1
|
Ravishankar S, Perez V, Davidson R, Roca-Rada X, Lan D, Souilmi Y, Llamas B. Filtering out the noise: metagenomic classifiers optimize ancient DNA mapping. Brief Bioinform 2024; 26:bbae646. [PMID: 39674265 DOI: 10.1093/bib/bbae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/03/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Contamination with exogenous DNA presents a significant challenge in ancient DNA (aDNA) studies of single organisms. Failure to address contamination from microbes, reagents, and present-day sources can impact the interpretation of results. Although field and laboratory protocols exist to limit contamination, there is still a need to accurately distinguish between endogenous and exogenous data computationally. Here, we propose a workflow to reduce exogenous contamination based on a metagenomic classifier. Unlike previous methods that relied exclusively on DNA sequencing reads mapping specificity to a single reference genome to remove contaminating reads, our approach uses Kraken2-based filtering before mapping to the reference genome. Using both simulated and empirical shotgun aDNA data, we show that this workflow presents a simple and efficient method that can be used in a wide range of computational environments-including personal machines. We propose strategies to build specific databases used to profile sequencing data that take into consideration available computational resources and prior knowledge about the target taxa and likely contaminants. Our workflow significantly reduces the overall computational resources required during the mapping process and reduces the total runtime by up to ~94%. The most significant impacts are observed in low endogenous samples. Importantly, contaminants that would map to the reference are filtered out using our strategy, reducing false positive alignments. We also show that our method results in a negligible loss of endogenous data with no measurable impact on downstream population genetics analyses.
Collapse
Affiliation(s)
- Shyamsundar Ravishankar
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Vilma Perez
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
| | - Roberta Davidson
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Xavier Roca-Rada
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Faculty of Arts and Humanities, University of Coimbra, Coimbra, Portugal
| | - Divon Lan
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Genozip Limited, Hong Kong
| | - Yassine Souilmi
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia
| |
Collapse
|
2
|
Zulfiqar M, Singh V, Steinbeck C, Sorokina M. Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities. Crit Rev Microbiol 2024; 50:1053-1092. [PMID: 38270170 DOI: 10.1080/1040841x.2024.2306465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Microbial communities thrive through interactions and communication, which are challenging to study as most microorganisms are not cultivable. To address this challenge, researchers focus on the extracellular space where communication events occur. Exometabolomics and interactome analysis provide insights into the molecules involved in communication and the dynamics of their interactions. Advances in sequencing technologies and computational methods enable the reconstruction of taxonomic and functional profiles of microbial communities using high-throughput multi-omics data. Network-based approaches, including community flux balance analysis, aim to model molecular interactions within and between communities. Despite these advances, challenges remain in computer-assisted biosynthetic capacities elucidation, requiring continued innovation and collaboration among diverse scientists. This review provides insights into the current state and future directions of computer-assisted biosynthetic capacities elucidation in studying microbial communities.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Vinay Singh
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
- Data Science and Artificial Intelligence, Research and Development, Pharmaceuticals, Bayer, Berlin, Germany
| |
Collapse
|
3
|
Eisenhofer R, Wright S, Weyrich L. Benchmarking a targeted 16S ribosomal RNA gene enrichment approach to reconstruct ancient microbial communities. PeerJ 2024; 12:e16770. [PMID: 38440408 PMCID: PMC10911074 DOI: 10.7717/peerj.16770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/16/2023] [Indexed: 03/06/2024] Open
Abstract
The taxonomic characterization of ancient microbiomes is a key step in the rapidly growing field of paleomicrobiology. While PCR amplification of the 16S ribosomal RNA (rRNA) gene is a widely used technique in modern microbiota studies, this method has systematic biases when applied to ancient microbial DNA. Shotgun metagenomic sequencing has proven to be the most effective method in reconstructing taxonomic profiles of ancient dental calculus samples. Nevertheless, shotgun sequencing approaches come with inherent limitations that could be addressed through hybridization enrichment capture. When employed together, shotgun sequencing and hybridization capture have the potential to enhance the characterization of ancient microbial communities. Here, we develop, test, and apply a hybridization enrichment capture technique to selectively target 16S rRNA gene fragments from the libraries of ancient dental calculus samples generated with shotgun techniques. We simulated data sets generated from hybridization enrichment capture, indicating that taxonomic identification of fragmented and damaged 16S rRNA gene sequences was feasible. Applying this enrichment approach to 15 previously published ancient calculus samples, we observed a 334-fold increase of ancient 16S rRNA gene fragments in the enriched samples when compared to unenriched libraries. Our results suggest that 16S hybridization capture is less prone to the effects of background contamination than 16S rRNA amplification, yielding a higher percentage of on-target recovery. While our enrichment technique detected low abundant and rare taxa within a given sample, these assignments may not achieve the same level of specificity as those achieved by unenriched methods.
Collapse
Affiliation(s)
| | - Sterling Wright
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Laura Weyrich
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Charlier P, Augias A, Weil R, Bouchet F, Poupon J, Popescu MS, Decloquement P, Azza S, Angelakis E, Richardin P, Colson P, Dubourg G, Million M, Raoult D. Scurvy complicated with Capnocytophaga sputigena sepsis as a possible cause of death of king Saint-Louis of France (1270 AD). Microb Pathog 2023; 185:106399. [PMID: 37884212 DOI: 10.1016/j.micpath.2023.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The cause of death of Saint-Louis is not known, but recent findings indicated that he presented scurvy and inflammatory jaw disease, which has been associated with infection by oral commensals. Here, we have the exceptional opportunity to analyze the relics of the viscera of King Saint-Louis. A 4.3 g sample from the viscera relics of King Saint-Louis conserved in Versailles' cathedral was subjected to radiocarbon dating, electronic and optic microscopy, and elementary, palynological, molecular, proteomics and microbiological analyses including specific PCR and v3v4 16 S rRNA gene amplification prior to large-scale sequencing using an Illumina MiSeq instrument. The measured radiocarbon age was Cal 1290 CE-1400, which was compatible with that of the viscera of St Louis viscera, considering the addition of lime, incense and vegetables within the human organs. Elemental and palynological analyses confirmed a medieval embalming process. Proteomics analysis identified mainly human muscle and blood proteins. Specific PCR for plague, amoebiasis, shigellosis and typhoid fever was negative. C. sputigena was identified as the main pathogenic species representing 10.8 % of all microbial sequences. In contrast, C. sputigena was found in only 0.001 % of samples sequenced in our center, and the 23 positive human samples showed a dramatically lower abundance (0.02-2.6 %). In the literature, human infections with C. sputigena included odontitis, dental abscess, sinusitis, thoracic infections and bacteremia, particularly in immunocompromised patients with oral and dental diseases consistent with recent analysis of King Saint-Louis' jaw. C. sputigena, a commensal of the mouth that is potentially pathogenic and responsible for fatal bacteremia, may have been the cause of the king's death.
Collapse
Affiliation(s)
- Philippe Charlier
- Laboratory Anthropology, Archaeology, Biology (LAAB), UFR of Health Sciences (UVSQ), Paris-Saclay University, 2 Avenue de La Source de La Bièvre, 78180, Montigny-Le-Bretonneux, France; Museum of Quai Branly - Jacques Chirac, 222 Rue de L'Université, 75007, Paris, France; Fondation Anthropologie, Archéologie, Biologie (FAAB) - Institut de France, Palais de L'Institut, 23 Quai de Conti, 75006, Paris, France.
| | - Anaïs Augias
- Laboratory Anthropology, Archaeology, Biology (LAAB), UFR of Health Sciences (UVSQ), Paris-Saclay University, 2 Avenue de La Source de La Bièvre, 78180, Montigny-Le-Bretonneux, France
| | - Raphaël Weil
- Laboratory Anthropology, Archaeology, Biology (LAAB), UFR of Health Sciences (UVSQ), Paris-Saclay University, 2 Avenue de La Source de La Bièvre, 78180, Montigny-Le-Bretonneux, France; Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, Cedex, 91405, France
| | - Françoise Bouchet
- Académie Nationale de Pharmacie, Avenue de L'Observatoire, 75006, Paris, France
| | - Joël Poupon
- Laboratory Anthropology, Archaeology, Biology (LAAB), UFR of Health Sciences (UVSQ), Paris-Saclay University, 2 Avenue de La Source de La Bièvre, 78180, Montigny-Le-Bretonneux, France; Laboratoire de Toxicologie Biologique, CHU Lariboisière (AP-HP), 2 Rue Ambroise Paré, 75010, Paris, France
| | | | - Philippe Decloquement
- Aix Marseille University, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Saïd Azza
- Aix Marseille University, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Emmanouil Angelakis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Pascale Richardin
- Centre de Recherche et de Restauration des Musées de France (C2RMF), Palais Du Louvre, Porte des Lions, 14 Quai François Mitterrand, 75001, Paris, France; UMR 7055, Préhistoire et Technologie (Pretech), Université Paris Nanterre / CNRS, 21 Allée de L'Université, 92023, Nanterre Cedex, France
| | - Philippe Colson
- Aix Marseille University, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Gregory Dubourg
- Aix Marseille University, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Matthieu Million
- Aix Marseille University, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille University, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
5
|
Pusadkar V, Azad RK. Benchmarking Metagenomic Classifiers on Simulated Ancient and Modern Metagenomic Data. Microorganisms 2023; 11:2478. [PMID: 37894136 PMCID: PMC10609333 DOI: 10.3390/microorganisms11102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Taxonomic profiling of ancient metagenomic samples is challenging due to the accumulation of specific damage patterns on DNA over time. Although a number of methods for metagenome profiling have been developed, most of them have been assessed on modern metagenomes or simulated metagenomes mimicking modern metagenomes. Further, a comparative assessment of metagenome profilers on simulated metagenomes representing a spectrum of degradation depth, from the extremity of ancient (most degraded) to current or modern (not degraded) metagenomes, has not yet been performed. To understand the strengths and weaknesses of different metagenome profilers, we performed their comprehensive evaluation on simulated metagenomes representing human dental calculus microbiome, with the level of DNA damage successively raised to mimic modern to ancient metagenomes. All classes of profilers, namely, DNA-to-DNA, DNA-to-protein, and DNA-to-marker comparison-based profilers were evaluated on metagenomes with varying levels of damage simulating deamination, fragmentation, and contamination. Our results revealed that, compared to deamination and fragmentation, human and environmental contamination of ancient DNA (with modern DNA) has the most pronounced effect on the performance of each profiler. Further, the DNA-to-DNA (e.g., Kraken2, Bracken) and DNA-to-marker (e.g., MetaPhlAn4) based profiling approaches showed complementary strengths, which can be leveraged to elevate the state-of-the-art of ancient metagenome profiling.
Collapse
Affiliation(s)
- Vaidehi Pusadkar
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
- Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
6
|
Gancz AS, Weyrich LS. Studying ancient human oral microbiomes could yield insights into the evolutionary history of noncommunicable diseases. F1000Res 2023; 12:109. [PMID: 37065506 PMCID: PMC10090864 DOI: 10.12688/f1000research.129036.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/31/2023] Open
Abstract
Noncommunicable diseases (NCDs) have played a critical role in shaping human evolution and societies. Despite the exceptional impact of NCDs economically and socially, little is known about the prevalence or impact of these diseases in the past as most do not leave distinguishing features on the human skeleton and are not directly associated with unique pathogens. The inability to identify NCDs in antiquity precludes researchers from investigating how changes in diet, lifestyle, and environments modulate NCD risks in specific populations and from linking evolutionary processes to modern health patterns and disparities. In this review, we highlight how recent advances in ancient DNA (aDNA) sequencing and analytical methodologies may now make it possible to reconstruct NCD-related oral microbiome traits in past populations, thereby providing the first proxies for ancient NCD risk. First, we review the direct and indirect associations between modern oral microbiomes and NCDs, specifically cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer's disease. We then discuss how oral microbiome features associated with NCDs in modern populations may be used to identify previously unstudied sources of morbidity and mortality differences in ancient groups. Finally, we conclude with an outline of the challenges and limitations of employing this approach, as well as how they might be circumvented. While significant experimental work is needed to verify that ancient oral microbiome markers are indeed associated with quantifiable health and survivorship outcomes, this new approach is a promising path forward for evolutionary health research.
Collapse
Affiliation(s)
- Abigail S Gancz
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
| | - Laura S Weyrich
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| |
Collapse
|
7
|
Gancz AS, Weyrich LS. Studying ancient human oral microbiomes could yield insights into the evolutionary history of noncommunicable diseases. F1000Res 2023; 12:109. [PMID: 37065506 PMCID: PMC10090864 DOI: 10.12688/f1000research.129036.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
Noncommunicable diseases (NCDs) have played a critical role in shaping human evolution and societies. Despite the exceptional impact of NCDs economically and socially, little is known about the prevalence or impact of these diseases in the past as most do not leave distinguishing features on the human skeleton and are not directly associated with unique pathogens. The inability to identify NCDs in antiquity precludes researchers from investigating how changes in diet, lifestyle, and environments modulate NCD risks in specific populations and from linking evolutionary processes to modern health patterns and disparities. In this review, we highlight how recent advances in ancient DNA (aDNA) sequencing and analytical methodologies may now make it possible to reconstruct NCD-related oral microbiome traits in past populations, thereby providing the first proxies for ancient NCD risk. First, we review the direct and indirect associations between modern oral microbiomes and NCDs, specifically cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer's disease. We then discuss how oral microbiome features associated with NCDs in modern populations may be used to identify previously unstudied sources of morbidity and mortality differences in ancient groups. Finally, we conclude with an outline of the challenges and limitations of employing this approach, as well as how they might be circumvented. While significant experimental work is needed to verify that ancient oral microbiome markers are indeed associated with quantifiable health and survivorship outcomes, this new approach is a promising path forward for evolutionary health research.
Collapse
Affiliation(s)
- Abigail S Gancz
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
| | - Laura S Weyrich
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| |
Collapse
|
8
|
Garrido-Sanz L, Àngel Senar M, Piñol J. Drastic reduction of false positive species in samples of insects by intersecting the default output of two popular metagenomic classifiers. PLoS One 2022; 17:e0275790. [PMID: 36282811 PMCID: PMC9595558 DOI: 10.1371/journal.pone.0275790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
The use of high-throughput sequencing to recover short DNA reads of many species has been widely applied on biodiversity studies, either as amplicon metabarcoding or shotgun metagenomics. These reads are assigned to taxa using classifiers. However, for different reasons, the results often contain many false positives. Here we focus on the reduction of false positive species attributable to the classifiers. We benchmarked two popular classifiers, BLASTn followed by MEGAN6 (BM) and Kraken2 (K2), to analyse shotgun sequenced artificial single-species samples of insects. To reduce the number of misclassified reads, we combined the output of the two classifiers in two different ways: (1) by keeping only the reads that were attributed to the same species by both classifiers (intersection approach); and (2) by keeping the reads assigned to some species by any classifier (union approach). In addition, we applied an analytical detection limit to further reduce the number of false positives species. As expected, both metagenomic classifiers used with default parameters generated an unacceptably high number of misidentified species (tens with BM, hundreds with K2). The false positive species were not necessarily phylogenetically close, as some of them belonged to different orders of insects. The union approach failed to reduce the number of false positives, but the intersection approach got rid of most of them. The addition of an analytic detection limit of 0.001 further reduced the number to ca. 0.5 false positive species per sample. The misidentification of species by most classifiers hampers the confidence of the DNA-based methods for assessing the biodiversity of biological samples. Our approach to alleviate the problem is straightforward and significantly reduced the number of reported false positive species.
Collapse
Affiliation(s)
- Lidia Garrido-Sanz
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| | | | - Josep Piñol
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CREAF, Cerdanyola del Vallès, Spain
| |
Collapse
|
9
|
HAYSTAC: A Bayesian framework for robust and rapid species identification in high-throughput sequencing data. PLoS Comput Biol 2022; 18:e1010493. [PMID: 36178955 PMCID: PMC9555677 DOI: 10.1371/journal.pcbi.1010493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/12/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Identification of specific species in metagenomic samples is critical for several key applications, yet many tools available require large computational power and are often prone to false positive identifications. Here we describe High-AccuracY and Scalable Taxonomic Assignment of MetagenomiC data (HAYSTAC), which can estimate the probability that a specific taxon is present in a metagenome. HAYSTAC provides a user-friendly tool to construct databases, based on publicly available genomes, that are used for competitive read mapping. It then uses a novel Bayesian framework to infer the abundance and statistical support for each species identification and provide per-read species classification. Unlike other methods, HAYSTAC is specifically designed to efficiently handle both ancient and modern DNA data, as well as incomplete reference databases, making it possible to run highly accurate hypothesis-driven analyses (i.e., assessing the presence of a specific species) on variably sized reference databases while dramatically improving processing speeds. We tested the performance and accuracy of HAYSTAC using simulated Illumina libraries, both with and without ancient DNA damage, and compared the results to other currently available methods (i.e., Kraken2/Bracken, KrakenUniq, MALT/HOPS, and Sigma). HAYSTAC identified fewer false positives than both Kraken2/Bracken, KrakenUniq and MALT in all simulations, and fewer than Sigma in simulations of ancient data. It uses less memory than Kraken2/Bracken, KrakenUniq as well as MALT both during database construction and sample analysis. Lastly, we used HAYSTAC to search for specific pathogens in two published ancient metagenomic datasets, demonstrating how it can be applied to empirical datasets. HAYSTAC is available from https://github.com/antonisdim/HAYSTAC. The emerging field of paleo-metagenomics (i.e., metagenomics from ancient DNA) holds great promise for novel discoveries in fields as diverse as pathogen evolution and paleoenvironmental reconstruction. However, there is presently a lack of computational methods for species identification from microbial communities in both degraded and nondegraded DNA material. Here, we present “HAYSTAC”, a user-friendly software package that implements a novel probabilistic model for species identification in metagenomic data obtained from both degraded and non-degraded DNA material. Through extensive benchmarking, we show that HAYSTAC can be used for accurately profiling the community composition, as well as for direct hypothesis testing for the presence of extremely low-abundance taxa, in complex metagenomic samples. After analysing simulated and publicly available datasets, HAYSTAC consistently produced the lowest number of false positive identifications during taxonomic profiling, produced robust results when databases of restricted size were used, and showed increased sensitivity for pathogen detection compared to other specialist methods. The newly proposed probabilistic model and software employed by HAYSTAC can have a substantial impact on the robust and rapid pathogen discovery in degraded/shallow sequenced metagenomic samples while optimising the use of computational resources.
Collapse
|
10
|
Velsko IM, Semerau L, Inskip SA, García-Collado MI, Ziesemer K, Ruber MS, Benítez de Lugo Enrich L, Molero García JM, Valle DG, Peña Ruiz AC, Salazar-García DC, Hoogland MLP, Warinner C. Ancient dental calculus preserves signatures of biofilm succession and interindividual variation independent of dental pathology. PNAS NEXUS 2022; 1:pgac148. [PMID: 36714834 PMCID: PMC9802386 DOI: 10.1093/pnasnexus/pgac148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
Dental calculus preserves oral microbes, enabling comparative studies of the oral microbiome and health through time. However, small sample sizes and limited dental health metadata have hindered health-focused investigations to date. Here, we investigate the relationship between tobacco pipe smoking and dental calculus microbiomes. Dental calculus from 75 individuals from the 19th century Middenbeemster skeletal collection (Netherlands) were analyzed by metagenomics. Demographic and dental health parameters were systematically recorded, including the presence/number of pipe notches. Comparative data sets from European populations before and after the introduction of tobacco were also analyzed. Calculus species profiles were compared with oral pathology to examine associations between microbiome community, smoking behavior, and oral health status. The Middenbeemster individuals exhibited relatively poor oral health, with a high prevalence of periodontal disease, caries, heavy calculus deposits, and antemortem tooth loss. No associations between pipe notches and dental pathologies, or microbial species composition, were found. Calculus samples before and after the introduction of tobacco showed highly similar species profiles. Observed interindividual microbiome differences were consistent with previously described variation in human populations from the Upper Paleolithic to the present. Dental calculus may not preserve microbial indicators of health and disease status as distinctly as dental plaque.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Lena Semerau
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Maite I García-Collado
- GIPYPAC, Department of Geography, Prehistory and Archaeology, University of the Basque Country, Leioa 48940, Spain
- BioArCh, Department of Archaeology, University of York, York YO10 5NG, UK
| | - Kirsten Ziesemer
- University Library, Vrije Universiteit, Einsteinweg 2, Amsterdam 1081 HV, The Netherlands
| | - Maria Serrano Ruber
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Luis Benítez de Lugo Enrich
- Departmento de Prehistoria, Historia Antigua y Arqueología, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | - David Gallego Valle
- Facultad de Letras, Universidad de Castilla-La Mancha, Ciudad Real 13004, Spain
| | | | - Domingo C Salazar-García
- Departament de Prehistòria, Historia i Arqueología, Universitat de València, València 46010, Spain
- Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Menno L P Hoogland
- Faculty of Archaeology, Leiden University, Einsteinweg, Leiden 2333 CC, The Netherlands
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Crowdsourced benchmarking of taxonomic metagenome profilers: lessons learned from the sbv IMPROVER Microbiomics challenge. BMC Genomics 2022; 23:624. [PMID: 36042406 PMCID: PMC9429340 DOI: 10.1186/s12864-022-08803-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Selection of optimal computational strategies for analyzing metagenomics data is a decisive step in determining the microbial composition of a sample, and this procedure is complex because of the numerous tools currently available. The aim of this research was to summarize the results of crowdsourced sbv IMPROVER Microbiomics Challenge designed to evaluate the performance of off-the-shelf metagenomics software as well as to investigate the robustness of these results by the extended post-challenge analysis. In total 21 off-the-shelf taxonomic metagenome profiling pipelines were benchmarked for their capacity to identify the microbiome composition at various taxon levels across 104 shotgun metagenomics datasets of bacterial genomes (representative of various microbiome samples) from public databases. Performance was determined by comparing predicted taxonomy profiles with the gold standard. Results Most taxonomic profilers performed homogeneously well at the phylum level but generated intermediate and heterogeneous scores at the genus and species levels, respectively. kmer-based pipelines using Kraken with and without Bracken or using CLARK-S performed best overall, but they exhibited lower precision than the two marker-gene-based methods MetaPhlAn and mOTU. Filtering out the 1% least abundance species—which were not reliably predicted—helped increase the performance of most profilers by increasing precision but at the cost of recall. However, the use of adaptive filtering thresholds determined from the sample’s Shannon index increased the performance of most kmer-based profilers while mitigating the tradeoff between precision and recall. Conclusions kmer-based metagenomic pipelines using Kraken/Bracken or CLARK-S performed most robustly across a large variety of microbiome datasets. Removing non-reliably predicted low-abundance species by using diversity-dependent adaptive filtering thresholds further enhanced the performance of these tools. This work demonstrates the applicability of computational pipelines for accurately determining taxonomic profiles in clinical and environmental contexts and exemplifies the power of crowdsourcing for unbiased evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08803-2.
Collapse
|
12
|
Pérez V, Liu Y, Hengst MB, Weyrich LS. A Case Study for the Recovery of Authentic Microbial Ancient DNA from Soil Samples. Microorganisms 2022; 10:microorganisms10081623. [PMID: 36014039 PMCID: PMC9414430 DOI: 10.3390/microorganisms10081623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
High Throughput DNA Sequencing (HTS) revolutionized the field of paleomicrobiology, leading to an explosive growth of microbial ancient DNA (aDNA) studies, especially from environmental samples. However, aDNA studies that examine environmental microbes routinely fail to authenticate aDNA, examine laboratory and environmental contamination, and control for biases introduced during sample processing. Here, we surveyed the available literature for environmental aDNA projects—from sample collection to data analysis—and assessed previous methodologies and approaches used in the published microbial aDNA studies. We then integrated these concepts into a case study, using shotgun metagenomics to examine methodological, technical, and analytical biases during an environmental aDNA study of soil microbes. Specifically, we compared the impact of five DNA extraction methods and eight bioinformatic pipelines on the recovery of microbial aDNA information in soil cores from extreme environments. Our results show that silica-based methods optimized for aDNA research recovered significantly more damaged and shorter reads (<100 bp) than a commercial kit or a phenol−chloroform method. Additionally, we described a stringent pipeline for data preprocessing, efficiently decreasing the representation of low-complexity and duplicated reads in our datasets and downstream analyses, reducing analytical biases in taxonomic classification.
Collapse
Affiliation(s)
- Vilma Pérez
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence:
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Martha B. Hengst
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1270300, Chile
| | - Laura S. Weyrich
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Anthropology and Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
13
|
Arizmendi Cárdenas YO, Neuenschwander S, Malaspinas AS. Benchmarking metagenomics classifiers on ancient viral DNA: a simulation study. PeerJ 2022; 10:e12784. [PMID: 35356467 PMCID: PMC8958974 DOI: 10.7717/peerj.12784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Owing to technological advances in ancient DNA, it is now possible to sequence viruses from the past to track down their origin and evolution. However, ancient DNA data is considerably more degraded and contaminated than modern data making the identification of ancient viral genomes particularly challenging. Several methods to characterise the modern microbiome (and, within this, the virome) have been developed; in particular, tools that assign sequenced reads to specific taxa in order to characterise the organisms present in a sample of interest. While these existing tools are routinely used in modern data, their performance when applied to ancient microbiome data to screen for ancient viruses remains unknown. In this work, we conducted an extensive simulation study using public viral sequences to establish which tool is the most suitable to screen ancient samples for human DNA viruses. We compared the performance of four widely used classifiers, namely Centrifuge, Kraken2, DIAMOND and MetaPhlAn2, in correctly assigning sequencing reads to the corresponding viruses. To do so, we simulated reads by adding noise typical of ancient DNA to a set of publicly available human DNA viral sequences and to the human genome. We fragmented the DNA into different lengths, added sequencing error and C to T and G to A deamination substitutions at the read termini. Then we measured the resulting sensitivity and precision for all classifiers. Across most simulations, more than 228 out of the 233 simulated viruses were recovered by Centrifuge, Kraken2 and DIAMOND, in contrast to MetaPhlAn2 which recovered only around one third. Overall, Centrifuge and Kraken2 had the best performance with the highest values of sensitivity and precision. We found that deamination damage had little impact on the performance of the classifiers, less than the sequencing error and the length of the reads. Since Centrifuge can handle short reads (in contrast to DIAMOND and Kraken2 with default settings) and since it achieve the highest sensitivity and precision at the species level across all the simulations performed, it is our recommended tool. Regardless of the tool used, our simulations indicate that, for ancient human studies, users should use strict filters to remove all reads of potential human origin. Finally, we recommend that users verify which species are present in the database used, as it might happen that default databases lack sequences for viruses of interest.
Collapse
Affiliation(s)
- Yami Ommar Arizmendi Cárdenas
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Samuel Neuenschwander
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
14
|
Malyarchuk AB, Andreeva TV, Kuznetsova IL, Kunizheva SS, Protasova MS, Uralsky LI, Tyazhelova TV, Gusev FE, Manakhov AD, Rogaev EI. Genomics of Ancient Pathogens: First Advances and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:242-258. [PMID: 35526849 PMCID: PMC8916790 DOI: 10.1134/s0006297922030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Paleogenomics is one of the urgent and promising areas of interdisciplinary research in the today's world science. New genomic methods of ancient DNA (aDNA) analysis, such as next generation sequencing (NGS) technologies, make it possible not only to obtain detailed genetic information about historical and prehistoric human populations, but also to study individual microbial and viral pathogens and microbiomes from different ancient and historical objects. Studies of aDNA of pathogens by reconstructing their genomes have so far yielded complete sequences of the ancient pathogens that played significant role in the history of the world: Yersinia pestis (plague), Variola virus (smallpox), Vibrio cholerae (cholera), HBV (hepatitis B virus), as well as the equally important endemic human infectious agents: Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy), and Treponema pallidum (syphilis). Genomic data from these pathogens complemented the information previously obtained by paleopathologists and allowed not only to identify pathogens from the past pandemics, but also to recognize the pathogen lineages that are now extinct, to refine chronology of the pathogen appearance in human populations, and to reconstruct evolutionary history of the pathogens that are still relevant to public health today. In this review, we describe state-of-the-art genomic research of the origins and evolution of many ancient pathogens and viruses and examine mechanisms of the emergence and spread of the ancient infections in the mankind history.
Collapse
Affiliation(s)
- Alexandra B Malyarchuk
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Tatiana V Andreeva
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Irina L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Svetlana S Kunizheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Maria S Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Lev I Uralsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Tatiana V Tyazhelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Fedor E Gusev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Andrey D Manakhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Evgeny I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
15
|
Abstract
Like modern metagenomics, ancient metagenomics is a highly data-rich discipline, with the added challenge that the DNA of interest is degraded and, depending on the sample type, in low abundance. This requires the application of specialized measures during molecular experiments and computational analyses. Furthermore, researchers often work with finite sample sizes, which impedes optimal experimental design and control of confounding factors, and with ethically sensitive samples necessitating the consideration of additional guidelines. In September 2020, early career researchers in the field of ancient metagenomics met (Standards, Precautions & Advances in Ancient Metagenomics 2 [SPAAM2] community meeting) to discuss the state of the field and how to address current challenges. Here, in an effort to bridge the gap between ancient and modern metagenomics, we highlight and reflect upon some common misconceptions, provide a brief overview of the challenges in our field, and point toward useful resources for potential reviewers and newcomers to the field.
Collapse
|
16
|
Brealey JC, Leitão HG, Hofstede T, Kalthoff DC, Guschanski K. The oral microbiota of wild bears in Sweden reflects the history of antibiotic use by humans. Curr Biol 2021; 31:4650-4658.e6. [PMID: 34437844 DOI: 10.1016/j.cub.2021.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
Following the advent of industrial-scale antibiotic production in the 1940s,1 antimicrobial resistance (AMR) has been on the rise and now poses a major global health threat in terms of mortality, morbidity, and economic burden.2,3 Because AMR can be exchanged between humans, livestock, and wildlife, wild animals can be used as indicators of human-associated AMR contamination of the environment.4 However, AMR is a normal function of natural environments and is present in host-associated microbiomes, which makes it challenging to distinguish between anthropogenic and natural sources.4,5 One way to overcome this difficulty is to use historical samples that span the period from before the mass production of antibiotics to today. We used shotgun metagenomic sequencing of dental calculus, the calcified form of the oral microbial biofilm, to determine the abundance and repertoire of AMR genes in the oral microbiome of Swedish brown bears collected over the last 180 years. Our temporal metagenomics approach allowed us to establish a baseline of natural AMR in the pre-antibiotics era and to quantify a significant increase in total AMR load and diversity of AMR genes that is consistent with patterns of national human antibiotic use. We also demonstrated a significant decrease in total AMR load in bears in the last two decades, which coincides with Swedish strategies to mitigate AMR. Our study suggests that public health policies can be effective in limiting human-associated AMR contamination of the environment and wildlife.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden.
| | - Henrique G Leitão
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Thijs Hofstede
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, PO Box 50007, Stockholm 10405, Sweden
| | - Katerina Guschanski
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden; Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| |
Collapse
|
17
|
Saraiva JP, Worrich A, Karakoç C, Kallies R, Chatzinotas A, Centler F, Nunes da Rocha U. Mining Synergistic Microbial Interactions: A Roadmap on How to Integrate Multi-Omics Data. Microorganisms 2021; 9:microorganisms9040840. [PMID: 33920040 PMCID: PMC8070991 DOI: 10.3390/microorganisms9040840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
Mining interspecies interactions remain a challenge due to the complex nature of microbial communities and the need for computational power to handle big data. Our meta-analysis indicates that genetic potential alone does not resolve all issues involving mining of microbial interactions. Nevertheless, it can be used as the starting point to infer synergistic interspecies interactions and to limit the search space (i.e., number of species and metabolic reactions) to a manageable size. A reduced search space decreases the number of additional experiments necessary to validate the inferred putative interactions. As validation experiments, we examine how multi-omics and state of the art imaging techniques may further improve our understanding of species interactions’ role in ecosystem processes. Finally, we analyze pros and cons from the current methods to infer microbial interactions from genetic potential and propose a new theoretical framework based on: (i) genomic information of key members of a community; (ii) information of ecosystem processes involved with a specific hypothesis or research question; (iii) the ability to identify putative species’ contributions to ecosystem processes of interest; and, (iv) validation of putative microbial interactions through integration of other data sources.
Collapse
Affiliation(s)
- Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Rene Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- Correspondence:
| |
Collapse
|
18
|
Achtman M, Zhou Z. Metagenomics of the modern and historical human oral microbiome with phylogenetic studies on Streptococcus mutans and Streptococcus sobrinus. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190573. [PMID: 33012228 PMCID: PMC7702799 DOI: 10.1098/rstb.2019.0573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
We have recently developed bioinformatic tools to accurately assign metagenomic sequence reads to microbial taxa: SPARSE for probabilistic, taxonomic classification of sequence reads; EToKi for assembling and polishing genomes from short-read sequences; and GrapeTree, a graphic visualizer of genetic distances between large numbers of genomes. Together, these methods support comparative analyses of genomes from ancient skeletons and modern humans. Here, we illustrate these capabilities with 784 samples from historical dental calculus, modern saliva and modern dental plaque. The analyses revealed 1591 microbial species within the oral microbiome. We anticipated that the oral complexes of Socransky et al., which were defined in 1998, would predominate among taxa whose frequencies differed by source. However, although some species discriminated between sources, we could not confirm the existence of the complexes. The results also illustrate further functionality of our pipelines with two species that are associated with dental caries, Streptococcus mutans and Streptococcus sobrinus. They were rare in historical dental calculus but common in modern plaque, and even more common in saliva. Reconstructed draft genomes of these two species from metagenomic samples in which they were abundant were combined with modern public genomes to provide a detailed overview of their core genomic diversity. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- Mark Achtman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
19
|
Brealey JC, Leitão HG, van der Valk T, Xu W, Bougiouri K, Dalén L, Guschanski K. Dental Calculus as a Tool to Study the Evolution of the Mammalian Oral Microbiome. Mol Biol Evol 2020; 37:3003-3022. [PMID: 32467975 PMCID: PMC7530607 DOI: 10.1093/molbev/msaa135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dental calculus, the calcified form of the mammalian oral microbial plaque biofilm, is a rich source of oral microbiome, host, and dietary biomolecules and is well preserved in museum and archaeological specimens. Despite its wide presence in mammals, to date, dental calculus has primarily been used to study primate microbiome evolution. We establish dental calculus as a valuable tool for the study of nonhuman host microbiome evolution, by using shotgun metagenomics to characterize the taxonomic and functional composition of the oral microbiome in species as diverse as gorillas, bears, and reindeer. We detect oral pathogens in individuals with evidence of oral disease, assemble near-complete bacterial genomes from historical specimens, characterize antibiotic resistance genes, reconstruct components of the host diet, and recover host genetic profiles. Our work demonstrates that metagenomic analyses of dental calculus can be performed on a diverse range of mammalian species, which will allow the study of oral microbiome and pathogen evolution from a comparative perspective. As dental calculus is readily preserved through time, it can also facilitate the quantification of the impact of anthropogenic changes on wildlife and the environment.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Henrique G Leitão
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tom van der Valk
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Wenbo Xu
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Katia Bougiouri
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Rifkin RF, Vikram S, Ramond JB, Rey-Iglesia A, Brand TB, Porraz G, Val A, Hall G, Woodborne S, Le Bailly M, Potgieter M, Underdown SJ, Koopman JE, Cowan DA, Van de Peer Y, Willerslev E, Hansen AJ. Multi-proxy analyses of a mid-15th century Middle Iron Age Bantu-speaker palaeo-faecal specimen elucidates the configuration of the 'ancestral' sub-Saharan African intestinal microbiome. MICROBIOME 2020; 8:62. [PMID: 32375874 PMCID: PMC7204047 DOI: 10.1186/s40168-020-00832-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/18/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The archaeological incidence of ancient human faecal material provides a rare opportunity to explore the taxonomic composition and metabolic capacity of the ancestral human intestinal microbiome (IM). Here, we report the results of the shotgun metagenomic analyses of an ancient South African palaeo-faecal specimen. METHODS Following the recovery of a single desiccated palaeo-faecal specimen from Bushman Rock Shelter in Limpopo Province, South Africa, we applied a multi-proxy analytical protocol to the sample. The extraction of ancient DNA from the specimen and its subsequent shotgun metagenomic sequencing facilitated the taxonomic and metabolic characterisation of this ancient human IM. RESULTS Our results indicate that the distal IM of the Neolithic 'Middle Iron Age' (c. AD 1460) Bantu-speaking individual exhibits features indicative of a largely mixed forager-agro-pastoralist diet. Subsequent comparison with the IMs of the Tyrolean Iceman (Ötzi) and contemporary Hadza hunter-gatherers, Malawian agro-pastoralists and Italians reveals that this IM precedes recent adaptation to 'Western' diets, including the consumption of coffee, tea, chocolate, citrus and soy, and the use of antibiotics, analgesics and also exposure to various toxic environmental pollutants. CONCLUSIONS Our analyses reveal some of the causes and means by which current human IMs are likely to have responded to recent dietary changes, prescription medications and environmental pollutants, providing rare insight into human IM evolution following the advent of the Neolithic c. 12,000 years ago. Video Abtract.
Collapse
Affiliation(s)
- Riaan F Rifkin
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK.
| | - Surendra Vikram
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Jean-Baptiste Ramond
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alba Rey-Iglesia
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Hatfield, Denmark
| | - Tina B Brand
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Hatfield, Denmark
| | - Guillaume Porraz
- CNRS, UMR 7041 ArScAn-AnTET, Université Paris-Nanterre, Paris, France
- Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein Johannesburg, South Africa
| | - Aurore Val
- Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein Johannesburg, South Africa
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany
| | - Grant Hall
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Stephan Woodborne
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
- iThemba LABS, Braamfontein Johannesburg, South Africa
| | - Matthieu Le Bailly
- University of Bourgogne France-Comte, CNRS UMR 6249 Chrono-environment, Besancon, France
| | - Marnie Potgieter
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Simon J Underdown
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK
| | - Jessica E Koopman
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Don A Cowan
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Yves Van de Peer
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- VIB Centre for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Eske Willerslev
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Hatfield, Denmark
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Anders J Hansen
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Hatfield, Denmark.
| |
Collapse
|
21
|
Hübler R, Key FM, Warinner C, Bos KI, Krause J, Herbig A. HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol 2019; 20:280. [PMID: 31842945 PMCID: PMC6913047 DOI: 10.1186/s13059-019-1903-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/27/2019] [Indexed: 01/28/2023] Open
Abstract
High-throughput DNA sequencing enables large-scale metagenomic analyses of complex biological systems. Such analyses are not restricted to present-day samples and can also be applied to molecular data from archaeological remains. Investigations of ancient microbes can provide valuable information on past bacterial commensals and pathogens, but their molecular detection remains a challenge. Here, we present HOPS (Heuristic Operations for Pathogen Screening), an automated bacterial screening pipeline for ancient DNA sequences that provides detailed information on species identification and authenticity. HOPS is a versatile tool for high-throughput screening of DNA from archaeological material to identify candidates for genome-level analyses.
Collapse
Affiliation(s)
- Ron Hübler
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Felix M Key
- Max Planck Institute for the Science of Human History, Jena, Germany. .,Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | | | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
22
|
Gihawi A, Rallapalli G, Hurst R, Cooper CS, Leggett RM, Brewer DS. SEPATH: benchmarking the search for pathogens in human tissue whole genome sequence data leads to template pipelines. Genome Biol 2019; 20:208. [PMID: 31639030 PMCID: PMC6805339 DOI: 10.1186/s13059-019-1819-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human tissue is increasingly being whole genome sequenced as we transition into an era of genomic medicine. With this arises the potential to detect sequences originating from microorganisms, including pathogens amid the plethora of human sequencing reads. In cancer research, the tumorigenic ability of pathogens is being recognized, for example, Helicobacter pylori and human papillomavirus in the cases of gastric non-cardia and cervical carcinomas, respectively. As of yet, no benchmark has been carried out on the performance of computational approaches for bacterial and viral detection within host-dominated sequence data. RESULTS We present the results of benchmarking over 70 distinct combinations of tools and parameters on 100 simulated cancer datasets spiked with realistic proportions of bacteria. mOTUs2 and Kraken are the highest performing individual tools achieving median genus-level F1 scores of 0.90 and 0.91, respectively. mOTUs2 demonstrates a high performance in estimating bacterial proportions. Employing Kraken on unassembled sequencing reads produces a good but variable performance depending on post-classification filtering parameters. These approaches are investigated on a selection of cervical and gastric cancer whole genome sequences where Alphapapillomavirus and Helicobacter are detected in addition to a variety of other interesting genera. CONCLUSIONS We provide the top-performing pipelines from this benchmark in a unifying tool called SEPATH, which is amenable to high throughput sequencing studies across a range of high-performance computing clusters. SEPATH provides a benchmarked and convenient approach to detect pathogens in tissue sequence data helping to determine the relationship between metagenomics and disease.
Collapse
Affiliation(s)
- Abraham Gihawi
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, NR4 7UQ UK
| | - Ghanasyam Rallapalli
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, NR4 7UQ UK
| | - Rachel Hurst
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, NR4 7UQ UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, NR4 7UQ UK
- Functional Crosscutting Genomics England Clinical Interpretation Partnership (GeCIP) Domain Lead, 100,000 Genomes Project, Genomics England, London, UK
| | | | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, NR4 7UQ UK
- Norwich Research Park, Earlham Institute, Norwich, NR4 7UZ UK
| |
Collapse
|
23
|
Velsko IM, Fellows Yates JA, Aron F, Hagan RW, Frantz LAF, Loe L, Martinez JBR, Chaves E, Gosden C, Larson G, Warinner C. Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage. MICROBIOME 2019; 7:102. [PMID: 31279340 PMCID: PMC6612086 DOI: 10.1186/s40168-019-0717-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/24/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates. RESULTS Metagenomic data was generated from modern and historic calculus samples, and dental plaque metagenomic data was downloaded from the Human Microbiome Project. Microbial composition and functional profile were assessed. Metaproteomic data was obtained from a subset of historic calculus samples. Comparisons between microbial, protein, and metabolomic profiles revealed distinct taxonomic and metabolic functional profiles between plaque, modern calculus, and historic calculus, but not between calculus collected from healthy teeth and periodontal disease-affected teeth. Species co-exclusion was related to biofilm environment. Proteomic profiling revealed that healthy tooth samples contain low levels of bacterial virulence proteins and a robust innate immune response. Correlations between proteomic and metabolomic profiles suggest co-preservation of bacterial lipid membranes and membrane-associated proteins. CONCLUSIONS Overall, we find that there are systematic microbial differences between plaque and calculus related to biofilm physiology, and recognizing these differences is important for accurate data interpretation in studies comparing dental plaque and calculus.
Collapse
Affiliation(s)
- Irina M Velsko
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, UK.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
| | - James A Fellows Yates
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Richard W Hagan
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Laurent A F Frantz
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Louise Loe
- Heritage Burial Services, Oxford Archaeology, Oxford, OX2 0ES, UK
| | | | - Eros Chaves
- Department of Periodontics, University of Oklahoma Health Sciences Center, Oklahoma City, 73117, OK, USA
- Current address: Pinellas Dental Specialties, Largo, FL, 33776, USA
| | - Chris Gosden
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, UK
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
- Department of Periodontics, University of Oklahoma Health Sciences Center, Oklahoma City, 73117, OK, USA.
- Department of Anthropology, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
24
|
Eisenhofer R, Weyrich LS. Assessing alignment-based taxonomic classification of ancient microbial DNA. PeerJ 2019; 7:e6594. [PMID: 30886779 PMCID: PMC6420809 DOI: 10.7717/peerj.6594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/09/2019] [Indexed: 11/20/2022] Open
Abstract
The field of palaeomicrobiology-the study of ancient microorganisms-is rapidly growing due to recent methodological and technological advancements. It is now possible to obtain vast quantities of DNA data from ancient specimens in a high-throughput manner and use this information to investigate the dynamics and evolution of past microbial communities. However, we still know very little about how the characteristics of ancient DNA influence our ability to accurately assign microbial taxonomies (i.e. identify species) within ancient metagenomic samples. Here, we use both simulated and published metagenomic data sets to investigate how ancient DNA characteristics affect alignment-based taxonomic classification. We find that nucleotide-to-nucleotide, rather than nucleotide-to-protein, alignments are preferable when assigning taxonomies to short DNA fragment lengths routinely identified within ancient specimens (<60 bp). We determine that deamination (a form of ancient DNA damage) and random sequence substitutions corresponding to ∼100,000 years of genomic divergence minimally impact alignment-based classification. We also test four different reference databases and find that database choice can significantly bias the results of alignment-based taxonomic classification in ancient metagenomic studies. Finally, we perform a reanalysis of previously published ancient dental calculus data, increasing the number of microbial DNA sequences assigned taxonomically by an average of 64.2-fold and identifying microbial species previously unidentified in the original study. Overall, this study enhances our understanding of how ancient DNA characteristics influence alignment-based taxonomic classification of ancient microorganisms and provides recommendations for future palaeomicrobiological studies.
Collapse
Affiliation(s)
- Raphael Eisenhofer
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA, Australia.,Centre of Excellence for Australia Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
| | - Laura Susan Weyrich
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA, Australia.,Centre of Excellence for Australia Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
25
|
On Controls in Ancient Microbiome Studies, and Microbial Resilience in Ancient Samples. Genes (Basel) 2018; 9:genes9100471. [PMID: 30262781 PMCID: PMC6210261 DOI: 10.3390/genes9100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 11/28/2022] Open
Abstract
In the following comment, we reply to Eisenhofer and Weyrich’s letter “Proper authentication of ancient DNA is still essential” responding to the article “Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies” by Santiago-Rodriguez et al. One of the concerns raised was the possibility that the patterns noted in the gut microbiome of pre-Inca/Inca and Italian nobility mummies were due to contamination of the blank control. When examining the blank controls and filtering the operational taxonomic units (OTUs) present in the blank controls, and further performing in-silico contamination analyses, we noticed very similar patterns as those previously reported. We also discuss controls in ancient microbiome studies, and aspects of microbial resilience in ancient samples.
Collapse
|