1
|
dos Santos Silva C, Dias MVB. The multiple roles of the NlpC_P60 peptidase family in mycobacteria - an underexplored target for antimicrobial drug discovery. FEBS Lett 2025; 599:1203-1221. [PMID: 40028658 PMCID: PMC12067865 DOI: 10.1002/1873-3468.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
The main function of the cell wall is to maintain cellular integrity throughout the cell cycle by keeping the cell shape during growth and division. However, far from being a static structure, the cell wall undergoes constant recycling and even molecular modifications of its components. The major component of the bacterial cell wall is the peptidoglycan layer. The balance between peptidoglycan synthesis and degradation is crucial for cell viability and proliferation. Hence, factors involved in the control of peptidoglycan turnover are considered interesting targets for drug development. Members of the NlpC_P60 superfamily of peptidases have been described to participate in the physiology and pathogenesis of several bacterial lineages. However, the knowledge about NlpC_P60-like proteins from mycobacteria is still limited, despite the great progress in recent years. In this Review, we aimed to compile the information about mycobacterial NlpC_P60 proteins, pointing out their distribution across pathogenic and environmental Mycobacterium species, highlighting the knowledge gaps and describing their structural features, role in the physiology and mycobacterial pathogenesis.
Collapse
|
2
|
Zhou D, Zhang B, Qiu Y, Li X, Zhang J. First Report and Pathogenicity Analysis of Photobacterium damselae subsp. piscicida in Cage-Cultured Black Rockfish ( Sebastes schlegelii) Associated with Skin Ulcers. Microorganisms 2025; 13:441. [PMID: 40005806 PMCID: PMC11858037 DOI: 10.3390/microorganisms13020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Photobacterium damselae subsp. Piscicida (PDP), a marine bacterium, has been reported to infect a variety of economically important marine species worldwide. Understanding the occurrence and pathogenicity of PDP is crucial for effective disease control and ensuring the success of aquaculture operations. In late August 2023, an epidemic outbreak of P. damselae subsp. piscicida DQ-SS1, accompanied by significant mortality, was recorded in cage-cultured black rockfish (Sebastes schlegelii) located on Daqin Island for the first time. Genomic analysis revealed that DQ-SS1 possesses 2 chromosomes, with a total size of 4,510,445 bp and 3923 predicted CDSs. Pathogenic genes analysis identified 573 and 314 genes related to pathogen-host interactions and virulence, respectively. Additionally, DQ-SS1 displayed susceptibility to 15 antimicrobials, was resistant to 11 antimicrobials, and was intermediately sensitive to four antibiotics. Meanwhile, the in vitro assay revealed that the extracellular products (ECP) of DQ-SS1 were lethal to macrophages and exhibited hemolysin, lipase, and amylase activities. Moreover, DQ-SS1 also demonstrated the ability to survive in fish serum and resist complement-mediated killing. The in vivo assay showed that the infected fish exhibited severe histopathological alterations, such as the infiltration of inflammatory cells, cellular degeneration and necrosis, and loose cell aggregation. Lastly, the in vivo infection assays revealed the LD50 of DQ-SS1 was 1.7 × 103 CFU/g. This is the first study to elucidate the pathogenicity and genomic characteristics of multidrug-resistant PDP in cage-cultured S. schlegelii, which contributes to the advancement of diagnostic and preventative strategies for this disease in marine-cultured fishes and provides information for an in-depth study of the pathogenic mechanism of PDP.
Collapse
Affiliation(s)
- Dandan Zhou
- School of Ocean, Yantai University, Yantai 264005, China
- Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai 264005, China
- Yantai Engineering Research Center of Deep-Sea Aquaculture of Economic Fish, Yantai 264005, China
| | - Binzhe Zhang
- School of Ocean, Yantai University, Yantai 264005, China
- Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai 264005, China
- Yantai Engineering Research Center of Deep-Sea Aquaculture of Economic Fish, Yantai 264005, China
| | - Yulie Qiu
- School of Ocean, Yantai University, Yantai 264005, China
- Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai 264005, China
- Yantai Engineering Research Center of Deep-Sea Aquaculture of Economic Fish, Yantai 264005, China
| | - Xuepeng Li
- School of Ocean, Yantai University, Yantai 264005, China
- Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai 264005, China
- Yantai Engineering Research Center of Deep-Sea Aquaculture of Economic Fish, Yantai 264005, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai 264005, China
- Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai 264005, China
- Yantai Engineering Research Center of Deep-Sea Aquaculture of Economic Fish, Yantai 264005, China
| |
Collapse
|
3
|
Alvarez L, Hernandez SB, Torrens G, Weaver AI, Dörr T, Cava F. Control of bacterial cell wall autolysins by peptidoglycan crosslinking mode. Nat Commun 2024; 15:7937. [PMID: 39261529 PMCID: PMC11390936 DOI: 10.1038/s41467-024-52325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
To withstand their internal turgor pressure and external threats, most bacteria have a protective peptidoglycan (PG) cell wall. The growth of this PG polymer relies on autolysins, enzymes that create space within the structure. Despite extensive research, the regulatory mechanisms governing these PG-degrading enzymes remain poorly understood. Here, we unveil a novel and widespread control mechanism of lytic transglycosylases (LTs), a type of autolysin responsible for breaking down PG glycan chains. Specifically, we show that LD-crosslinks within the PG sacculus act as an inhibitor of LT activity. Moreover, we demonstrate that this regulation controls the release of immunogenic PG fragments and provides resistance against predatory LTs of both bacterial and viral origin. Our findings address a critical gap in understanding the physiological role of the LD-crosslinking mode in PG homeostasis, highlighting how bacteria can enhance their resilience against environmental threats, including phage attacks, through a single structural PG modification.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sara B Hernandez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anna I Weaver
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
- Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Domínguez-Maqueda M, Espinosa-Ruíz C, Esteban MÁ, Alarcón FJ, Tapia-Paniagua ST, Balebona MC, Moriñigo MÁ. An ex vivo Approach in European Seabass Leucocytes Supports the in vitro Regulation by Postbiotics of Aip56 Gene Expression of Photobacterium damselae subsp. piscicida. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10255-x. [PMID: 38652230 DOI: 10.1007/s12602-024-10255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Shewanella putrefaciens Pdp11 (SpPdp11) is a probiotic strain assayed in aquaculture; however, its postbiotic potential is unknown. Postbiotics are bacterial metabolites, including extracellular products (ECPs) that improve host physiology and immunity. Their production and composition can be affected by different factors such as the growing conditions of the probiotics. Photobacterium damselae subsp. piscicida strain Lg 41/01 (Phdp) is one of the most important pathogens in marine aquaculture. The major virulent factor of this bacterium is the exotoxin aip56, responsible for inducing apoptosis of fish leucocytes. Viable SpPdp11 cells have been reported to increase resistance to challenges with Phdp. This work aimed to evaluate the effect of two ECPs, T2348-ECP and FM1548-ECP, obtained from SpPdp11 grown under different culture conditions that previously demonstrated to exert different degradative and non-cytotoxic activities, as well as the effect on pathogens biofilm formation. These SpPdp11-ECPs were then analyzed by their effect on the viability, phagocytosis, respiratory burst and apoptogenic activity against European sea bass leucocytes infected or not with Phdp supernatant. Both ECPs, T2348-ECP and FM1548-ECP, were not cytotoxic against leucocytes and significantly reduced their apoptosis. Phagocytosis and respiratory burst of leucocytes were significantly reduced by incubation with Phdp supernatant, and not influenced by incubation with T2348-ECP or FM1548-ECP. However, both activities were significantly increased after leucocyte incubation with combined T2348-ECP and FM1548-ECP with Phdp supernatant, compared to those incubated only with Phdp supernatant. Finally, both T2348-ECP and FM1548-ECP significantly reduced the relative in vitro expression of the Phdp aip56 encoding gene.
Collapse
Affiliation(s)
- Marta Domínguez-Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Cristóbal Espinosa-Ruíz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, Almería, Spain
- Lifebioencapsulation SL, 0413-El Alquián, Almería, Spain
| | - Silvana T Tapia-Paniagua
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain.
| | - María Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
6
|
Barnett MJ, Pinheiro J, Keown JR, Biboy J, Gray J, Lucinescu IW, Vollmer W, Hirt RP, Simoes-Barbosa A, Goldstone DC. NlpC/P60 peptidoglycan hydrolases of Trichomonas vaginalis have complementary activities that empower the protozoan to control host-protective lactobacilli. PLoS Pathog 2023; 19:e1011563. [PMID: 37585473 PMCID: PMC10461829 DOI: 10.1371/journal.ppat.1011563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/28/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Trichomonas vaginalis is a human protozoan parasite that causes trichomoniasis, a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a shift to a dysbiotic vaginal microbiome that is depleted of lactobacilli. Studies on co-cultures have shown that vaginal bacteria in eubiosis (e.g. Lactobacillus gasseri) have antagonistic effects on T. vaginalis pathogenesis, suggesting that the parasite might benefit from shaping the microbiome to dysbiosis (e.g. Gardnerella vaginalis among other anaerobes). We have recently shown that T. vaginalis has acquired NlpC/P60 genes from bacteria, expanding them to a repertoire of nine TvNlpC genes in two distinct clans, and that TvNlpCs of clan A are active against bacterial peptidoglycan. Here, we expand this characterization to TvNlpCs of clan B. In this study, we show that the clan organisation of NlpC/P60 genes is a feature of other species of Trichomonas, and that Histomonas meleagridis has sequences related to one clan. We characterized the 3D structure of TvNlpC_B3 alone and with the inhibitor E64 bound, probing the active site of these enzymes for the first time. Lastly, we demonstrated that TvNlpC_B3 and TvNlpC_B5 have complementary activities with the previously described TvNlpCs of clan A and that exogenous expression of these enzymes empower this mucosal parasite to take over populations of vaginal lactobacilli in mixed cultures. TvNlpC_B3 helps control populations of L. gasseri, but not of G. vaginalis, which action is partially inhibited by E64. This study is one of the first to show how enzymes produced by a mucosal protozoan parasite may contribute to a shift on the status of a microbiome, helping explain the link between trichomoniasis and vaginal dysbiosis. Further understanding of this process might have significant implications for treatments in the future.
Collapse
Affiliation(s)
- Michael J. Barnett
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jully Pinheiro
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jeremy R. Keown
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joe Gray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - David C. Goldstone
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
7
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Characterization and Vaccine Potential of Outer Membrane Vesicles from Photobacterium damselae subsp. piscicida. Int J Mol Sci 2023; 24:ijms24065138. [PMID: 36982212 PMCID: PMC10049053 DOI: 10.3390/ijms24065138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative fish pathogen with worldwide distribution and broad host specificity that causes heavy economic losses in aquaculture. Although Phdp was first identified more than 50 years ago, its pathogenicity mechanisms are not completely understood. In this work, we report that Phdp secretes large amounts of outer membrane vesicles (OMVs) when cultured in vitro and during in vivo infection. These OMVs were morphologically characterized and the most abundant vesicle-associated proteins were identified. We also demonstrate that Phdp OMVs protect Phdp cells from the bactericidal activity of fish antimicrobial peptides, suggesting that secretion of OMVs is part of the strategy used by Phdp to evade host defense mechanisms. Importantly, the vaccination of sea bass (Dicentrarchus labrax) with adjuvant-free crude OMVs induced the production of anti-Phdp antibodies and resulted in partial protection against Phdp infection. These findings reveal new aspects of Phdp biology and may provide a basis for developing new vaccines against this pathogen.
Collapse
|