0298-r.test] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial identification methods have evolved rapidly over the last few decades. One such method is multilocus sequence typing (MLST). MLST is a powerful tool for understanding the evolutionary dynamics of pathogens and to gain insight into their genetic diversity. We illustrate the importance of accurate typing by reporting on three problems that have arisen in the study of a single bacterial species, the plant pathogen Xylella fastidiosa. Two of these were particularly serious since they concerned contamination of important research material that has had detrimental consequences for Xylella research: the contamination of DNA used in the sequencing of an X. fastidiosa genome (Ann-1) with DNA from another X. fastidiosa strain, and the unrecognized mislabeling of a strain (Temecula1) distributed from a culture collection (ATCC). We advocate the routine use of MLST to define strains maintained in culture collections and emphasize the importance of confirming the purity of DNA submitted for sequencing. We also present a third example that illustrates the value of MLST in guiding the choice of taxonomic types. Beyond these situations, there is a strong case for MLST whenever an isolate is used experimentally, especially where genotypic differences are suspected to influence the outcome.
Collapse
Affiliation(s)
- L Nunney
- First and second authors: Department of Biology, University of California, Riverside 92521; and third author: Department of Entomology, University of California, Riverside 92521
| | - S Elfekih
- First and second authors: Department of Biology, University of California, Riverside 92521; and third author: Department of Entomology, University of California, Riverside 92521
| | - R Stouthamer
- First and second authors: Department of Biology, University of California, Riverside 92521; and third author: Department of Entomology, University of California, Riverside 92521
| |
Collapse
|
13
|
Jaouannet M, Rosso MN. Effectors of root sedentary nematodes target diverse plant cell compartments to manipulate plant functions and promote infection. PLANT SIGNALING & BEHAVIOR 2013; 8:25507. [PMID: 23857349 PMCID: PMC4002590 DOI: 10.4161/psb.25507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sedentary plant-parasitic nematodes maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors, which are synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet, play a central role in these processes. Previous work on nematode effectors has shown that the apoplasm is targeted during invasion of the host while the cytoplasm is targeted during the induction and the maintenance of the feeding site. A large number of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection have now been identified. This work has shown that the targeting and the role of effectors are more complex than previously thought. This review will not cover the prolific recent findings in nematode effector function but will instead focus on recent selected examples that illustrate the variety of plant cell compartments that effectors are addressed to in order reach their plant targets.
Collapse
Affiliation(s)
- Maëlle Jaouannet
- Cell and Molecular Sciences; The James Hutton Institute; Dundee, UK
- Correspondence to: Maëlle Jaouannet,
| | - Marie-Noëlle Rosso
- INRA; Aix-Marseille Université; UMR 1163; Biotechnologie des Champignons Filamenteux; Marseille, France
| |
Collapse
|
14
|
Tyler BM, Kale SD, Wang Q, Tao K, Clark HR, Drews K, Antignani V, Rumore A, Hayes T, Plett JM, Fudal I, Gu B, Chen Q, Affeldt KJ, Berthier E, Fischer GJ, Dou D, Shan W, Keller NP, Martin F, Rouxel T, Lawrence CB. Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:611-6. [PMID: 23550528 PMCID: PMC3994703 DOI: 10.1094/mpmi-02-13-0051-ia] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A wide diversity of pathogens and mutualists of plant and animal hosts, including oomycetes and fungi, produce effector proteins that enter the cytoplasm of host cells. A major question has been whether or not entry by these effectors can occur independently of the microbe or requires machinery provided by the microbe. Numerous publications have documented that oomycete RxLR effectors and fungal RxLR-like effectors can enter plant and animal cells independent of the microbe. A recent reexamination of whether the RxLR domain of oomycete RxLR effectors is sufficient for microbe-independent entry into host cells concluded that the RxLR domains of Phytophthora infestans Avr3a and of P. sojae Avr1b alone are NOT sufficient to enable microbe-independent entry of proteins into host and nonhost plant and animal cells. Here, we present new, more detailed data that unambiguously demonstrate that the RxLR domain of Avr1b does show efficient and specific entry into soybean root cells and also into wheat leaf cells, at levels well above background nonspecific entry. We also summarize host cell entry experiments with a wide diversity of oomycete and fungal effectors with RxLR or RxLR-like motifs that have been independently carried out by the seven different labs that coauthored this letter. Finally we discuss possible technical reasons why specific cell entry may have been not detected by Wawra et al. (2013).
Collapse
Affiliation(s)
- Brett M Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Berardini TZ, Li D, Muller R, Chetty R, Ploetz L, Singh S, Wensel A, Huala E. Assessment of community-submitted ontology annotations from a novel database-journal partnership. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012; 2012:bas030. [PMID: 22859749 PMCID: PMC3410254 DOI: 10.1093/database/bas030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the scientific literature grows, leading to an increasing volume of published experimental data, so does the need to access and analyze this data using computational tools. The most commonly used method to convert published experimental data on gene function into controlled vocabulary annotations relies on a professional curator, employed by a model organism database or a more general resource such as UniProt, to read published articles and compose annotation statements based on the articles' contents. A more cost-effective and scalable approach capable of capturing gene function data across the whole range of biological research organisms in computable form is urgently needed. We have analyzed a set of ontology annotations generated through collaborations between the Arabidopsis Information Resource and several plant science journals. Analysis of the submissions entered using the online submission tool shows that most community annotations were well supported and the ontology terms chosen were at an appropriate level of specificity. Of the 503 individual annotations that were submitted, 97% were approved and community submissions captured 72% of all possible annotations. This new method for capturing experimental results in a computable form provides a cost-effective way to greatly increase the available body of annotations without sacrificing annotation quality. Database URL:www.arabidopsis.org
Collapse
Affiliation(s)
- Tanya Z Berardini
- The Arabidopsis Information Resource, Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, Becnel JJ, Didier ES, Fan L, Heiman DI, Levin JZ, Young S, Zeng Q, Troemel ER. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res 2012; 22:2478-88. [PMID: 22813931 PMCID: PMC3514677 DOI: 10.1101/gr.142802.112] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time course of N. parisii infection. Examination of pathogen gene expression revealed compact transcripts and a dramatic takeover of host cells by Nematocida. We also performed phylogenomic analyses of Nematocida and other microsporidian genomes to refine microsporidian phylogeny and identify evolutionary events of gene loss, acquisition, and modification. In particular, we found that all microsporidia lost the tumor-suppressor gene retinoblastoma, which we speculate could accelerate the parasite cell cycle and increase the mutation rate. We also found that microsporidia acquired transporters that could import nucleosides to fuel rapid growth. In addition, microsporidian hexokinases gained secretion signal sequences, and in a functional assay these were sufficient to export proteins out of the cell; thus hexokinase may be targeted into the host cell to reprogram it toward biosynthesis. Similar molecular changes appear during formation of cancer cells and may be evolutionary strategies adopted independently by microsporidia to proliferate rapidly within host cells. Finally, analysis of genome polymorphisms revealed evidence for a sexual cycle that may provide genetic diversity to alleviate problems caused by clonal growth. Together these events may explain the emergence and success of these diverse intracellular parasites.
Collapse
Affiliation(s)
- Christina A Cuomo
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Many destructive diseases of plants and animals are caused by oomycetes, a group of eukaryotic pathogens important to agricultural, ornamental, and natural ecosystems. Understanding the mechanisms underlying oomycete virulence and the genomic processes by which those mechanisms rapidly evolve is essential to developing effective long-term control measures for oomycete diseases. Several common mechanisms underlying oomycete virulence, including protein toxins and cell-entering effectors, have emerged from comparing oomycetes with different genome characteristics, parasitic lifestyles, and host ranges. Oomycete genomes display a strongly bipartite organization in which conserved housekeeping genes are concentrated in syntenic gene-rich blocks, whereas virulence genes are dispersed into highly dynamic, repeat-rich regions. There is also evidence that key virulence genes have been acquired by horizontal transfer from other eukaryotic and prokaryotic species.
Collapse
Affiliation(s)
- Rays H Y Jiang
- The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
18
|
Lindeberg M. Information Management of Genome Enabled Data Streams for Pseudomonas syringae on the Pseudomonas-Plant Interaction (PPI) Website. Genes (Basel) 2011; 2:841-52. [PMID: 24710295 PMCID: PMC3927588 DOI: 10.3390/genes2040841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/27/2022] Open
Abstract
Genome enabled research has led to a large and ever-growing body of data on Pseudomonas syringae genome variation and characteristics, though systematic capture of this information to maximize access by the research community remains a significant challenge. Major P. syringae data streams include genome sequence data, newly identified type III effectors, biological characterization data for type III effectors, and regulatory feature characterization. To maximize data access, the Pseudomonas-Plant Interaction (PPI) website [1] is primarily focused on categorization of type III effectors and curation of effector functional data represented in the Hop database and Pseudomonas-Plant Interaction Resource, respectively. The PPI website further serves as a conduit for incorporation of new genome characterization data into the annotation records at NCBI and other data repositories, and clearinghouse for additional data sets and updates in response to the evolving needs of the research community.
Collapse
Affiliation(s)
- Magdalen Lindeberg
- Department of Plant Pathology and Plant Microbe Biology, 302 Plant Science Building, Cornell University, Ithaca NY 14853, USA.
| |
Collapse
|
19
|
Abstract
Fungal and oomycete pathogens cause many destructive diseases of plants and important diseases of humans and other animals. Fungal and oomycete plant pathogens secrete numerous effector proteins that can enter inside host cells to condition susceptibility. Until recently it has been unknown if these effectors enter via pathogen-encoded translocons or via pathogen-independent mechanisms. Here we review recent evidence that many fungal and oomycete effectors enter via receptor-mediated endocytosis, and can do so in the absence of the pathogen. Surprisingly, a large number of these effectors utilize cell surface phosphatidyinositol-3-phosphate (PI-3-P) as a receptor, a molecule previously known only inside cells. Binding of effectors to PI-3-P appears to be mediated by the cell entry motif RXLR in oomycetes, and by diverse RXLR-like variants in fungi. PI-3-P appears to be present on the surface of animal cells also, suggesting that it may mediate entry of effectors of fungal and oomycete animal pathogens, for example, RXLR effectors found in the oomycete fish pathogen, Saprolegnia parasitica. Reagents that can block PI-3-P-mediated entry have been identified, suggesting new therapeutic strategies.
Collapse
Affiliation(s)
- Shiv D Kale
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061-0477, USA
| | | |
Collapse
|
20
|
Abstract
Many effectors secreted by pathogenic bacteria suppress host signal transduction pathways that activate host defense responses. In this issue of Cell Host & Microbe, Zhou et al. (2011) now broaden that theme by demonstrating that HopZ1b from Pseudomonas syringae pv. glycinea causes degradation of a host enzyme directly involved in the synthesis of antimicrobial phytoalexin compounds.
Collapse
Affiliation(s)
- Andrew Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|