1
|
Lee JH, Sergi C, Kast RE, Kanwar BA, Bourbeau J, Oh S, Sohn MG, Lee CJ, Coleman MD. Basic implications on three pathways associated with SARS-CoV-2. Biomed J 2024:100766. [PMID: 39004185 DOI: 10.1016/j.bj.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts between the host and virus and govern induction, resulting in multiorgan impacts. Its pathophysiology involves the followings: 1) the angiotensin-converting enzyme (ACE2) and Toll-like receptor (TLR) pathways: 2) the neuropilin (NRP) pathway: 3) the spike protein pathway. Therefore, it is necessary to block the pathological course with modulating innate lymphoid cells against diverse corona variants in the future.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408, VT, USA
| | - Badar A Kanwar
- Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Republic of Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea
| | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
2
|
Abberger H, Hose M, Ninnemann A, Menne C, Eilbrecht M, Lang KS, Matuschewski K, Geffers R, Herz J, Buer J, Westendorf AM, Hansen W. Neuropilin-1 identifies a subset of highly activated CD8+ T cells during parasitic and viral infections. PLoS Pathog 2023; 19:e1011837. [PMID: 38019895 PMCID: PMC10718454 DOI: 10.1371/journal.ppat.1011837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Neuropilin-1 (Nrp-1) expression on CD8+ T cells has been identified in tumor-infiltrating lymphocytes and in persistent murine gamma-herpes virus infections, where it interferes with the development of long-lived memory T cell responses. In parasitic and acute viral infections, the role of Nrp-1 expression on CD8+ T cells remains unclear. Here, we demonstrate a strong induction of Nrp-1 expression on CD8+ T cells in Plasmodium berghei ANKA (PbA)-infected mice that correlated with neurological deficits of experimental cerebral malaria (ECM). Likewise, the frequency of Nrp-1+CD8+ T cells was significantly elevated and correlated with liver damage in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. Transcriptomic and flow cytometric analyses revealed a highly activated phenotype of Nrp-1+CD8+ T cells from infected mice. Correspondingly, in vitro experiments showed rapid induction of Nrp-1 expression on CD8+ T cells after stimulation in conjunction with increased expression of activation-associated molecules. Strikingly, T cell-specific Nrp-1 ablation resulted in reduced numbers of activated T cells in the brain of PbA-infected mice as well as in spleen and liver of LCMV-infected mice and alleviated the severity of ECM and LCMV-induced liver pathology. Mechanistically, we identified reduced blood-brain barrier leakage associated with reduced parasite sequestration in the brain of PbA-infected mice with T cell-specific Nrp-1 deficiency. In conclusion, Nrp-1 expression on CD8+ T cells represents a very early activation marker that exacerbates deleterious CD8+ T cell responses during both, parasitic PbA and acute LCMV infections.
Collapse
Affiliation(s)
- Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Hose
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Anne Ninnemann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Christopher Menne
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Mareike Eilbrecht
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Karl S. Lang
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josephine Herz
- Department of Pediatrics 1, Neonatology & Experimental perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Germany
- Centre for Translational Neuro- and Behavioral Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany
| |
Collapse
|
3
|
Yang Y, Xu S, Jia G, Yuan F, Ping J, Guo X, Tao R, Shu XO, Zheng W, Long J, Cai Q. Integrating genomics and proteomics data to identify candidate plasma biomarkers for lung cancer risk among European descendants. Br J Cancer 2023; 129:1510-1515. [PMID: 37679517 PMCID: PMC10628278 DOI: 10.1038/s41416-023-02419-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Plasma proteins are potential biomarkers for complex diseases. We aimed to identify plasma protein biomarkers for lung cancer. METHODS We investigated genetically predicted plasma levels of 1130 proteins in association with lung cancer risk among 29,266 cases and 56,450 controls of European descent. For proteins significantly associated with lung cancer risk, we evaluated associations of genetically predicted expression of their coding genes with the risk of lung cancer. RESULTS Nine proteins were identified with genetically predicted plasma levels significantly associated with overall lung cancer risk at a false discovery rate (FDR) of <0.05. Proteins C2, MICA, AIF1, and CTSH were associated with increased lung cancer risk, while proteins SFTPB, HLA-DQA2, MICB, NRP1, and GMFG were associated with decreased lung cancer risk. Stratified analyses by histological types revealed the cross-subtype consistency of these nine associations and identified an additional protein, ICAM5, significantly associated with lung adenocarcinoma risk (FDR < 0.05). Coding genes of NRP1 and ICAM5 proteins are located at two loci that have never been reported by previous GWAS. Genetically predicted blood levels of genes C2, AIF1, and CTSH were associated with lung cancer risk, in directions consistent with those shown in protein-level analyses. CONCLUSION Identification of novel plasma protein biomarkers provided new insights into the biology of lung cancer.
Collapse
Affiliation(s)
- Yaohua Yang
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fangcheng Yuan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Lee JH, Kanwar B, Khattak A, Altschuler E, Sergi C, Lee SJ, Choi SH, Park J, Coleman M, Bourbeau J. Bronchitis, COPD, and pneumonia after viral endemic of patients with leprosy on Sorok Island in South Korea. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1501-1511. [PMID: 36773052 PMCID: PMC9918834 DOI: 10.1007/s00210-023-02407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023]
Abstract
Viral respiratory diseases (VRDs) cause lung inflammation and inflammatory cytokine production. We study whether dapsone is responsible for its observed preventive treatment effects of the sustained viral RNA interferon response. Around 2008 and 2012, Korea's Dementia Management Act stipulated drastic changes in the administration of dementia medication by medical staff. Participants were randomized and we compared leprosy patients with VRDs after prescribing dapsone as a standard treatment from 2005 to 2019. Significance was evaluated based on the dapsone-prescribed (+) subgroup and the dapsone-unprescribed (-) subgroup of the VRD diagnosed (+) and VRD undiagnosed (-) subgroup. We analyzed VRD ( +)/(- with dapsone (+)/(-) group and used a T-test, and designed the equation of acetylation with dapsone and acetylcholine (AA) equation. The 6394 VRD participants who received the dapsone intervention compared to the 3255 VRD participants in the control group demonstrated at T2 VRD (+) dapsone (-) (mean (M) = 224.80, SD = 97.50): T3 VRD (-) dapsone (+) (M = 110.87, SD = 103.80), proving that VRD is low when dapsone is taken and high when it is not taken. The t value is 3.10, and the p value is 0.004395 (significant at p < 0.05). After an increase in VRDs peaked in 2009, bronchitis, COPD, and pneumonia surged in 2013. The AA equation was strongly negatively correlated with the prevalence of bronchitis and chronic obstructive pulmonary disease (COPD): with bronchitis, r(15) = -0.823189, p = 0.005519, and with COPD, r(15) = -0.8161, p = 0.000207 (significant at p < 0.05). Dapsone treated both bronchitis and COPD. This study provides theoretical clinical data to limit acetylcholine excess during the VRD pandemic for bronchitis, COPD, and pneumonia.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Department of Respiratory Medicine, Seoul Metropolitan Seobuk Hospital, 49 Galhyeon-ro 7-gil, Yeokchon-dong Eunpyeong-gu, Seoul, 03433, South Korea.
| | - Badar Kanwar
- Department of Intensive Care Unit and Neonatal Intensive Care, Hunt Regional Hospital Greenville, Greenville, TX, 75401, USA
| | - Asif Khattak
- Department of Intensive Care Unit and Neonatal Intensive Care, Hunt Regional Hospital Greenville, Greenville, TX, 75401, USA
| | - Eric Altschuler
- Physical Medicine/Rehab, Metropolitan Hospital, New York, NY, 10029, USA
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - So Jeong Lee
- Department of BioSciences, Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Su-Hee Choi
- Department of Obstetrics and Gynaecology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jungwuk Park
- Research Center of Integrative Functional Medicine, Department of Neurosurgery, Chungdam Hospital, Seoul, Republic of Korea
| | - Michael Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
5
|
Al-Thomali AW, Al-kuraishy HM, Al-Gareeb AI, K. Al-buhadiliy A, De Waard M, Sabatier JM, Khan Khalil AA, Saad HM, Batiha GES. Role of Neuropilin 1 in COVID-19 Patients with Acute Ischemic Stroke. Biomedicines 2022; 10:2032. [PMID: 36009579 PMCID: PMC9405641 DOI: 10.3390/biomedicines10082032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can trigger the adaptive and innate immune responses, leading to uncontrolled inflammatory reactions and associated local and systematic tissue damage, along with thromboembolic disorders that may increase the risk of acute ischemic stroke (AIS) in COVID-19 patients. The neuropilin (NRP-1) which is a co-receptor for the vascular endothelial growth factor (VEGF), integrins, and plexins, is involved in the pathogenesis of AIS. NRP-1 is also regarded as a co-receptor for the entry of SARS-CoV-2 and facilitates its entry into the brain through the olfactory epithelium. NRP-1 is regarded as a cofactor for binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2), since the absence of ACE2 reduces SARS-CoV-2 infectivity even in presence of NRP-1. Therefore, the aim of the present study was to clarify the potential role of NRP-1 in COVID-19 patients with AIS. SARS-CoV-2 may transmit to the brain through NRP-1 in the olfactory epithelium of the nasal cavity, leading to different neurological disorders, and therefore about 45% of COVID-19 patients had neurological manifestations. NRP-1 has the potential capability to attenuate neuroinflammation, blood-brain barrier (BBB) permeability, cerebral endothelial dysfunction (ED), and neuronal dysfunction that are uncommon in COVID-19 with neurological involvement, including AIS. Similarly, high NRP-1 serum level is linked with ED, oxidative stress, and the risk of pulmonary thrombosis in patients with severe COVID-19, suggesting a compensatory mechanism to overcome immuno-inflammatory disorders. In conclusion, NRP-1 has an important role in the pathogenesis of COVID-19 and AIS, and could be the potential biomarker linking the development of AIS in COVID-19. The present findings cannot provide a final conclusion, and thus in silico, experimental, in vitro, in vivo, preclinical, and clinical studies are recommended to confirm the potential role of NRP-1 in COVID-19, and to elucidate the pharmacological role of NRP-1 receptor agonists and antagonists in COVID-19.
Collapse
Affiliation(s)
- Asma W. Al-Thomali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, MBChB, MRCP, FRCP, Baghdad P.O. Box 14132, Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, Baghdad P.O. Box 14132, Iraq
| | - Ali K. Al-buhadiliy
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of Medicine, Al-Mustansiriyah University, Baghdad P.O. Box 14132, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université, CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
6
|
Neuropilin (NRPs) Related Pathological Conditions and Their Modulators. Int J Mol Sci 2022; 23:ijms23158402. [PMID: 35955539 PMCID: PMC9368954 DOI: 10.3390/ijms23158402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.
Collapse
|
7
|
Rossignol J, Belaid Z, Fouquet G, Guillem F, Rignault R, Milpied P, Renand A, Coman T, D’Aveni M, Dussiot M, Colin E, Levy J, Carvalho C, Goudin N, Cagnard N, Côté F, Babdor J, Bhukhai K, Polivka L, Bigorgne AE, Halse H, Marabelle A, Mouraud S, Lepelletier Y, Maciel TT, Rubio MT, Heron D, Robert C, Girault I, Lebeherec D, Scoazec JY, Moura I, Condon L, Weimershaus M, Pages F, Davoust J, Gross D, Hermine O. Neuropilin-1 cooperates with PD-1 in CD8+ T-cells predicting outcomes in melanoma patients treated with anti-PD1. iScience 2022; 25:104353. [PMID: 35874918 PMCID: PMC9301874 DOI: 10.1016/j.isci.2022.104353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/25/2021] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Targeting immune checkpoints, such as Programmed cell Death 1 (PD1), has improved survival in cancer patients by restoring antitumor immune responses. Most patients, however, relapse or are refractory to immune checkpoint blocking therapies. Neuropilin-1 (NRP1) is a transmembrane glycoprotein required for nervous system and angiogenesis embryonic development, also expressed in immune cells. We hypothesized that NRP1 could be an immune checkpoint co-receptor modulating CD8+ T cells activity in the context of the antitumor immune response. Here, we show that NRP1 is recruited in the cytolytic synapse of PD1+CD8+ T cells, cooperates and enhances PD-1 activity. In mice, CD8+ T cells specific deletion of Nrp1 improves anti-PD1 antibody antitumor immune responses. Likewise, in human metastatic melanoma, the expression of NRP1 in tumor infiltrating CD8+ T cells predicts poor outcome of patients treated with anti-PD1. NRP1 is a promising target to overcome resistance to anti-PD1 therapies. NRP1 modulates PD1 activity secondary to complexes formation on CD8+ T cells Anti-PD1 therapy is synergistic with NRP1 specific deletion on CD8+ T cells in mouse NRP1 expression on CD8+ TILs predicts poor outcome in patients treated with anti-PD1
Collapse
|
8
|
Abberger H, Barthel R, Bahr J, Thiel J, Luppus S, Buer J, Westendorf AM, Hansen W. Neuropilin-1 Is Expressed on Highly Activated CD4 + Effector T Cells and Dysfunctional CD4 + Conventional T Cells from Naive Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1288-1297. [PMID: 34341169 DOI: 10.4049/jimmunol.2100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Neuropilin-1 (Nrp-1) is a well described marker molecule for CD4+Foxp3+ thymus-derived regulatory T cells (Tregs). In addition, a small population of CD4+Foxp3- conventional (conv) T cells expresses Nrp-1 in naive mice, and Nrp-1 expression has been described to be upregulated on activated CD4+ T cells. However, the function of Nrp-1 expression on CD4+ non-Tregs still remains elusive. In this study, we demonstrate that Nrp-1 expression was induced upon stimulation of CD4+Foxp3- T cells in vitro and during an ongoing immune response in vivo. This activation-induced Nrp-1+CD4+ T cell subset (iNrp-1+) showed a highly activated phenotype in terms of elevated CD25 and CD44 expression, enhanced production of proinflammatory cytokines, and increased proliferation compared with the Nrp-1-CD4+ counterpart. In contrast, Nrp-1+CD4+Foxp3- conv T cells from naive mice (nNrp-1+) were dysfunctional. nNrp-1+CD4+ conv T cells upregulated activation-associated molecules to a lesser extent, exhibited impaired proliferation and produced fewer proinflammatory cytokines than Nrp-1-CD4+ conv T cells upon stimulation in vitro. Moreover, the expression of PD-1 and CTLA-4 was significantly higher on nNrp-1+CD4+Foxp3- T cells compared with iNrp-1+CD4+Foxp3- T cells and Nrp-1-CD4+Foxp3- T cells after stimulation and under homeostatic conditions. Strikingly, transfer of Ag-specific iNrp-1+CD4+ conv T cells aggravated diabetes development, whereas Ag-specific nNrp-1+CD4+ conv T cells failed to induce disease in a T cell transfer model of diabetes. Overall, our results indicate that Nrp-1 expression has opposite functions in recently activated CD4+ non-Tregs compared with CD4+ non-Tregs from naive mice.
Collapse
Affiliation(s)
- Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Romy Barthel
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jasmin Bahr
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jacqueline Thiel
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sina Luppus
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Hashemi SMA, Thijssen M, Hosseini SY, Tabarraei A, Pourkarim MR, Sarvari J. Human gene polymorphisms and their possible impact on the clinical outcome of SARS-CoV-2 infection. Arch Virol 2021; 166:2089-2108. [PMID: 33934196 PMCID: PMC8088757 DOI: 10.1007/s00705-021-05070-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 pandemic has become one of the most serious health concerns globally. Although multiple vaccines have recently been approved for the prevention of coronavirus disease 2019 (COVID-19), an effective treatment is still lacking. Our knowledge of the pathogenicity of this virus is still incomplete. Studies have revealed that viral factors such as the viral load, duration of exposure to the virus, and viral mutations are important variables in COVID-19 outcome. Furthermore, host factors, including age, health condition, co-morbidities, and genetic background, might also be involved in clinical manifestations and infection outcome. This review focuses on the importance of variations in the host genetic background and pathogenesis of SARS-CoV-2. We will discuss the significance of polymorphisms in the ACE-2, TMPRSS2, vitamin D receptor, vitamin D binding protein, CD147, glucose-regulated protein 78 kDa, dipeptidyl peptidase-4 (DPP4), neuropilin-1, heme oxygenase, apolipoprotein L1, vitamin K epoxide reductase complex 1 (VKORC1), and immune system genes for the clinical outcome of COVID-19.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Dong Y, Ma WM, Shi ZD, Zhang ZG, Zhou JH, Li Y, Zhang SQ, Pang K, Li BB, Zhang WD, Fan T, Zhu GY, Xue L, Li R, Liu Y, Hao L, Han CH. Role of NRP1 in Bladder Cancer Pathogenesis and Progression. Front Oncol 2021; 11:685980. [PMID: 34249735 PMCID: PMC8261128 DOI: 10.3389/fonc.2021.685980] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023] Open
Abstract
Bladder urothelial carcinoma (BC) is a fatal invasive malignancy and the most common malignancy of the urinary system. In the current study, we investigated the function and mechanisms of Neuropilin-1 (NRP1), the co-receptor for vascular endothelial growth factor, in BC pathogenesis and progression. The expression of NRP1 was evaluated using data extracted from GEO and HPA databases and examined in BC cell lines. The effect on proliferation, apoptosis, angiogenesis, migration, and invasion of BC cells were validated after NRP1 knockdown. After identifying differentially expressed genes (DEGs) induced by NRP1 silencing, GO/KEGG and IPA® bioinformatics analyses were performed and specific predicted pathways and targets were confirmed in vitro. Additionally, the co-expressed genes and ceRNA network were predicted using data downloaded from CCLE and TCGA databases, respectively. High expression of NRP1 was observed in BC tissues and cells. NRP1 knockdown promoted apoptosis and suppressed proliferation, angiogenesis, migration, and invasion of BC cells. Additionally, after NRP1 silencing the activity of MAPK signaling and molecular mechanisms of cancer pathways were predicted by KEGG and IPA® pathway analysis and validated using western blot in BC cells. NRP1 knockdown also affected various biological functions, including antiviral response, immune response, cell cycle, proliferation and migration of cells, and neovascularisation. Furthermore, the main upstream molecule of the DEGs induced by NRP1 knockdown may be NUPR1, and NRP1 was also the downstream target of NUPR1 and essential for regulation of FOXP3 expression to activate neovascularisation. DCBLD2 was positively regulated by NRP1, and PPAR signaling was significantly associated with low NRP1 expression. We also found that NRP1 was a predicted target of miR-204, miR-143, miR-145, and miR-195 in BC development. Our data provide evidence for the biological function and molecular aetiology of NRP1 in BC and for the first time demonstrated an association between NRP1 and NUPR1, FOXP3, and DCBLD2. Specifically, downregulation of NRP1 contributes to BC progression, which is associated with activation of MAPK signaling and molecular mechanisms involved in cancer pathways. Therefore, NRP1 may serve as a target for new therapeutic strategies to treat BC and other cancers.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wei-Ming Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhi-Guo Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jia-He Zhou
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Yang Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Shao-Qi Zhang
- Medical College of Soochow University, Suzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Bi-Bo Li
- Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Wen-da Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tao Fan
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Guang-Yuan Zhu
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Liang Xue
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Rui Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Ying Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China.,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
McGill AR, Kahlil R, Dutta R, Green R, Howell M, Mohapatra S, Mohapatra SS. SARS-CoV-2 Immuno-Pathogenesis and Potential for Diverse Vaccines and Therapies: Opportunities and Challenges. Infect Dis Rep 2021; 13:102-125. [PMID: 33557330 PMCID: PMC7931091 DOI: 10.3390/idr13010013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel coronavirus that emerged from Wuhan, China in late 2019 causing coronavirus disease-19 (COVID-19). SARS-CoV-2 infection begins by attaching to angiotensin-converting enzyme 2 receptor (ACE2) via the spike glycoprotein, followed by cleavage by TMPRSS2, revealing the viral fusion domain. Other presumptive receptors for SARS-CoV-2 attachment include CD147, neuropilin-1 (NRP1), and Myeloid C-lectin like receptor (CLR), each of which might play a role in the systemic viral spread. The pathology of SARS-CoV-2 infection ranges from asymptomatic to severe acute respiratory distress syndrome, often displaying a cytokine storm syndrome, which can be life-threatening. Despite progress made, the detailed mechanisms underlying SARS-CoV-2 interaction with the host immune system remain unclear and are an area of very active research. The process's key players include viral non-structural proteins and open reading frame products, which have been implicated in immune antagonism. The dysregulation of the innate immune system results in reduced adaptive immune responses characterized by rapidly diminishing antibody titers. Several treatment options for COVID-19 are emerging, with immunotherapies, peptide therapies, and nucleic acid vaccines showing promise. This review discusses the advances in the immunopathology of SARS-CoV-2, vaccines and therapies under investigation to counter the effects of this virus, as well as viral variants.
Collapse
Affiliation(s)
- Andrew R. McGill
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (A.R.M.); (R.K.); (R.D.); (R.G.); (M.H.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Roukiah Kahlil
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (A.R.M.); (R.K.); (R.D.); (R.G.); (M.H.)
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Rinku Dutta
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (A.R.M.); (R.K.); (R.D.); (R.G.); (M.H.)
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ryan Green
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (A.R.M.); (R.K.); (R.D.); (R.G.); (M.H.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mark Howell
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (A.R.M.); (R.K.); (R.D.); (R.G.); (M.H.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (A.R.M.); (R.K.); (R.D.); (R.G.); (M.H.)
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shyam S. Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (A.R.M.); (R.K.); (R.D.); (R.G.); (M.H.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Pharmacy Graduate Programs, Taneja College, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
| |
Collapse
|
12
|
Abstract
Neuropilin-1 (NRP-1), a member of a family of signaling proteins, was shown to serve as an entry factor and potentiate SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro. This cell surface receptor with its disseminated expression is important in angiogenesis, tumor progression, viral entry, axonal guidance, and immune function. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection including possible spread through the olfactory bulb and into the central nervous system and increased NRP-1 RNA expression in lungs of severe Coronavirus Disease 2019 (COVID-19). Up-regulation of NRP-1 protein in diabetic kidney cells hint at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction. It is prudent to further research NRP-1 and its possibility of serving as a therapeutic target in SARS-CoV-2 infections. We anticipate that widespread expression, abundance in the respiratory and olfactory epithelium, and the functionalities of NRP-1 factor into the multiple systemic effects of COVID-19 and challenges we face in management of disease and potential long-term sequelae.
Collapse
Affiliation(s)
- Bindu S. Mayi
- Department of Basic Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, Florida, United States of America
- * E-mail:
| | - Jillian A. Leibowitz
- Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, United States of America
| | - Arden T. Woods
- Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, United States of America
| | - Katherine A. Ammon
- USF Morsani College of Medicine, Tampa, Florida, United States of America
| | - Alphonse E. Liu
- Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, United States of America
| | - Aarti Raja
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| |
Collapse
|
13
|
|