1
|
Han Q, Yang ML, Liu ZS, Zhao YH, Liu XH, Ai GM, Qin WH, Liu XY, Li DF. Simultaneous high molecular weight PAHs degradation and chromate and arsenite detoxification by Altererythrobacter sp. H2. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138314. [PMID: 40250277 DOI: 10.1016/j.jhazmat.2025.138314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The cooccurrence of high molecular weight PAHs and heavy metals Cr and As is frequently observed in soil and water and challenges public health and environmental management. Yet the limited microbial resources were reported to simultaneously detoxify PAHs, Cr(VI) and As(III), which restricts the bioremediation of co-contaminated soil by PAHs, Cr and As. Here, we isolated Altererythrobacter sp. H2 and found it could degrade various PAHs, including phenanthrene, fluoranthene, pyrene, benzo[a]anthracene, and benzo[a]pyrene, and tolerate and detoxify high concentrations of Cr(VI) and As(III). Genomic, transcriptomic, and biochemical assays reveal strain H2 degrades PAHs, reduces Cr(VI), and oxidize As(III) via a horizontally transferred RHO gene cluster, a chromate reductase ChrR, and a arsenite resistance gene cluster arsRBC. The horizontally transferred PAHs-degrading gene cluster encodes the Rieske dioxygenase three-component system and other enzymes required for PAHs degradation, which suggested those heavy metal-detoxifying bacteria could be excellent PAHs-degrading and heavy metal-detoxifying agents after accommodating a PAHs degradation gene cluster like strain H2 did. To our knowledge, strain H2 is the only reported Altererythrobacter member that uses a classical Rieske dioxygenase three-component system to initial PAHs degradation and the only one could simultaneously detoxify PAHs, Cr(VI), and As(III). Our study provides insights into the PAHs degradation mechanism of Altererythrobacter members and demonstrates the excellent potential of H2 in the bioremediation of both PAHs and heavy metal pollutants.
Collapse
Affiliation(s)
- Qun Han
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Ling Yang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ze-Shen Liu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Hao Zhao
- Institute of Earth Science, China University of Geosciences, Beijing, China
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guo-Min Ai
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Hong Qin
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xing-Yu Liu
- Institute of Earth Science, China University of Geosciences, Beijing, China.
| | - De-Feng Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Chen A, Nchinda N, Cira NJ. Scalable genotyping of microbial colonies. Microb Genom 2025; 11:001378. [PMID: 40106335 PMCID: PMC11923105 DOI: 10.1099/mgen.0.001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
The sequence of the 16S region is taxonomically informative and widely used for genotyping microbes. While it is easy and inexpensive to genotype several isolates by Sanger sequencing the 16S region, this method becomes quite costly if scaled to many isolates. High-throughput sequencing provides one potential avenue for obtaining 16S sequences at scale but presents additional challenges. First, DNA purification workflows for high-throughput sample preparation are labour-intensive and expensive. Second, cost-effective multiplexing and library preparation schemes are difficult to implement for many libraries on a single sequencing run. Therefore, we implemented a scalable protocol for isolate genotyping involving colony polymerase chain reaction (PCR) with simple cell lysis as well as a four-barcode indexing scheme that enables scalable multiplexing and streamlined library preparation by amplifying with four primers simultaneously in a single reaction. We tested this protocol on 93 colonies cultured from environmental samples, and we were able to ascertain the identity of ~90% of microbial isolates.
Collapse
Affiliation(s)
- Arnold Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, 14853, NY, USA
| | - Nkazi Nchinda
- Harvard Medical School, Harvard University, Boston, 02115, MA, USA
| | - Nate J. Cira
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, 14853, NY, USA
| |
Collapse
|
3
|
Henson MW, Thrash JC. Microbial ecology of northern Gulf of Mexico estuarine waters. mSystems 2024; 9:e0131823. [PMID: 38980056 PMCID: PMC11334486 DOI: 10.1128/msystems.01318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.
Collapse
Affiliation(s)
- Michael W. Henson
- Department of Biological Sciences, Northern University, DeKalb, Illinois, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Stapelfeldt HRD, Lanclos VC, Henson MW, Thrash JC. Draft genome sequence of the BAL58 Betaproteobacteria representative strain LSUCC0117. Microbiol Resour Announc 2023; 12:e0062023. [PMID: 37830797 PMCID: PMC10652963 DOI: 10.1128/mra.00620-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
Here, we present the draft genome sequence of strain LSUCC0117, a representative of the abundant aquatic BAL58 Betaproteobacteria group which we isolated from a coastal site in the northern Gulf of Mexico. The genome is estimated at over 99% complete, with a genome size of 2,687,225 bp.
Collapse
Affiliation(s)
- Holly R. D. Stapelfeldt
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - V. Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael W. Henson
- Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Dhami NK, Greenwood PF, Poropat SF, Tripp M, Elson A, Vijay H, Brosnan L, Holman AI, Campbell M, Hopper P, Smith L, Jian A, Grice K. Microbially mediated fossil concretions and their characterization by the latest methodologies: a review. Front Microbiol 2023; 14:1225411. [PMID: 37840715 PMCID: PMC10576451 DOI: 10.3389/fmicb.2023.1225411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023] Open
Abstract
The study of well-preserved organic matter (OM) within mineral concretions has provided key insights into depositional and environmental conditions in deep time. Concretions of varied compositions, including carbonate, phosphate, and iron-based minerals, have been found to host exceptionally preserved fossils. Organic geochemical characterization of concretion-encapsulated OM promises valuable new information of fossil preservation, paleoenvironments, and even direct taxonomic information to further illuminate the evolutionary dynamics of our planet and its biota. Full exploitation of this largely untapped geochemical archive, however, requires a sophisticated understanding of the prevalence, formation controls and OM sequestration properties of mineral concretions. Past research has led to the proposal of different models of concretion formation and OM preservation. Nevertheless, the formation mechanisms and controls on OM preservation in concretions remain poorly understood. Here we provide a detailed review of the main types of concretions and formation pathways with a focus on the role of microbes and their metabolic activities. In addition, we provide a comprehensive account of organic geochemical, and complimentary inorganic geochemical, morphological, microbial and paleontological, analytical methods, including recent advancements, relevant to the characterization of concretions and sequestered OM. The application and outcome of several early organic geochemical studies of concretion-impregnated OM are included to demonstrate how this underexploited geo-biological record can provide new insights into the Earth's evolutionary record. This paper also attempts to shed light on the current status of this research and major challenges that lie ahead in the further application of geo-paleo-microbial and organic geochemical research of concretions and their host fossils. Recent efforts to bridge the knowledge and communication gaps in this multidisciplinary research area are also discussed, with particular emphasis on research with significance for interpreting the molecular record in extraordinarily preserved fossils.
Collapse
Affiliation(s)
- Navdeep K. Dhami
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Paul F. Greenwood
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Stephen F. Poropat
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Madison Tripp
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Amy Elson
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Hridya Vijay
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Luke Brosnan
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Alex I. Holman
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Matthew Campbell
- The Trace and Environmental DNA lab (trEND), School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Peter Hopper
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Lisa Smith
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Andrew Jian
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Kliti Grice
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| |
Collapse
|
6
|
Schultz J, Modolon F, Peixoto RS, Rosado AS. Shedding light on the composition of extreme microbial dark matter: alternative approaches for culturing extremophiles. Front Microbiol 2023; 14:1167718. [PMID: 37333658 PMCID: PMC10272570 DOI: 10.3389/fmicb.2023.1167718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
More than 20,000 species of prokaryotes (less than 1% of the estimated number of Earth's microbial species) have been described thus far. However, the vast majority of microbes that inhabit extreme environments remain uncultured and this group is termed "microbial dark matter." Little is known regarding the ecological functions and biotechnological potential of these underexplored extremophiles, thus representing a vast untapped and uncharacterized biological resource. Advances in microbial cultivation approaches are key for a detailed and comprehensive characterization of the roles of these microbes in shaping the environment and, ultimately, for their biotechnological exploitation, such as for extremophile-derived bioproducts (extremozymes, secondary metabolites, CRISPR Cas systems, and pigments, among others), astrobiology, and space exploration. Additional efforts to enhance culturable diversity are required due to the challenges imposed by extreme culturing and plating conditions. In this review, we summarize methods and technologies used to recover the microbial diversity of extreme environments, while discussing the advantages and disadvantages associated with each of these approaches. Additionally, this review describes alternative culturing strategies to retrieve novel taxa with their unknown genes, metabolisms, and ecological roles, with the ultimate goal of increasing the yields of more efficient bio-based products. This review thus summarizes the strategies used to unveil the hidden diversity of the microbiome of extreme environments and discusses the directions for future studies of microbial dark matter and its potential applications in biotechnology and astrobiology.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Kuppa Baskaran DK, Umale S, Zhou Z, Raman K, Anantharaman K. Metagenome-based metabolic modelling predicts unique microbial interactions in deep-sea hydrothermal plume microbiomes. ISME COMMUNICATIONS 2023; 3:42. [PMID: 37120693 PMCID: PMC10148797 DOI: 10.1038/s43705-023-00242-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Deep-sea hydrothermal vents are abundant on the ocean floor and play important roles in ocean biogeochemistry. In vent ecosystems such as hydrothermal plumes, microorganisms rely on reduced chemicals and gases in hydrothermal fluids to fuel primary production and form diverse and complex microbial communities. However, microbial interactions that drive these complex microbiomes remain poorly understood. Here, we use microbiomes from the Guaymas Basin hydrothermal system in the Pacific Ocean to shed more light on the key species in these communities and their interactions. We built metabolic models from metagenomically assembled genomes (MAGs) and infer possible metabolic exchanges and horizontal gene transfer (HGT) events within the community. We highlight possible archaea-archaea and archaea-bacteria interactions and their contributions to the robustness of the community. Cellobiose, D-Mannose 1-phosphate, O2, CO2, and H2S were among the most exchanged metabolites. These interactions enhanced the metabolic capabilities of the community by exchange of metabolites that cannot be produced by any other community member. Archaea from the DPANN group stood out as key microbes, benefiting significantly as acceptors in the community. Overall, our study provides key insights into the microbial interactions that drive community structure and organisation in complex hydrothermal plume microbiomes.
Collapse
Affiliation(s)
- Dinesh Kumar Kuppa Baskaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Shreyansh Umale
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India.
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
| | | |
Collapse
|
8
|
Zhang Y, Wang Y, Tang M, Zhou J, Zhang T. The microbial dark matter and "wanted list" in worldwide wastewater treatment plants. MICROBIOME 2023; 11:59. [PMID: 36973807 PMCID: PMC10045942 DOI: 10.1186/s40168-023-01503-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Wastewater treatment plants (WWTPs) are one of the largest biotechnology applications in the world and are of critical importance to modern urban societies. An accurate evaluation of the microbial dark matter (MDM, microorganisms whose genomes remain uncharacterized) proportions in WWTPs is of great value, while there is no such research yet. This study conducted a global meta-analysis of MDM in WWTPs with 317,542 prokaryotic genomes from the Genome Taxonomy Database and proposed a "wanted list" for priority targets in further investigations of activated sludge. RESULTS Compared with the Earth Microbiome Project data, WWTPs had relatively lower genome-sequenced proportions of prokaryotes than other ecosystems, such as the animal related environments. Analysis showed that the median proportions of the genome-sequenced cells and taxa (100% identity and 100% coverage in 16S rRNA gene region) in WWTPs reached 56.3% and 34.5% for activated sludge, 48.6% and 28.5% for aerobic biofilm, and 48.3% and 28.5% for anaerobic digestion sludge, respectively. This result meant MDM had high proportions in WWTPs. Besides, all of the samples were occupied by a few predominant taxa, and the majority of the sequenced genomes were from pure cultures. The global-scale "wanted list" for activated sludge contained four phyla that have few representatives and 71 operational taxonomic units with the majority of them having no genome or isolate yet. Finally, several genome mining methods were verified to successfully recover genomes from activated sludge such as hybrid assembly of the second- and third-generation sequencing. CONCLUSIONS This work elucidated the proportion of MDM in WWTPs, defined the "wanted list" of activated sludge for future investigations, and certified potential genome recovery methods. The proposed methodology of this study can be applied to other ecosystems and improve understanding of ecosystem structure across diverse habitats. Video Abstract.
Collapse
Affiliation(s)
- Yulin Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mingxi Tang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Shenzhen Bay Laboratory, Shenzhen, China.
- Peking University Shenzhen Graduate School, Shenzhen, China.
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
9
|
Suzuki A, Shirakata C, Anzai H, Sumiyama D, Suzuki M. Vitamin B 12 biosynthesis of Cetobacterium ceti isolated from the intestinal content of captive common bottlenose dolphins ( Tursiops truncatus). MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178719 DOI: 10.1099/mic.0.001244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In comparison with terrestrial mammals, dolphins require a large amount of haemoglobin in blood and myoglobin in muscle to prolong their diving time underwater and increase the depth they can dive. The genus Cetobacterium is a common gastrointestinal bacterium in dolphins and includes two species: C. somerae and C. ceti. Whilst the former produces vitamin B12, which is essential for the biosynthesis of haem, a component of haemoglobin and myoglobin, but not produced by mammals, the production ability of the latter remains unknown. The present study aimed to isolate C. ceti from dolphins and reveal its ability to biosynthesize vitamin B12. Three strains of C. ceti, identified by phylogenetic analyses with 16S rRNA gene and genome-based taxonomy assignment and biochemical features, were isolated from faecal samples collected from two captive common bottlenose dolphins (Tursiops truncatus). A microbioassay using Lactobacillus leichmannii ATCC 7830 showed that the average concentration of vitamin B12 produced by the three strains was 11 (standard deviation: 2) pg ml-1. The biosynthesis pathway of vitamin B12, in particular, adenosylcobalamin, was detected in the draft genome of the three strains using blastKOALA. This is the first study to isolate C. ceti from common bottlenose dolphins and reveal its ability of vitamin B12 biosynthesis, and our findings emphasize the importance of C. ceti in supplying haemoglobin and myoglobin to dolphins.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506 Japan
| | - Chika Shirakata
- Enoshima Aquarium, Fujisawa, Kanagawa, 251-0035 Japan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-0054 Japan
| | - Hiroshi Anzai
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Daisuke Sumiyama
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Miwa Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| |
Collapse
|
10
|
Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, Woyke T, Garcia SL. A Genomic Perspective Across Earth's Microbiomes Reveals That Genome Size in Archaea and Bacteria Is Linked to Ecosystem Type and Trophic Strategy. Front Microbiol 2022; 12:761869. [PMID: 35069467 PMCID: PMC8767057 DOI: 10.3389/fmicb.2021.761869] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Our view of genome size in Archaea and Bacteria has remained skewed as the data has been dominated by genomes of microorganisms that have been cultivated under laboratory settings. However, the continuous effort to catalog Earth's microbiomes, specifically propelled by recent extensive work on uncultivated microorganisms, provides an opportunity to revise our perspective on genome size distribution. We present a meta-analysis that includes 26,101 representative genomes from 3 published genomic databases; metagenomic assembled genomes (MAGs) from GEMs and stratfreshDB, and isolates from GTDB. Aquatic and host-associated microbial genomes present on average the smallest estimated genome sizes (3.1 and 3.0 Mbp, respectively). These are followed by terrestrial microbial genomes (average 3.7 Mbp), and genomes from isolated microorganisms (average 4.3 Mbp). On the one hand, aquatic and host-associated ecosystems present smaller genomes sizes in genera of phyla with genome sizes above 3 Mbp. On the other hand, estimated genome size in phyla with genomes under 3 Mbp showed no difference between ecosystems. Moreover, we observed that when using 95% average nucleotide identity (ANI) as an estimator for genetic units, only 3% of MAGs cluster together with genomes from isolated microorganisms. Although there are potential methodological limitations when assembling and binning MAGs, we found that in genome clusters containing both environmental MAGs and isolate genomes, MAGs were estimated only an average 3.7% smaller than isolate genomes. Even when assembly and binning methods introduce biases, estimated genome size of MAGs and isolates are very similar. Finally, to better understand the ecological drivers of genome size, we discuss on the known and the overlooked factors that influence genome size in different ecosystems, phylogenetic groups, and trophic strategies.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Gijón
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Julia K. Nuy
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, United States
| | - Sarahi L. Garcia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Liberti A, Leigh BA, Graham Z, Natarajan O, Dishaw LJ. A Role for Secreted Immune Effectors in Microbial Biofilm Formation Revealed by Simple In Vitro Assays. Methods Mol Biol 2022; 2421:127-140. [PMID: 34870816 DOI: 10.1007/978-1-0716-1944-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of biofilms is critical for the successful and stable colonization of mucosal surfaces by microbes, which often build three-dimensional environments by exuding exopolysaccharides and other macromolecules such as proteins, lipids, and even DNA. It is not just bacteria, but fungi such as yeast, that form these adherent interacting communities. Historically, biofilms have been studied in the context of pathogenesis, but only recently it has been recognized that important relationships among members of host-associated microbiomes are maintained within the context of biofilms. Host immune responses impact biofilm formation in various ways; for example, it is likely that formation of stable biofilms by non-pathogens improves barrier defenses by not just filling available niche spaces but also by helping to ward off pathogens directly. Recently, it was found that soluble immune effector molecules such as immunoglobulin A (IgA) in mammals serve essential roles in modulating complex biofilm communities in ways that benefit the host. Additional lines of evidence from other secreted immune effectors, such as the variable region-containing chitin-binding proteins (VCBPs) in protochordates, now suggest that this phenomenon is much more widespread than previously recognized. The activity of these immune molecules also likely serves roles beyond those of simple defense strategies; rather, they may be improving the outcome of symbiotic interactions benefiting the host. Thus, traditional immune assays that are aimed at studying the function of secreted immune effectors, such as agglutination assays, should take into account the possibility that the first observation may not be the last if the microbes under study are not directly killed. Here, we describe a series of simple approaches to characterize biofilm formation when bacteria (or yeast) are cultured in the presence of a secreted immune effector. To model this approach, we use microbes isolated from the gut of Ciona robusta, each grown in the presence or absence of VCBPs. The approaches defined here are amenable to diverse model systems and their microbes.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Brittany A Leigh
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Zachary Graham
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA
| | - Ojas Natarajan
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA
| | - Larry J Dishaw
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA.
| |
Collapse
|
12
|
Kim S, Islam MR, Kang I, Cho JC. Cultivation of Dominant Freshwater Bacterioplankton Lineages Using a High-Throughput Dilution-to-Extinction Culturing Approach Over a 1-Year Period. Front Microbiol 2021; 12:700637. [PMID: 34385989 PMCID: PMC8353197 DOI: 10.3389/fmicb.2021.700637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Although many culture-independent molecular analyses have elucidated a great diversity of freshwater bacterioplankton, the ecophysiological characteristics of several abundant freshwater bacterial groups are largely unknown due to the scarcity of cultured representatives. Therefore, a high-throughput dilution-to-extinction culturing (HTC) approach was implemented herein to enable the culture of these bacterioplankton lineages using water samples collected at various seasons and depths from Lake Soyang, an oligotrophic reservoir located in South Korea. Some predominant freshwater bacteria have been isolated from Lake Soyang via HTC (e.g., the acI lineage); however, large-scale HTC studies encompassing different seasons and water depths have not been documented yet. In this HTC approach, bacterial growth was detected in 14% of 5,376 inoculated wells. Further, phylogenetic analyses of 16S rRNA genes from a total of 605 putatively axenic bacterial cultures indicated that the HTC isolates were largely composed of Actinobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. Importantly, the isolates were distributed across diverse taxa including phylogenetic lineages that are widely known cosmopolitan and representative freshwater bacterial groups such as the acI, acIV, LD28, FukuN57, MNG9, and TRA3-20 lineages. However, some abundant bacterial groups including the LD12 lineage, Chloroflexi, and Acidobacteria could not be domesticated. Among the 71 taxonomic groups in the HTC isolates, representative strains of 47 groups could either form colonies on agar plates or be revived from frozen glycerol stocks. Additionally, season and water depth significantly affected bacterial community structure, as demonstrated by 16S rRNA gene amplicon sequencing analyses. Therefore, our study successfully implemented a dilution-to-extinction cultivation strategy to cultivate previously uncultured or underrepresented freshwater bacterial groups, thus expanding the basis for future multi-omic studies.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Md Rashedul Islam
- Bacteriophage Biology Laboratory, Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ilnam Kang
- Department of Biological Sciences, Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| |
Collapse
|
13
|
Junkins EN, Stevenson BS. Using Plate-Wash PCR and High-Throughput Sequencing to Measure Cultivated Diversity for Natural Product Discovery Efforts. Front Microbiol 2021; 12:675798. [PMID: 34354680 PMCID: PMC8329497 DOI: 10.3389/fmicb.2021.675798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular techniques continue to reveal a growing disparity between the immense diversity of microbial life and the small proportion that is in pure culture. The disparity, originally dubbed “the great plate count anomaly” by Staley and Konopka, has become even more vexing given our increased understanding of the importance of microbiomes to a host and the role of microorganisms in the vital biogeochemical functions of our biosphere. Searching for novel antimicrobial drug targets often focuses on screening a broad diversity of microorganisms. If diverse microorganisms are to be screened, they need to be cultivated. Recent innovative research has used molecular techniques to assess the efficacy of cultivation efforts, providing invaluable feedback to cultivation strategies for isolating targeted and/or novel microorganisms. Here, we aimed to determine the efficiency of cultivating representative microorganisms from a non-human, mammalian microbiome, identify those microorganisms, and determine the bioactivity of isolates. Sequence-based data indicated that around 57% of the ASVs detected in the original inoculum were cultivated in our experiments, but nearly 53% of the total ASVs that were present in our cultivation experiments were not detected in the original inoculum. In light of our controls, our data suggests that when molecular tools were used to characterize our cultivation efforts, they provided a more complete and more complex, understanding of which organisms were present compared to what was eventually detected during cultivation. Lastly, about 3% of the isolates collected from our cultivation experiments showed inhibitory bioactivity against an already multidrug-resistant pathogen panel, further highlighting the importance of informing and directing future cultivation efforts with molecular tools.
Collapse
Affiliation(s)
- Emily N Junkins
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Bradley S Stevenson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
14
|
van Vliet DM, von Meijenfeldt FB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJ, Sánchez‐Andrea I. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol 2021; 23:2834-2857. [PMID: 33000514 PMCID: PMC8359478 DOI: 10.1111/1462-2920.15265] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
Dysoxic marine waters (DMW, < 1 μM oxygen) are currently expanding in volume in the oceans, which has biogeochemical, ecological and societal consequences on a global scale. In these environments, distinct bacteria drive an active sulfur cycle, which has only recently been recognized for open-ocean DMW. This review summarizes the current knowledge on these sulfur-cycling bacteria. Critical bottlenecks and questions for future research are specifically addressed. Sulfate-reducing bacteria (SRB) are core members of DMW. However, their roles are not entirely clear, and they remain largely uncultured. We found support for their remarkable diversity and taxonomic novelty by mining metagenome-assembled genomes from the Black Sea as model ecosystem. We highlight recent insights into the metabolism of key sulfur-oxidizing SUP05 and Sulfurimonas bacteria, and discuss the probable involvement of uncultivated SAR324 and BS-GSO2 bacteria in sulfur oxidation. Uncultivated Marinimicrobia bacteria with a presumed organoheterotrophic metabolism are abundant in DMW. Like SRB, they may use specific molybdoenzymes to conserve energy from the oxidation, reduction or disproportionation of sulfur cycle intermediates such as S0 and thiosulfate, produced from the oxidation of sulfide. We expect that tailored sampling methods and a renewed focus on cultivation will yield deeper insight into sulfur-cycling bacteria in DMW.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
| | | | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Science for LifeUtrecht University, Padualaan 8, 3584 CHUtrechtNetherlands
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Landsdiep 4, 1797 SZ, 'tHorntje (Texel)Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Landsdiep 4, 1797 SZ, 'tHorntje (Texel)Netherlands
- Department of Earth Sciences, Faculty of GeosciencesUtrecht University, Princetonlaan 8A, 3584 CBUtrechtNetherlands
| | - Alfons J.M. Stams
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de Gualtar, 4710‐057BragaPortugal
| | - Irene Sánchez‐Andrea
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
| |
Collapse
|
15
|
Buchholz HH, Michelsen ML, Bolaños LM, Browne E, Allen MJ, Temperton B. Efficient dilution-to-extinction isolation of novel virus-host model systems for fastidious heterotrophic bacteria. THE ISME JOURNAL 2021; 15:1585-1598. [PMID: 33495565 PMCID: PMC8163748 DOI: 10.1038/s41396-020-00872-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Microbes and their associated viruses are key drivers of biogeochemical processes in marine and soil biomes. While viruses of phototrophic cyanobacteria are well-represented in model systems, challenges of isolating marine microbial heterotrophs and their viruses have hampered experimental approaches to quantify the importance of viruses in nutrient recycling. A resurgence in cultivation efforts has improved the availability of fastidious bacteria for hypothesis testing, but this has not been matched by similar efforts to cultivate their associated bacteriophages. Here, we describe a high-throughput method for isolating important virus-host systems for fastidious heterotrophic bacteria that couples advances in culturing of hosts with sequential enrichment and isolation of associated phages. Applied to six monthly samples from the Western English Channel, we first isolated one new member of the globally dominant bacterial SAR11 clade and three new members of the methylotrophic bacterial clade OM43. We used these as bait to isolate 117 new phages, including the first known siphophage-infecting SAR11, and the first isolated phage for OM43. Genomic analyses of 13 novel viruses revealed representatives of three new viral genera, and infection assays showed that the viruses infecting SAR11 have ecotype-specific host ranges. Similar to the abundant human-associated phage ɸCrAss001, infection dynamics within the majority of isolates suggested either prevalent lysogeny or chronic infection, despite a lack of associated genes, or host phenotypic bistability with lysis putatively maintained within a susceptible subpopulation. Broader representation of important virus-host systems in culture collections and genomic databases will improve both our understanding of virus-host interactions, and accuracy of computational approaches to evaluate ecological patterns from metagenomic data.
Collapse
Affiliation(s)
| | | | | | - Emily Browne
- School of Biosciences, University of Exeter, Exeter, UK
| | - Michael J Allen
- School of Biosciences, University of Exeter, Exeter, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
16
|
Mu DS, Ouyang Y, Chen GJ, Du ZJ. Strategies for culturing active/dormant marine microbes. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:121-131. [PMID: 37073338 PMCID: PMC10077298 DOI: 10.1007/s42995-020-00053-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 05/03/2023]
Abstract
Microorganisms are ubiquitous in the ocean environment and they play key roles in marine ecosystem function and service. However, many of their functions and phenotypes remain unknown because indigenous marine bacteria are mostly difficult to culture. Although many novel techniques have brought previously uncultured microbes into laboratory culture, there are still many most-wanted or key players that need to be cultured from marine environments. This review discusses possible reasons for 'unculturable microbes' and categorizes uncultured bacteria into three groups: dominant active bacteria, rare active bacteria, and dormant bacteria. This review also summarizes advances in cultivation techniques for culturing each group of unculturable bacteria. Simulating the natural environment is an effective strategy for isolating dominant active bacteria, whereas culturomics and enrichment culture methods are proposed for isolating rare active bacteria. For dormant bacteria, resuscitation culture is an appropriate strategy. Furthermore, the review provides a list of the most-wanted bacteria and proposes potential strategies for culturing these bacteria in marine environments. The review provides new insight into the development of strategies for the cultivation of specific groups of uncultured bacteria and therefore paves the way for the detection of novel microbes and their functions in marine ecosystems.
Collapse
Affiliation(s)
- Da-Shuai Mu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 China
- Marine College, Shandong University, Weihai, 264209 China
| | - Yang Ouyang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK USA
| | - Guan-Jun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 China
- Marine College, Shandong University, Weihai, 264209 China
| | - Zong-Jun Du
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 China
- Marine College, Shandong University, Weihai, 264209 China
| |
Collapse
|
17
|
Nowlan JP, Britney SR, Lumsden JS, Russell S. Application of Quantitative-PCR to Monitor Netpen Sites in British Columbia (Canada) for Tenacibaculum Species. Pathogens 2021; 10:pathogens10040414. [PMID: 33915806 PMCID: PMC8066307 DOI: 10.3390/pathogens10040414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Tenacibaculum are frequently detected from fish with tenacibaculosis at aquaculture sites; however, information on the ecology of these bacteria is sparse. Quantitative-PCR assays were used to detect T. maritimum and T. dicentrarchi at commercial Atlantic salmon (Salmo salar) netpen sites throughout several tenacibaculosis outbreaks. T. dicentrarchi and T. maritimum were identified in live fish, dead fish, other organisms associated with netpens, water samples and on inanimate substrates, which indicates a ubiquitous distribution around stocked netpen sites. Before an outbreak, T. dicentrarchi was found throughout the environment and from fish, and T. maritimum was infrequently identified. During an outbreak, increases in the bacterial load in were recorded and no differences were recorded after an outbreak supporting the observed recrudescence of mouthrot. More bacteria were recorded in the summer months, with more mortality events and antibiotic treatments, indicating that seasonality may influence tenacibaculosis; however, outbreaks occurred in both seasons. Relationships were identified between fish mortalities and antimicrobial use to water quality parameters (temperature, salinity, dissolved oxygen) (p < 0.05), but with low R2 values (<0.25), other variables are also involved. Furthermore, Tenacibaculum species appear to have a ubiquitous spatial and temporal distribution around stocked netpen sites, and with the potential to induce disease in Atlantic salmon, continued research is needed.
Collapse
Affiliation(s)
- Joseph P. Nowlan
- Center of Innovation for Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (S.R.B.); (S.R.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Correspondence:
| | - Scott R. Britney
- Center of Innovation for Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (S.R.B.); (S.R.)
| | - John S. Lumsden
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Spencer Russell
- Center of Innovation for Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; (S.R.B.); (S.R.)
| |
Collapse
|
18
|
Li N, He XY, Liu NH, Gu TJ, Li J, Geng YH, Zhang S, Wang P, Fu HH, Shi M, Chen XL, Zhang YZ, Zhang XY, Qin QL. Tritonibacter aquimaris sp. nov. and Tritonibacter litoralis sp. nov., two novel members of the Roseobacter group isolated from coastal seawater. Antonie Van Leeuwenhoek 2021; 114:787-798. [PMID: 33782795 DOI: 10.1007/s10482-021-01558-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
Two Gram-stain-negative bacterial strains, SM1969T and SM1979T, were isolated from coastal surface seawater of Qingdao, China. They were taxonomically characterized by the phylogenetic, genomic, chemotaxonomic and phenotypic analyses. The two strains shared 97.0% 16S rRNA gene sequence similarity with each other and the highest similarity (96.8-97.5%) with type strains of six species in the genera Shimia, Tritonibacter and Tropicibacter in the Roseobacter group of the family Rhodobacteraceae. In the phylogenetic tree based on single-copy orthologous clusters (OCs), both strains clustered with known species of the genus Tritonibacter and together formed a separate branch adjacent to Tritonibacter ulvae. Although sharing many chemotaxonomic and phenotypic characteristics, the two strains could be differentiated from each other and closely related species by numerous traits. Particularly, strain SM1969T was found to have a DMSP lyase coding gene dddW in its genome and have the ability to produce DMS from DMSP while strain SM1979T was not. The average nucleotide identity and in silico DNA-DNA hybridization values between strains SM1969T and SM1979T and type strains of closely related species were all below the thresholds to discriminate bacterial species, demonstrating that they constitute two new species in the genus Tritonibacter. The names Tritonibacter aquimaris sp. nov. and Tritonibacter litoralis sp. nov. are proposed for the two new species, with type strains being SM1969T (= MCCC 1K04320T = KCTC 72843T) and SM1979T (= MCCC 1K04321T = KCTC 72842T), respectively.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiao-Yan He
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ning-Hua Liu
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Tie-Ji Gu
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Jian Li
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yu-Hui Geng
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Shan Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Peng Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
19
|
Thrash JC. Towards culturing the microbe of your choice. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:36-41. [PMID: 33073476 DOI: 10.1111/1758-2229.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Affiliation(s)
- J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
20
|
Wu X, Spencer S, Gushgari-Doyle S, Yee MO, Voriskova J, Li Y, Alm EJ, Chakraborty R. Culturing of "Unculturable" Subsurface Microbes: Natural Organic Carbon Source Fuels the Growth of Diverse and Distinct Bacteria From Groundwater. Front Microbiol 2020; 11:610001. [PMID: 33391234 PMCID: PMC7773641 DOI: 10.3389/fmicb.2020.610001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
Recovery and cultivation of diverse environmentally-relevant microorganisms from the terrestrial subsurface remain a challenge despite recent advances in modern molecular technology. Here, we applied complex carbon (C) sources, i.e., sediment dissolved organic matter (DOM) and bacterial cell lysate, to enrich groundwater microbial communities for 30 days. As comparisons, we also included enrichments amended with simple C sources including glucose, acetate, benzoate, oleic acid, cellulose, and mixed vitamins. Our results demonstrate that complex C is far more effective in enriching diverse and distinct microorganisms from groundwater than simple C. Simple C enrichments yield significantly lower biodiversity, and are dominated by few phyla (e.g., Proteobacteria and Bacteroidetes), while microcosms enriched with complex C demonstrate significantly higher biodiversity including phyla that are poorly represented in published culture collections (e.g., Verrucomicrobia, Planctomycetes, and Armatimonadetes). Subsequent isolation from complex C enrichments yielded 228 bacterial isolates representing five phyla, 17 orders, and 56 distinct species, including candidate novel, rarely cultivated, and undescribed organisms. Results from this study will substantially advance cultivation and isolation strategies for recovering diverse and novel subsurface microorganisms. Obtaining axenic representatives of “once-unculturable” microorganisms will enhance our understanding of microbial physiology and function in different biogeochemical niches of terrestrial subsurface ecosystems.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sarah Spencer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sara Gushgari-Doyle
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mon Oo Yee
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jana Voriskova
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yifan Li
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
21
|
Complete Genome Sequence of
Marinobacterium
sp. Strain LSUCC0821, Isolated from the Coastal Gulf of Mexico. Microbiol Resour Announc 2020; 9:9/49/e01035-20. [PMID: 33272989 PMCID: PMC7714843 DOI: 10.1128/mra.01035-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Here, we present the complete genome sequence of Marinobacterium sp. strain LSUCC0821, isolated from the coastal Gulf of Mexico with artificial seawater using high-throughput dilution-to-extinction (DTE) cultivation. The 2.36-Mbp circularized genome sequence has 2,231 predicted genes, a 91.5% coding density, and a GC content of 47.8%. Here, we present the complete genome sequence of Marinobacterium sp. strain LSUCC0821, isolated from the coastal Gulf of Mexico with artificial seawater using high-throughput dilution-to-extinction (DTE) cultivation. The 2.36-Mbp circularized genome sequence has 2,231 predicted genes, a 91.5% coding density, and a GC content of 47.8%.
Collapse
|
22
|
Wang M, Noor S, Huan R, Liu C, Li J, Shi Q, Zhang YJ, Wu C, He H. Comparison of the diversity of cultured and total bacterial communities in marine sediment using culture-dependent and sequencing methods. PeerJ 2020; 8:e10060. [PMID: 33150062 PMCID: PMC7585373 DOI: 10.7717/peerj.10060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Despite recent great advances in microbial culture, most microbes have not yet been cultured, and the impact of medium composition on the isolation of microbes from natural systems has not been elucidated. To optimize media for culturing marine microbes, microbial communities in three sediment samples were described using high-throughput sequencing (HTS) and culture-dependent techniques. HTS revealed communities dominated by Gammaproteobacteria, and culture-based methods revealed communities dominated by Actinobacteria. Among the total operational taxonomic units (OTUs) from the HTS dataset, 6% were recovered in the culture collection. Four potentially novel bacterial strains belonging to Oceaniovalibus, Psychrobacter and Salegentibacter were isolated. The combination of media cultured more taxa than any single medium. Nutrient-rich and single-carbon/nitrogen-source media supported the growth of relatively few taxa, and the quality of nitrogen strongly influenced the types of bacteria isolated.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Science, Central South University, Changsha, China
| | - Samina Noor
- School of Life Science, Central South University, Changsha, China
| | - Ran Huan
- School of Life Science, Central South University, Changsha, China
| | - Congling Liu
- School of Life Science, Central South University, Changsha, China
| | - JiaYi Li
- School of Life Science, Central South University, Changsha, China
| | - Qingxin Shi
- School of Life Science, Central South University, Changsha, China
| | | | - Cuiling Wu
- Changzhi Medical College, Changzhi, China
| | - Hailun He
- School of Life Science, Central South University, Changsha, China
| |
Collapse
|
23
|
Morales-Guzmán D, Martínez-Morales F, Bertrand B, Rosas-Galván NS, Curiel-Maciel NF, Teymennet-Ramírez KV, Mazón-Román LE, Licea-Navarro AF, Trejo-Hernández MR. Microbial prospection of communities that produce biosurfactants from the water column and sediments of the Gulf of Mexico. Biotechnol Appl Biochem 2020; 68:1202-1215. [PMID: 32969539 DOI: 10.1002/bab.2042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/13/2020] [Indexed: 11/10/2022]
Abstract
Microbial communities capable of hydrocarbon degradation linked to biosurfactant (BS) and bioemulsifier (BE) production are basically unexplored in the Gulf of México (GOM). In this work, the BS and BE production of culturable marine bacterial hydrocarbonoclasts consortia isolated from two sites (the Perdido Fold Belt and Coatzacoalcos area) was investigated. The prospection at different locations and depths led to the screening and isolation of a wide variety of bacterial consortia with BS and BE activities, after culture enrichment with crude oil and glycerol as the carbon sources. At least 55 isolated consortia presented reduction in surface tension (ST) and emulsifying activity (EI24 ). After colony purification, bacteria were submitted to polyphasic analysis assays that resulted in the identification of different strains of cultivable Gammaproteobacteria Gram (-) Citrobacter, Enterobacter, Erwinia, Pseudomonas, Vibrio, Shewanella, Thalassospira, Idiomarina, Pseudoalteromonas, Photobacterium, and Gram (+) Staphylococcus, Bacillus, and Microbacterium. Overall, the best results for ST reduction and EI24 were obtained with consortia. Individually, Pseudomonas, Bacillus, and Enterobacter strains showed the best results for the reduction of ST after 6 days, while Thalassospira and Idiomarina strains showed the best results for EI24 (above 68% after 9 days). Consortia isolates from the GOM had the ability to degrade crude oil by up to 40-80% after 24 and 36 months, respectively. In all cases, biodegradation of crude oil was related to the reduction in ST and bioemulsifying activity and was independent from the depth in the water column.
Collapse
Affiliation(s)
- Daniel Morales-Guzmán
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Brandt Bertrand
- Universidad Nacional Autónoma de México (ICF-UNAM). Avenida Universidad 2001, Chamilpa, Instituto de Ciencias Físicas, Cuernavaca, Morelos, México
| | - Nashbly Sarela Rosas-Galván
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Nidya Fabiola Curiel-Maciel
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Luis Enrique Mazón-Román
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Alexei Fedorovish Licea-Navarro
- Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada, BC, México
| | - María R Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
24
|
Expanding the Diversity of Bacterioplankton Isolates and Modeling Isolation Efficacy with Large-Scale Dilution-to-Extinction Cultivation. Appl Environ Microbiol 2020; 86:AEM.00943-20. [PMID: 32561583 PMCID: PMC7440811 DOI: 10.1128/aem.00943-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
Even before the coining of the term “great plate count anomaly” in the 1980s, scientists had noted the discrepancy between the number of microorganisms observed under the microscope and the number of colonies that grew on traditional agar media. New cultivation approaches have reduced this disparity, resulting in the isolation of some of the “most wanted” bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, hampering progress toward answering fundamental biological questions about many important microorganisms. Furthermore, few studies have evaluated the underlying factors influencing cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity of available axenic cultures. We also provide a new model of the DTE approach that uses cultivation results and natural abundance information to predict taxon-specific viability and iteratively constrain DTE experimental design to improve cultivation success. Cultivated bacterioplankton representatives from diverse lineages and locations are essential for microbiology, but the large majority of taxa either remain uncultivated or lack isolates from diverse geographic locales. We paired large-scale dilution-to-extinction (DTE) cultivation with microbial community analysis and modeling to expand the phylogenetic and geographic diversity of cultivated bacterioplankton and to evaluate DTE cultivation success. Here, we report results from 17 DTE experiments totaling 7,820 individual incubations over 3 years, yielding 328 repeatably transferable isolates. Comparison of isolates to microbial community data for source waters indicated that we successfully isolated 5% of the observed bacterioplankton community throughout the study; 43% and 26% of our isolates matched operational taxonomic units and amplicon single-nucleotide variants, respectively, within the top 50 most abundant taxa. Isolates included those from previously uncultivated clades such as SAR11 LD12 and Actinobacteria acIV, as well as geographically novel members from other ecologically important groups like SAR11 subclade IIIa, SAR116, and others, providing isolates in eight putatively new genera and seven putatively new species. Using a newly developed DTE cultivation model, we evaluated taxon viability by comparing relative abundance with cultivation success. The model (i) revealed the minimum attempts required for successful isolation of taxa amenable to growth on our media and (ii) identified possible subpopulation viability variation in abundant taxa such as SAR11 that likely impacts cultivation success. By incorporating viability in experimental design, we can now statistically constrain the effort necessary for successful cultivation of specific taxa on a defined medium. IMPORTANCE Even before the coining of the term “great plate count anomaly” in the 1980s, scientists had noted the discrepancy between the number of microorganisms observed under the microscope and the number of colonies that grew on traditional agar media. New cultivation approaches have reduced this disparity, resulting in the isolation of some of the “most wanted” bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, hampering progress toward answering fundamental biological questions about many important microorganisms. Furthermore, few studies have evaluated the underlying factors influencing cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity of available axenic cultures. We also provide a new model of the DTE approach that uses cultivation results and natural abundance information to predict taxon-specific viability and iteratively constrain DTE experimental design to improve cultivation success.
Collapse
|
25
|
Draft Genome Sequence of the Novel Coastal Bacterium LSUCC0115 from the MWH-UniPo Clade, Order
Burkholderiales
, Class
Betaproteobacteria. Microbiol Resour Announc 2020; 9:9/2/e01492-19. [PMID: 31919153 PMCID: PMC6952679 DOI: 10.1128/mra.01492-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the draft genome of LSUCC0115, a novel coastal Gulf of Mexico bacterioplankton isolate within the order Burkholderiales. LSUCC0115 has the metabolic potential for aerobic heterotrophy, phototrophy, and lithoautotrophy, as well as genes for flagellar assembly and quorum sensing. Here, we present the draft genome of LSUCC0115, a novel coastal Gulf of Mexico bacterioplankton isolate within the order Burkholderiales. LSUCC0115 has the metabolic potential for aerobic heterotrophy, phototrophy, and lithoautotrophy, as well as genes for flagellar assembly and quorum sensing.
Collapse
|
26
|
Abstract
In the ocean's major oxygen minimum zones (OMZs), oxygen is effectively absent from sea water and life is dominated by microorganisms that use chemicals other than oxygen for respiration. Recent studies that combine advanced genomic and chemical detection methods are delineating the different metabolic niches that microorganisms can occupy in OMZs. Understanding these niches, the microorganisms that inhabit them, and their influence on marine biogeochemical cycles is crucial as OMZs expand with increasing seawater temperatures.
Collapse
Affiliation(s)
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
27
|
Draft Genome Sequence of Strain LSUCC0112, a Gulf of Mexico Representative of the Oligotrophic Marine
Gammaproteobacteria. Microbiol Resour Announc 2019; 8:8/27/e00521-19. [PMID: 31270194 PMCID: PMC6606908 DOI: 10.1128/mra.00521-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the draft genome sequence of strain LSUCC0112, a cultured representative from the Gulf of Mexico that is phylogenetically close to the OM182 clade within oligotrophic marine Gammaproteobacteria. LSUCC0112 shows the potential for aerobic heterotrophy, glycogen synthesis, flagellar motility, and assimilatory sulfate reduction. Here, we present the draft genome sequence of strain LSUCC0112, a cultured representative from the Gulf of Mexico that is phylogenetically close to the OM182 clade within oligotrophic marine Gammaproteobacteria. LSUCC0112 shows the potential for aerobic heterotrophy, glycogen synthesis, flagellar motility, and assimilatory sulfate reduction.
Collapse
|
28
|
Draft Genome Sequence of Strain LSUCC0057, a Member of the SAR92 Clade of
Gammaproteobacteria. Microbiol Resour Announc 2019; 8:8/25/e00599-19. [PMID: 31221657 PMCID: PMC6588378 DOI: 10.1128/mra.00599-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the draft genome sequence of strain LSUCC0057, a member of the SAR92 clade of Gammaproteobacteria, isolated from coastal waters near Buras, LA. The genome contains proteorhodopsin and indicates the potential for aerobic heterotrophy, assimilatory sulfate reduction, and carotenoid biosynthesis. We present the draft genome sequence of strain LSUCC0057, a member of the SAR92 clade of Gammaproteobacteria, isolated from coastal waters near Buras, LA. The genome contains proteorhodopsin and indicates the potential for aerobic heterotrophy, assimilatory sulfate reduction, and carotenoid biosynthesis.
Collapse
|
29
|
Elemental Composition, Phosphorous Uptake, and Characteristics of Growth of a SAR11 Strain in Batch and Continuous Culture. mSystems 2019; 4:4/4/e00218-18. [PMID: 31117027 PMCID: PMC6589437 DOI: 10.1128/msystems.00218-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While SAR11 bacteria contribute a significant fraction to the total picoplankton biomass in the ocean and likely are major players in organic C and nutrient cycling, the cellular characteristics and metabolic features of most lineages have either only been hypothesized from genomes or otherwise not measured in controlled laboratory experimentation. The dearth of data on even the most basic characteristics for what is arguably the most abundant heterotroph in seawater has limited the specific consideration of SAR11 in ocean ecosystem modeling efforts. In this study, we provide measures of cellular P, N, and C, aerobic respiration, and bacterial production for a SAR11 strain growing in natural seawater medium that can be used to directly relate these features of SAR11 to biogeochemical cycling in the oceans. Through the development of a chemostat system to measure nutrient uptake during steady-state growth, we have also documented inorganic P uptake rates that allude to the importance of organic phosphorous to meet cellular P demands, even in the presence of nonlimiting PO43− concentrations. In this study, a strain of SAR11 subgroup IIIa (termed HIMB114) was grown in seawater-based batch and continuous culture in order to quantify cellular features and metabolism relevant to SAR11 ecology. We report some of the first direct measurements of cellular elemental quotas for nitrogen (N) and phosphorus (P) for SAR11, grown in batch culture: 1.4 ± 0.9 fg N and 0.44 ± 0.01 fg P, respectively, that were consistent with the small size of HIMB114 cells (average volume of 0.09 μm3). However, the mean carbon (C) cellular quota of 50 ± 47 fg C was anomalously high, but variable. The rates of phosphate (PO43−) uptake measured from both batch and continuous cultures were exceptionally slow: in chemostats growing at 0.3 day−1, HIMB114 took up 1.1 ± 0.3 amol P cell−1 day−1, suggesting that <30% of the cellular P requirement of HIMB114 was met by PO43− assimilation. The mean rate of leucine incorporation, a measure of bacterial production, during late-log-phase growth of batch HIMB114 cultures was 0.042 ± 0.02 amol Leu cell−1 h−1. While only weakly correlated with changes in specific growth rates, the onset of stationary phase resulted in decreases in cell-specific leucine incorporation that were proportional to changes in growth rate. The rates of cellular production, respiratory oxygen consumption, and changes in total organic C concentrations constrained cellular growth efficiencies to 13% ± 4%. Hence, despite a small genome and diminutively sized cells, SAR11 strain HIMB114 appears to grow at efficiencies similar to those of naturally occurring bacterioplankton communities. IMPORTANCE While SAR11 bacteria contribute a significant fraction to the total picoplankton biomass in the ocean and likely are major players in organic C and nutrient cycling, the cellular characteristics and metabolic features of most lineages have either only been hypothesized from genomes or otherwise not measured in controlled laboratory experimentation. The dearth of data on even the most basic characteristics for what is arguably the most abundant heterotroph in seawater has limited the specific consideration of SAR11 in ocean ecosystem modeling efforts. In this study, we provide measures of cellular P, N, and C, aerobic respiration, and bacterial production for a SAR11 strain growing in natural seawater medium that can be used to directly relate these features of SAR11 to biogeochemical cycling in the oceans. Through the development of a chemostat system to measure nutrient uptake during steady-state growth, we have also documented inorganic P uptake rates that allude to the importance of organic phosphorous to meet cellular P demands, even in the presence of nonlimiting PO43− concentrations.
Collapse
|
30
|
Abstract
Isolation of new microorganisms is challenging, but cultures are invaluable resources for experimental validation of phenotype, ecology, and evolutionary processes. Although the number of new isolates continues to grow, the majority of cultivars still come from a limited number of phylogenetic groups and environments, necessitating investment in new cultivation efforts. Isolation of new microorganisms is challenging, but cultures are invaluable resources for experimental validation of phenotype, ecology, and evolutionary processes. Although the number of new isolates continues to grow, the majority of cultivars still come from a limited number of phylogenetic groups and environments, necessitating investment in new cultivation efforts. While most microbiologists probably agree that axenic cultures have great value, we need to collectively put our money where our mouth is. I propose that we examine cultivation from the perspective of expected value to rationally incorporate risks and rewards of isolating new microbes. If we can even broadly constrain the cultivation probability and relative values of isolates, we can use this information to evaluate and improve experimental design. There are numerous scenarios for which isolation projects have positive expectations and therefore represent a sound investment.
Collapse
|
31
|
Abstract
Sometimes, to move ahead, you must take a look at where you have been. Culturing microbes is a foundational underpinning of microbiology. Sometimes, to move ahead, you must take a look at where you have been. Culturing microbes is a foundational underpinning of microbiology. Before genome sequencing, researchers spent countless hours tediously deducing the nutritional requirements of bacterial isolates and tinkering with medium formulations to entice new microbes into culture. This art of cultivation took a back seat to the powerful molecular tools of the last 25 years, and as a result, many researchers have forgotten the utility of having a culture in hand. This perception is changing, as there is clearly a renewed interest in isolating microbes from various environments. Here, I suggest three focus areas to ensure continued growth and success of this “cultural” renaissance, including (i) setting clear cultivation goals, (ii) funding exploratory cultivation, and (iii) culturing and studying unusual organisms. “Unculturable” is a frame of mind, not a state of microbiology; it is time to dust off the bottle of yeast extract.
Collapse
|
32
|
Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media - A review. J Adv Res 2019; 19:15-27. [PMID: 31341666 PMCID: PMC6630032 DOI: 10.1016/j.jare.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The plant microbiome culturomics is substantially lagging behind the human microbiome. Conventional chemically-synthetic culture media recover < 10% of plant-associated microbiota. Plant-based culture media (PCM) are introduced as a novel tool for plant microbiome culturomics. PCM extended the microbiota culturability to recover unculturable bacterial taxa. Streamlined- and large-genomes conspicuously contribute to the dilemma of unculturability.
Improving cultivability of a wider range of bacterial and archaeal community members, living natively in natural environments and within plants, is a prerequisite to better understanding plant-microbiota interactions and their functions in such very complex systems. Sequencing, assembling, and annotation of pure microbial strain genomes provide higher quality data compared to environmental metagenome analyses, and can substantially improve gene and protein database information. Despite the comprehensive knowledge which already was gained using metagenomic and metatranscriptomic methods, there still exists a big gap in understanding in vivo microbial gene functioning in planta, since many differentially expressed genes or gene families are not yet annotated. Here, the progress in culturing procedures for plant microbiota depending on plant-based culture media, and their proficiency in obtaining single prokaryotic isolates of novel and rapidly increasing candidate phyla are reviewed. As well, the great success of culturomics of the human microbiota is considered with the main objective of encouraging microbiologists to continue minimizing the gap between the microbial richness in nature and the number of species in culture, for the benefit of both basic and applied microbiology. The clear message to fellow plant microbiologists is to apply plant-tailored culturomic techniques that might open up novel procedures to obtain not-yet-cultured organisms and extend the known plant microbiota repertoire to unprecedented levels.
Collapse
|
33
|
Bakshi A, Webber AT, Patrick LE, Wischusen W, Thrash C. The CURE for Cultivating Fastidious Microbes. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2019; 20:jmbe-20-10. [PMID: 31160939 PMCID: PMC6508911 DOI: 10.1128/jmbe.v20i1.1635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/15/2018] [Indexed: 05/20/2023]
Abstract
Course-Based Undergraduate Research Experiences (CUREs) expand the scientific educational benefits of research to large groups of students in a course setting. As part of an ongoing effort to integrate CUREs into first-year biology labs, we developed a microbiology CURE (mCURE) that uses a modified dilution-to-extinction high throughput culturing protocol for isolating abundant yet fastidious aquatic bacterioplankton during one semester. Students learn common molecular biology techniques like nucleic acid extraction, PCR, and molecular characterization; read and evaluate scientific literature; and receive training in scientific communication through written and oral exercises that incorporate social media elements. In the first three semesters, the mCUREs achieved similar cultivability success as implementation of the protocol in a standard laboratory setting. Our modular framework facilitates customization of the curriculum for use in multiple settings and we provide classroom exercises, assignments, assessment tools, and examples of student output to assist with implementation.
Collapse
Affiliation(s)
| | | | | | | | - Cameron Thrash
- Corresponding author. Mailing address: University of Southern California, Department of Biological Sciences, 3616 Trousdale Pkwy., AHF107, Los Angeles, CA 90089. E-mail:
| |
Collapse
|
34
|
Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME JOURNAL 2018; 12:1846-1860. [PMID: 29599519 PMCID: PMC6018831 DOI: 10.1038/s41396-018-0092-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 11/08/2022]
Abstract
Evolutionary transitions between fresh and salt water happen infrequently among bacterioplankton. Within the ubiquitous and highly abundant heterotrophic Alphaproteobacteria order Pelagibacterales (SAR11), most members live in marine habitats, but the LD12 subclade has evolved as a unique freshwater lineage. LD12 cells occur as some of the most dominant freshwater bacterioplankton, yet this group has remained elusive to cultivation, hampering a more thorough understanding of its biology. Here, we report the first successful isolation of an LD12 representative, strain LSUCC0530, using high-throughput dilution-to-extinction cultivation methods, and its complete genome sequence. Growth experiments corroborate ecological data suggesting active populations of LD12 in brackish water up to salinities of ~5. LSUCC0530 has the smallest closed genome thus far reported for a SAR11 strain (1.16 Mbp). The genome affirms many previous metabolic predictions from cultivation-independent analyses, like a complete Embden–Meyerhof–Parnas glycolysis pathway, but also provides novel insights, such as the first isocitrate dehydrogenase in LD12, a likely homologous recombination of malate synthase from outside of the SAR11 clade, and analogous substitutions of ion transporters with others that occur throughout the rest of the SAR11 clade. Growth data support metagenomic recruitment results suggesting temperature-based ecotype diversification within LD12. Key gene losses for osmolyte uptake provide a succinct hypothesis for the evolutionary transition of LD12 from salt to freshwater. For strain LSUCC0530, we propose the provisional nomenclature Candidatus fonsibacter ubiquis.
Collapse
|
35
|
Hull NM, Holinger EP, Ross KA, Robertson CE, Harris JK, Stevens MJ, Pace NR. Longitudinal and Source-to-Tap New Orleans, LA, U.S.A. Drinking Water Microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4220-4229. [PMID: 28296394 DOI: 10.1021/acs.est.6b06064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The two municipal drinking water systems of New Orleans, LA, U.S.A. were sampled to compare the microbiology of independent systems that treat the same surface water from the Mississippi River. To better understand temporal trends and sources of microbiology delivered to taps, these treatment plants and distribution systems were subjected to source-to-tap sampling over four years. Both plants employ traditional treatment by chloramination, applied during or after settling, followed by filtration before distribution in a warm, low water age system. Longitudinal samples indicated microbiology to have stability both spatially and temporally, and between treatment plants and distribution systems. Disinfection had the greatest impact on microbial composition, which was further refined by filtration and influenced by distribution and premise plumbing. Actinobacteria spp. exhibited trends with treatment. In particular, Mycobacterium spp., very low in finished waters, occurred idiosyncratically at high levels in some tap waters, indicating distribution and/or premise plumbing as main contributors of mycobacteria. Legionella spp., another genus containing potential opportunistic pathogens, also occurred ubiquitously. Source water microbiology was most divergent from tap water, and each step of treatment brought samples more closely similar to tap waters.
Collapse
Affiliation(s)
- Natalie M Hull
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Eric P Holinger
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Kimberly A Ross
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| | - Charles E Robertson
- Division of Infectious Disease, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Mark J Stevens
- Department of Pediatrics, University of Colorado School of Medicine , Anschutz Campus, Aurora, Colorado 80045, United States
| | - Norman R Pace
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
36
|
Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci Rep 2017; 7:44480. [PMID: 28290555 PMCID: PMC5349573 DOI: 10.1038/srep44480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Heard Island in the Southern Ocean is a biological hotspot that is suffering the effects of climate change. Significant glacier retreat has generated proglacial lagoons, some of which are open to the ocean. We used pyrotag sequencing of SSU rRNA genes and environmental data to characterize microorganisms from two pools adjacent to animal breeding areas, two glacial lagoons and Atlas Cove (marine site). The more abundant taxa included Actinobacteria, Bacteroidetes and Proteobacteria, ciliates and picoflagellates (e.g. Micromonas), and relatively few Archaea. Seal Pool, which is rich in organic matter, was characterized by a heterotrophic degradative community, while the less eutrophic Atlas Pool had more eucaryotic primary producers. Brown Lagoon, with the lowest nutrient levels, had Eucarya and Bacteria predicted to be oligotrophs, possess small cell sizes, and have the ability to metabolize organic matter. The marine influence on Winston Lagoon was evident by its salinity and the abundance of marine-like Gammaproteobacteria, while also lacking typical marine eucaryotes indicating the system was still functioning as a distinct niche. This is the first microbiology study of Heard Island and revealed that communities are distinct at each location and heavily influenced by local environmental factors.
Collapse
|
37
|
OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units. mSphere 2017; 2:mSphere00073-17. [PMID: 28289728 PMCID: PMC5343174 DOI: 10.1128/mspheredirect.00073-17] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/20/2022] Open
Abstract
Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them.
Collapse
|
38
|
Draft Genome Sequence of Strain LSUCC0135, an Early Diverging Member of the Order Methylophilales in the Phylum Betaproteobacteria. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01231-16. [PMID: 27811109 PMCID: PMC5095479 DOI: 10.1128/genomea.01231-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present the draft genome of Methylophilales sp. strain LSUCC0135, isolated using high-throughput dilution-to-extinction culturing methods from the coast of Freshwater City, Louisiana, USA. The genome indicates metabolic flexibility for differing oxygen concentrations and electron donors.
Collapse
|
39
|
Abstract
A census is typically carried out for people across a range of geographical levels; however, microbial ecologists have implemented a molecular census of bacteria and archaea by sequencing their 16S rRNA genes. We assessed how well the census of full-length 16S rRNA gene sequences is proceeding in the context of recent advances in high-throughput sequencing technologies because full-length sequences are typically used as references for classification of the short sequences generated by newer technologies. Among the 1,411,234 and 53,546 full-length bacterial and archaeal sequences, 94.5% and 95.1% of the bacterial and archaeal sequences, respectively, belonged to operational taxonomic units (OTUs) that have been observed more than once. Although these metrics suggest that the census is approaching completion, 29.2% of the bacterial and 38.5% of the archaeal OTUs have been observed more than once. Thus, there is still considerable diversity to be explored. Unfortunately, the rate of new full-length sequences has been declining, and new sequences are primarily being deposited by a small number of studies. Furthermore, sequences from soil and aquatic environments, which are known to be rich in bacterial diversity, represent only 7.8 and 16.5% of the census, while sequences associated with host-associated environments represent 55.0% of the census. Continued use of traditional approaches and new technologies such as single-cell genomics and short-read assembly are likely to improve our ability to sample rare OTUs if it is possible to overcome this sampling bias. The success of ongoing efforts to use short-read sequencing to characterize archaeal and bacterial communities requires that researchers strive to expand the depth and breadth of this census. The biodiversity contained within the bacterial and archaeal domains dwarfs that of the eukaryotes, and the services these organisms provide to the biosphere are critical. Surprisingly, we have done a relatively poor job of formally tracking the quality of the biodiversity as represented in full-length 16S rRNA genes. By understanding how this census is proceeding, it is possible to suggest the best allocation of resources for advancing the census. We found that the ongoing effort has done an excellent job of sampling the most abundant organisms but struggles to sample the rarer organisms. Through the use of new sequencing technologies, we should be able to obtain full-length sequences from these rare organisms. Furthermore, we suggest that by allocating more resources to sampling environments known to have the greatest biodiversity, we will be able to make significant advances in our characterization of archaeal and bacterial diversity.
Collapse
|
40
|
Solden L, Lloyd K, Wrighton K. The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr Opin Microbiol 2016; 31:217-226. [PMID: 27196505 DOI: 10.1016/j.mib.2016.04.020] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 11/30/2022]
Abstract
Microorganisms are the most diverse and abundant life forms on Earth. Yet, in many environments, only 0.1-1% of them have been cultivated greatly hindering our understanding of the microbial world. However, today cultivation is no longer a requirement for gaining access to information from the uncultivated majority. New genomic information from metagenomics and single cell genomics has provided insights into microbial metabolic cooperation and dependence, generating new avenues for cultivation efforts. Here we summarize recent advances from uncultivated phyla and discuss how this knowledge has influenced our understanding of the topology of the tree of life and metabolic diversity.
Collapse
Affiliation(s)
- Lindsey Solden
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Karen Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Kelly Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|