1
|
Li Z, Tong Y, Wu Z, Liao B, Liu G, Xia L, Liu C, Zhao L. Management strategies to reduce microbial mercury methylation in constructed wetlands: Potential routes and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138009. [PMID: 40132266 DOI: 10.1016/j.jhazmat.2025.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Constructed wetlands (CWs) are widely recognized as the potential hotspots for producing highly toxic methylmercury (MeHg). This presents an obstacle to the widespread application of CWs. A comprehensive discussion on strategies to control mercury methylation in CWs is currently lacking. This review highlighted the potential impacts of differences in oxygen supply and consumption in various CWs, the characteristics of influent quality, the interactions between different substrates and mercury (including mercury adsorption, reduction), and plants on microbial mercury methylation in CWs. We also proposed the potential strategies for human intervention in regulating or controlling microbial mercury methylation in CWs, including oxygenation, nitrate inhibition, selection of substrates with high adsorption capacity, weak reducibility and low organic matter release, and plant management. Knowledge summarized in this review would help achieve a comprehensive understanding of various research gaps in previous studies and point out future research directions by focusing on CWs types, influent quality, substrates selection and plants management, to reduce the mercury methylation in CWs.
Collapse
Affiliation(s)
- Zhike Li
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bing Liao
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Lei Xia
- Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| | - Li Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| |
Collapse
|
2
|
Gambardella N, Costa J, Martins BM, Folhas D, Ribeiro AP, Hintelmann H, Canário J, Magalhães C. The role of prokaryotic mercury methylators and demethylators in Canadian Arctic thermokarst lakes. Sci Rep 2025; 15:7173. [PMID: 40021694 PMCID: PMC11871057 DOI: 10.1038/s41598-025-89438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
Permafrost soils are critical reservoirs for mercury (Hg), with the thawing process leading to the release of this element into the environment, posing significant environmental risks. Of particular concern is the methylated form of mercury, monomethylmercury (MMHg), known for its adverse effects on Human health. Microbial communities play a pivotal role in the formation of MMHg by facilitating Hg methylation and in the demethylation of MMHg, slowing the crossing of toxic threshold concentration in the environment. However, the specific microbes involved still need to be understood. This study aimed to identify the microbial drivers behind changes in Hg speciation (MMHg and Hg) in permafrost thaw lakes and assess the significance of the biotic component in Hg biogeochemistry. Sediment samples from two thermokarst lakes in the Canadian sub-Arctic were collected during the winter and summer of 2022. Gene-centric metagenomics using whole-genome sequencing (WGS) was employed to identify key genes involved in mercury methylation (hgcA and hgcB) and demethylation (merA and merB), supported by qPCR analyses. A seasonal decline in microbial diversity, involved in the Hg methylation, and hgcA gene coverage was observed from winter to summer, mirroring patterns in mercury methylation rates. Notably, hgcA sequences were significantly more abundant than merAB sequences, with contrasting seasonal trends. These results indicate a seasonal shift in the microbial community, transitioning from a dominance of mercury methylation in winter to a predominance of mercury demethylation in summer. Environmental drivers of these dynamics were integrated into a conceptual model. This study provide new insights on the microbial processes influencing the Hg cycle in Arctic permafrost undergoing degradation.
Collapse
Affiliation(s)
- Nicola Gambardella
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Joana Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Beatriz Malcata Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Diogo Folhas
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Ana Patrícia Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Holger Hintelmann
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Water Quality Centre, Trent University, Peterborough, Canada
| | - João Canário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.
- Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Lee RF, Kannan K, Windom H. Methylation of mercury and tin by estuarine microbial mats. MARINE POLLUTION BULLETIN 2024; 208:117055. [PMID: 39366062 DOI: 10.1016/j.marpolbul.2024.117055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
After tin and mercury salts were added to estuarine microbial mats increasing amounts of methyltin and methylmercury, respectively, were formed over a 30 to 100 hour time period. Inhibition of the methylation by molybdate, a metabolic inhibitor of sulfate reduction, stimulation by pyruvate addition and lack of methylation by sterilized mats, were evidence that sulfate reducing bacteria within the mats were responsible for the tin and mercury methylation. Methyl mercury was formed from mercuric chloride and mercuric cysteine, but not from mercuric sulfide. We suggest that mercury bound to organic complexes in anoxic sediments is likely methylated by microbial mats. Since estuarine meiofauna and macrofauna fed on microbial mats, the methylmercury and methyltin formed by microbial mats could be an important avenue for the entrance of these compounds into the marine food web.
Collapse
Affiliation(s)
- Richard F Lee
- Skidaway Institute of Oceanography, University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA.
| | - K Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Science, State University of New York at Albany, Empire State Plaza, Albany, NY 12237, USA
| | - H Windom
- Skidaway Institute of Oceanography, University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA
| |
Collapse
|
4
|
Graca B, Rychter A, Bełdowska M, Wojdasiewicz A. Seasonality of mercury and its fractions in microplastics biofilms -comparison to natural biofilms, suspended particulate matter and bottom sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174814. [PMID: 39032739 DOI: 10.1016/j.scitotenv.2024.174814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Biofilms can enhance the sorption of heavy metals onto microplastic (MP) surfaces. However, most research in this field relies on laboratory experiments and neglects metal fractions and seasonal variations. Further studies of the metal/biofilm interaction in the aquatic environment are essential for assessing the ecological threat that MPs pose. The present study used in situ experiments in an environment conducive to biofouling (Vistula Lagoon, Baltic Sea). The objective was to investigate the sorption of mercury and its fractions (thermodesorption technique) in MP (polypropylene-PP, polystyrene-PS, polylactide-PLA) biofilms and natural matrices across three seasons. After one month of incubation, the Hg concentrations in MP and natural substratum (gravel grains-G) biofilms were similar (MP: 145 ± 45 ng/g d.w.; G: 132 ± 23 ng/g d.w.) and approximately twofold those of suspended particulate matter (SPM) (63 ± 27 ng/g d.w.). Hg concentrations in biofilms and sediments were similar, but labile fractions dominated in biofilms and stable fractions in sediments. Seasonal Hg concentrations in MP biofilms decreased over summer>winter>spring, with significant variation for mineral and loosely bound Hg fractions. Multiple regression analysis revealed that hydrochemical conditions and sediment resuspension played a crucial role in the observed variability. The influence of polymer type and morphology (pellets, fibres, aged MP) on Hg sorption in biofilms was visible only in high summer temperatures. In this season, PP fibres and aged PP pellets encouraged biofilm growth and the accumulation of labile Hg fractions. Additionally, high concentrations of mineral (stable and semi-labile) Hg fractions were found in expanded PS biofilms. These findings suggest that organisms that ingest MPs or feed on the biofilms are exposed to the adverse effects of Hg and the presence of MPs in aquatic ecosystems may facilitate the transfer of mercury within the food chain.
Collapse
Affiliation(s)
- Bożena Graca
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Agata Rychter
- University of Applied Sciences in Elbląg, Ul. Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Adriana Wojdasiewicz
- University of Gdansk, Faculty of Oceanography and Geography, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
5
|
Wang YL, Ikuma K, Brown AMV, Deonarine A. Global survey of hgcA-carrying genomes in marine and freshwater sediments: Insights into mercury methylation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124117. [PMID: 38714231 DOI: 10.1016/j.envpol.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024]
Abstract
Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amrika Deonarine
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
6
|
Desjardins K, Ponton DE, Bilodeau F, Rosabal M, Amyot M. Methylmercury in northern pike (Esox lucius) liver and hepatic mitochondria is linked to lipid peroxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172703. [PMID: 38703851 DOI: 10.1016/j.scitotenv.2024.172703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Methylmercury (MeHg) readily bioaccumulates and biomagnifies in aquatic food webs leading to elevated concentrations in fish and may thus induce toxicity. Oxidative stress is a suggested effect of MeHg bioaccumulation in fish. However, studies on how MeHg triggers oxidative stress in wild fish are scarce. The purpose of this study was to link the subcellular distribution of MeHg in the liver of northern pike from the St. Maurice River (Québec, Canada), affected by two run-of-river (RoR) dams, artificial wetlands, forest fires, and logging activity, to lipid peroxidation as an indicator of oxidative stress. We also evaluated the protective effects of the glutathione (GSH) system and selenium (Se), as they are known to alleviate MeHg toxicity. A customized subcellular partitioning protocol was used to separate the liver into metal-sensitive (mitochondria, microsome/lysosome and HDP - heat-denatured proteins) and metal-detoxified fractions (metal-rich granules and HSP - heat-stable proteins). We examined the relation among THg, MeHg, and Se concentration in livers and subcellular fractions, and the hepatic ratio of total GSH (GSHt) to oxidized glutathione (GSSG) on lipid peroxidation levels, using the concentrations of malondialdehyde (MDA), a product of lipid peroxidation. Results showed that hepatic MDA concentration was positively correlated with the combined MeHg and Se concentrations in northern pike liver (r2 = 0.88, p < 0.001) and that MDA concentrations were best predicted by MeHg associated with the mitochondria (r2 = 0.71, p < 0.001). This highlights the need for additional research on the MeHg influence on fish health and the interactions between Hg and Se in northern pike.
Collapse
Affiliation(s)
- Kimberley Desjardins
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Dominic E Ponton
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - François Bilodeau
- Direction Environnement, Hydro-Québec, 800 Boul. De Maisonneuve Est, Montréal, Québec H2Z 1A4, Canada
| | - Maikel Rosabal
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Marc Amyot
- Groupe interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Complexe des sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
| |
Collapse
|
7
|
Lawruk-Desjardins C, Storck V, Ponton DE, Amyot M, Walsh DA. A genome catalogue of mercury-methylating bacteria and archaea from sediments of a boreal river facing human disturbances. Environ Microbiol 2024; 26:e16669. [PMID: 38922750 DOI: 10.1111/1462-2920.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Methyl mercury, a toxic compound, is produced by anaerobic microbes and magnifies in aquatic food webs, affecting the health of animals and humans. The exploration of mercury methylators based on genomes is still limited, especially in the context of river ecosystems. To address this knowledge gap, we developed a genome catalogue of potential mercury-methylating microorganisms. This was based on the presence of hgcAB from the sediments of a river affected by two run-of-river hydroelectric dams, logging activities and a wildfire. Through the use of genome-resolved metagenomics, we discovered a unique and diverse group of mercury methylators. These were dominated by members of the metabolically versatile Bacteroidota and were particularly rich in microbes that ferment butyrate. By comparing the diversity and abundance of mercury methylators between sites subjected to different disturbances, we found that ongoing disturbances, such as the input of organic matter related to logging activities, were particularly conducive to the establishment of a mercury-methylating niche. Finally, to gain a deeper understanding of the environmental factors that shape the diversity of mercury methylators, we compared the mercury-methylating genome catalogue with the broader microbial community. The results suggest that mercury methylators respond to environmental conditions in a manner similar to the overall microbial community. Therefore, it is crucial to interpret the diversity and abundance of mercury methylators within their specific ecological context.
Collapse
Affiliation(s)
| | - Veronika Storck
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Dominic E Ponton
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Amyot
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Zhong H, Tang W, Li Z, Sonne C, Lam SS, Zhang X, Kwon SY, Rinklebe J, Nunes LM, Yu RQ, Gu B, Hintelmann H, Tsui MTK, Zhao J, Zhou XQ, Wu M, Liu B, Hao Y, Chen L, Zhang B, Tan W, Zhang XX, Ren H, Liu YR. Soil Geobacteraceae are the key predictors of neurotoxic methylmercury bioaccumulation in rice. NATURE FOOD 2024; 5:301-311. [PMID: 38605129 DOI: 10.1038/s43016-024-00954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.
Collapse
Affiliation(s)
- Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China.
- Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Zizhu Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Xiao Zhang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Wuppertal, Germany
| | - Luís M Nunes
- Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, TX, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Holger Hintelmann
- Department of Chemistry, Trent University, Peterborough, Ontario, Canada
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, Earth and Environmental Sciences Programme, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Xin-Quan Zhou
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Beibei Liu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Yunyun Hao
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China.
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, China
| | - Wenfeng Tan
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xu-Xiang Zhang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Hongqiang Ren
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
9
|
Yunda E, Phan Le QN, Björn E, Ramstedt M. Biochemical characterization and mercury methylation capacity of Geobacter sulfurreducens biofilms grown in media containing iron hydroxide or fumarate. Biofilm 2023; 6:100144. [PMID: 37583615 PMCID: PMC10424081 DOI: 10.1016/j.bioflm.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Geobacter species are common in iron-rich environments and can contribute to formation of methylmercury (MeHg), a neurotoxic compound with high bioaccumulation potential formed as a result of bacterial and archaeal physiological activity. Geobacter sulfurreducens can utilize various electron acceptors for growth including iron hydroxides or fumarate. However, it remains poorly understood how the growth on these compounds affects physiological properties of bacterial cells in biofilms, including the capacity to produce MeHg. The purpose of this study was to determine changes in the biochemical composition of G. sulfurreducens during biofilm cultivation in media containing iron hydroxide or fumarate, and to quantify mercury (Hg) methylation capacity of the formed biofilms. Biofilms were characterized by Fourier-transform infrared spectroscopy in the attenuated total reflection mode (ATR-FTIR), Resonance Raman spectroscopy and confocal laser scanning microscopy. MeHg formation was quantified by mass spectrometry after incubation of biofilms with 100 nM Hg. The results of ATR-FTIR experiments showed that in presence of fumarate, G. sulfurreducens biofilm formation was accompanied by variation in content of the energy-reserve polymer glycogen over time, which could be cancelled by the addition of supplementary nutrients (yeast extract). In contrast, biofilms cultivated on Fe(III) hydroxide did not accumulate glycogen. The ATR-FTIR results further suggested that Fe(III) hydroxide surfaces bind cells via phosphate and carboxylate groups of bacteria that form complexes with iron. Furthermore, biofilms grown on Fe(III) hydroxide had higher fraction of oxidized cytochromes and produced two to three times less biomass compared to conditions with fumarate. Normalized to biofilm volume, the content of MeHg was similar in assays with biofilms grown on Fe(III) hydroxide and on fumarate (with yeast extract and without). These results suggest that G. sulfurreducens biofilms produce MeHg irrespectively from glycogen content and cytochrome redox state in the cells, and warrant further investigation of the mechanisms controlling this process.
Collapse
Affiliation(s)
- Elena Yunda
- Department of Chemistry, Umeå University, Sweden
| | | | - Erik Björn
- Department of Chemistry, Umeå University, Sweden
| | | |
Collapse
|
10
|
Leclerc M, Ponton DE, Bilodeau F, Planas D, Amyot M. Enhanced Bioaccumulation and Transfer of Monomethylmercury through Periphytic Biofilms in Benthic Food Webs of a River Affected by Run-of-River Dams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20792-20801. [PMID: 38016692 PMCID: PMC10720379 DOI: 10.1021/acs.est.3c05585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
Run-of-river (ROR) power plants impound limited terrestrial areas compared to traditional hydropower plants with large reservoirs and are assumed to have reduced impacts on mercury cycling. We conducted a study on periphyton and benthic communities from different habitats of the St. Maurice River (Québec, Canada) affected by two ROR power plants and their effect on the bioaccumulation and biomagnification of monomethylmercury (MMHg). Proportion of total mercury as MMHg reached maximum values about 2.9 times higher in flooded sites compared to unflooded sites. Impoundment by ROR would therefore provide favorable environments for the growth of periphyton, which can produce and accumulate MMHg. Periphyton MMHg concentrations significantly explained concentrations in some benthic macroinvertebrates, reflecting a local transfer. Through the analysis of δ13C and δ15N signatures, we found that flooding, creating scattered lenthic habitats, led to modifications in trophic structures by the introduction of new organic matter sources. The computed trophic magnification slopes did not show significant differences in the transfer efficiency of MMHg between sectors, while intercepts of flooded sectors were higher. Increases in MMHg concentrations in flooded areas are likely due to the impoundment, combined with watershed disturbances, and the creation of small habitats favorable to periphyton should be included in future predictive models.
Collapse
Affiliation(s)
- Maxime Leclerc
- GRIL,
GEOTOP, Département de Sciences Biologiques, Université de Montréal, 1375 Thérèse-Lavoie-Roux Ave., Montréal, Québec H2V 0B3, Canada
| | - Dominic E. Ponton
- GRIL,
GEOTOP, Département de Sciences Biologiques, Université de Montréal, 1375 Thérèse-Lavoie-Roux Ave., Montréal, Québec H2V 0B3, Canada
| | - François Bilodeau
- Hydro-Québec,
Direction Environnement, 800 De Maisonneuve Est Blvd., Montréal, Québec H2Z 1A4, Canada
| | - Dolors Planas
- GRIL,
GEOTOP, Département de Sciences Biologiques, Université du Québec à Montréal, 141 Président-Kennedy Ave., Montréal, Québec H2X 1Y4, Canada
| | - Marc Amyot
- GRIL,
GEOTOP, Département de Sciences Biologiques, Université de Montréal, 1375 Thérèse-Lavoie-Roux Ave., Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
11
|
Schneider L, Fisher JA, Diéguez MC, Fostier AH, Guimaraes JRD, Leaner JJ, Mason R. A synthesis of mercury research in the Southern Hemisphere, part 1: Natural processes. AMBIO 2023; 52:897-917. [PMID: 36943620 PMCID: PMC10073387 DOI: 10.1007/s13280-023-01832-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Recent studies demonstrate a short 3-6-month atmospheric lifetime for mercury (Hg). This implies Hg emissions are predominantly deposited within the same hemisphere in which they are emitted, thus placing increasing importance on considering Hg sources, sinks and impacts from a hemispheric perspective. In the absence of comprehensive Hg data from the Southern Hemisphere (SH), estimates and inventories for the SH have been drawn from data collected in the NH, with the assumption that the NH data are broadly applicable. In this paper, we centre the uniqueness of the SH in the context of natural biogeochemical Hg cycling, with focus on the midlatitudes and tropics. Due to its uniqueness, Antarctica warrants an exclusive review of its contribution to the biogeochemical cycling of Hg and is therefore excluded from this review. We identify and describe five key natural differences between the hemispheres that affect the biogeochemical cycling of Hg: biome heterogeneity, vegetation type, ocean area, methylation hotspot zones and occurence of volcanic activities. We review the current state of knowledge of SH Hg cycling within the context of each difference, as well as the key gaps that impede our understanding of natural Hg cycling in the SH. The differences demonstrate the limitations in using NH data to infer Hg processes and emissions in the SH.
Collapse
Affiliation(s)
- Larissa Schneider
- School of Culture, History and Language. Australian National University, Coombs Bld 9 Fellows Rd, Acton. Canberra, ACT 2601 Australia
| | - Jenny A. Fisher
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - María C. Diéguez
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue), 1250 San Carlos de Bariloche (8400), Quintral Argentina
| | - Anne-Hélène Fostier
- Instituto de Química/Unicamp, Rua Josué de Castro, s/n – Cidade Universitária, Campinas, SP 13083-970 Brazil
| | - Jean R. D. Guimaraes
- Lab. de Traçadores, Inst. de Biofísica, Bloco G, CCS (Centro de Ciências da Saúde), Av. Carlos Chagas Filho 373, Rio de Janeiro, Ilha do Fundão CEP 21941-902 Brazil
| | - Joy J. Leaner
- Department of Environmental Affairs and Development Planning, Western Cape Government, 1 Dorp Street, Western Cape, Cape Town, 8001 South Africa
| | - Robert Mason
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340 USA
| |
Collapse
|
12
|
Yunda E, Gutensohn M, Ramstedt M, Björn E. Methylmercury formation in biofilms of Geobacter sulfurreducens. Front Microbiol 2023; 14:1079000. [PMID: 36712188 PMCID: PMC9880215 DOI: 10.3389/fmicb.2023.1079000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction Mercury (Hg) is a major environmental pollutant that accumulates in biota predominantly in the form of methylmercury (MeHg). Surface-associated microbial communities (biofilms) represent an important source of MeHg in natural aquatic systems. In this work, we report MeHg formation in biofilms of the iron-reducing bacterium Geobacter sulfurreducens. Methods Biofilms were prepared in media with varied nutrient load for 3, 5, or 7 days, and their structural properties were characterized using confocal laser scanning microscopy, cryo-scanning electron microscopy and Fourier-transform infrared spectroscopy. Results Biofilms cultivated for 3 days with vitamins in the medium had the highest surface coverage, and they also contained abundant extracellular matrix. Using 3 and 7-days-old biofilms, we demonstrate that G. sulfurreducens biofilms prepared in media with various nutrient load produce MeHg, of which a significant portion is released to the surrounding medium. The Hg methylation rate constant determined in 6-h assays in a low-nutrient assay medium with 3-days-old biofilms was 3.9 ± 2.0 ∙ 10-14 L ∙ cell-1 ∙ h-1, which is three to five times lower than the rates found in assays with planktonic cultures of G. sulfurreducens in this and previous studies. The fraction of MeHg of total Hg within the biofilms was, however, remarkably high (close to 50%), and medium/biofilm partitioning of inorganic Hg (Hg(II)) indicated low accumulation of Hg(II) in biofilms. Discussion These findings suggest a high Hg(II) methylation capacity of G. sulfurreducens biofilms and that Hg(II) transfer to the biofilm is the rate-limiting step for MeHg formation in this systems.
Collapse
|
13
|
Negrazis L, Kidd KA, Erdozain M, Emilson EJS, Mitchell CPJ, Gray MA. Effects of forest management on mercury bioaccumulation and biomagnification along the river continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119810. [PMID: 35940481 DOI: 10.1016/j.envpol.2022.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Forest management can alter the mobilization of mercury (Hg) into headwater streams and its conversion to methylmercury (MeHg), the form that bioaccumulates in aquatic biota and biomagnifies through food webs. As headwater streams are important sources of organic materials and nutrients to larger systems, this connectivity may also increase MeHg in downstream biota through direct or indirect effects of forestry on water quality or food web structure. In this study, we collected water, seston, food sources (biofilm, leaves, organic matter), five macroinvertebrate taxa and fish (slimy sculpin; Cottus cognata) at 6 sites representing different stream orders (1-5) within three river basins with different total disturbances from forestry (both harvesting and silviculture). Methylmercury levels were highest in water and some food sources from the basin with moderate disturbance (greater clearcutting but less silviculture). Water, leaves, stoneflies and fish increased in MeHg or total Hg along the river continuum in the least disturbed basin, and there were some dissipative effects of forest management on these spatial patterns. Trophic level (δ15N) was a significant predictor of MeHg (and total Hg in fish) within food webs across all 18 sites, and biomagnification slopes were significantly lower in the basin with moderate total disturbance but not different in the other two basins. The elevated MeHg in lower trophic levels but its reduced trophic transfer in the basin with moderate disturbance was likely due to greater inputs of sediments and of dissolved organic carbon that is more humic, as these factors are known to both increase transport of Hg to streams and its uptake in primary producers but to also decrease MeHg bioaccumulation in consumers. Overall, these results suggest that the type of disturbance from forestry affects MeHg bioaccumulation and trophic transfer in stream food webs and some longitudinal patterns along a river continuum.
Collapse
Affiliation(s)
- Lauren Negrazis
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada; School of Earth, Environment and Society, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada.
| | - Maitane Erdozain
- Canadian Rivers Institute and Biology Department, University of New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick E2L 4L5, Canada
| | - Erik J S Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Michelle A Gray
- Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|