1
|
Bos J, Groen-van Schooten TS, Brugman CP, Jamaludin FS, van Laarhoven HWM, Derks S. The tumor immune composition of mismatch repair deficient and Epstein-Barr virus-positive gastric cancer: A systematic review. Cancer Treat Rev 2024; 127:102737. [PMID: 38669788 DOI: 10.1016/j.ctrv.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Gastric cancer (GC), known for its unfavorable prognosis, has been classified in four distinct molecular subtypes. These subtypes not only exhibit differences in their genome and transcriptome but also in the composition of their tumor immune microenvironment. The microsatellite instable (MSI) and Epstein-Barr virus (EBV) positive GC subtypes show clear clinical benefits from immune checkpoint blockade, likely due to a neoantigen-driven and virus-driven antitumor immune response and high expression of immune checkpoint molecule PD-L1. However, even within these subtypes response to checkpoint inhibition is variable, which is potentially related to heterogeneity in the tumor immune microenvironment (TIME) and expression of co-inhibitory molecules. We conducted a systematic review to outline the current knowledge about the immunological features on the TIME of MSI and EBV + GCs. METHODS A systematic search was performed in PubMed, EMBASE and Cochrane Library. All articles from the year 1990 and onwards addressing immune features of gastric adenocarcinoma were reviewed and included based on predefined in- and exclusion criteria. RESULTS In total 5962 records were screened, of which 139 were included that reported immunological data on molecular GC subtypes. MSI and EBV + GCs were reported to have a more inflamed TIME compared to non-MSI and EBV- GC subtypes. Compared to microsatellite stable (MSS) tumors, MSI tumors were characterized by higher numbers of CD8 + and FoxP3 + T cells, and tumor infiltrating pro- and anti-inflammatory macrophages. HLA-deficiency was most common in MSI tumors compared to other molecular GC subtypes and associated with lower T and B cell infiltrates compared to HLA-proficient tumors. EBV + was associated with a high number of CD8 + T cells, Tregs, NK cells and macrophages. Expression of PD-L1, CTLA-4, Granzyme A and B, Perforin and interferon-gamma was enriched in EBV + tumors. Overall, MSI tumors harbored a more heterogeneous TIME in terms of immune cell composition and immune checkpoints compared to the EBV + tumors. DISCUSSION AND CONCLUSION MSI and EBV + GCs are highly Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration.; 2019pro-inflammatory immune cell populations. Although studies on the direct comparison of EBV + and MSI tumors are limited, EBV + tumors show less intra-subgroup heterogeneity compared to MSI tumors. More studies are needed to identify how Intra-subgroup heterogeneity impacts response to immunotherapy efficacy.
Collapse
Affiliation(s)
- J Bos
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - T S Groen-van Schooten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - C P Brugman
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - F S Jamaludin
- Amsterdam UMC Location University of Amsterdam, Medical Library AMC, Meibergdreef 9, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - S Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Sobti A, Sakellariou C, Nilsson JS, Askmyr D, Greiff L, Lindstedt M. Exploring Spatial Heterogeneity of Immune Cells in Nasopharyngeal Cancer. Cancers (Basel) 2023; 15:2165. [PMID: 37046826 PMCID: PMC10093565 DOI: 10.3390/cancers15072165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Nasopharyngeal cancer (NPC) is a malignant tumor. In a recent publication, we described the presence and distribution of CD8+ T cells in NPC and used the information to identify 'inflamed', 'immune-excluded', and 'desert' immune phenotypes, where 'inflamed' and 'immune-excluded' NPCs were correlated with CD8 T cell infiltration and survival. Arguably, more detailed and, in particular, spatially resolved data are required for patient stratification and for the identification of new treatment targets. In this study, we investigate the phenotype of CD45+ leukocytes in the previously analyzed NPC samples by applying multiplexed tissue analysis to assess the spatial distribution of cell types and to quantify selected biomarkers. A total of 47 specified regions-of-interest (ROIs) were generated based on CD45, CD8, and PanCK morphological staining. Using the GeoMx® Digital Spatial Profiler (DSP), 49 target proteins were digitally quantified from the selected ROIs of a tissue microarray consisting of 30 unique NPC biopsies. Protein targets associated with B cells (CD20), NK cells (CD56), macrophages (CD68), and regulatory T cells (PD-1, FOXP3) were most differentially expressed in CD45+ segments within 'immune-rich cancer cell islet' regions of the tumor (cf. 'surrounding stromal leukocyte' regions). In contrast, markers associated with suppressive populations of myeloid cells (CD163, B7-H3, VISTA) and T cells (CD4, LAG3, Tim-3) were expressed at a higher level in CD45+ segments in the 'surrounding stromal leukocyte' regions (cf. 'immune-rich cancer cell islet' regions). When comparing the three phenotypes, the 'inflamed' profile (cf. 'immune-excluded' and 'desert') exhibited higher expression of markers associated with B cells, NK cells, macrophages, and myeloid cells. Myeloid markers were highly expressed in the 'immune-excluded' phenotype. Granulocyte markers and immune-regulatory markers were higher in the 'desert' profile (cf. 'inflamed' and 'immune-excluded'). In conclusion, this study describes the spatial heterogeneity of the immune microenvironment in NPC and highlights immune-related biomarkers in immune phenotypes, which may aid in the stratification of patients for therapeutic purposes.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| | | | - Johan S. Nilsson
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85 Lund, Sweden
- Department Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - David Askmyr
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85 Lund, Sweden
- Department Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85 Lund, Sweden
- Department Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| |
Collapse
|
3
|
Yogi N, Usui G, Matsusaka K, Fukuyo M, Fujiki R, Seki M, Takano S, Abe H, Morikawa T, Ushiku T, Ohtsuka M, Kaneda A. Association of tumors having Epstein-Barr virus in surrounding lymphocytes with poor prognosis. Cancer Med 2022; 12:1122-1136. [PMID: 35726701 PMCID: PMC9883551 DOI: 10.1002/cam4.4967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023] Open
Abstract
Infection with certain viruses is an important cause of cancer. The Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium recently analyzed the whole-genome sequencing (WGS) data from 2656 cases across 21 cancer types, and indicated that Epstein-Barr virus (EBV) is detected in many different cancer cases at a higher frequency than previously reported. However, whether EBV-positive cancer cases detected by WGS-based screening correspond to those detected by conventional histopathological techniques is still unclear. In this study, to elucidate the involvement of EBV in various cancers, we reanalyzed the WGS data of the PCAWG cohort combined with the analysis of clinical samples of gastric and pancreatic cancer in our cohort. Based on EBV copy number in each case, we classified tumors into three subgroups: EBV-High, EBV-Low, and EBV-Negative. The EBV-High subgroup was found to be EBV-positive in the cancer cells themselves, whereas the EBV-Low subgroup was EBV-positive in the surrounding lymphocytes. Further, the EBV-Low subgroup showed a significantly worse prognosis for both gastric cancer and across cancer types. In summary, we classified tumors based on EBV copy number and found a unique cancer subgroup, EBV-positive in the surrounding lymphocytes, which was associated with a poor prognosis.
Collapse
Affiliation(s)
- Norikazu Yogi
- Department of General Surgery, Graduate School of MedicineChiba UniversityJapan,Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan
| | - Genki Usui
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan,Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan,Department of Diagnostic PathologyNTT Medical Center TokyoTokyoJapan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan,Department of PathologyChiba University HospitalChibaJapan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan,Cancer Genomics CenterChiba University HospitalChibaJapan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan,Cancer Genomics CenterChiba University HospitalChibaJapan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of MedicineChiba UniversityJapan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Teppei Morikawa
- Department of Diagnostic PathologyNTT Medical Center TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of MedicineChiba UniversityJapan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan
| |
Collapse
|
4
|
Su ZY, Siak PY, Leong CO, Cheah SC. Nasopharyngeal Carcinoma and Its Microenvironment: Past, Current, and Future Perspectives. Front Oncol 2022; 12:840467. [PMID: 35311066 PMCID: PMC8924466 DOI: 10.3389/fonc.2022.840467] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that raises public health concerns in endemic countries. Despite breakthroughs in therapeutic strategies, late diagnosis and drug resistance often lead to unsatisfactory clinical outcomes in NPC patients. The tumor microenvironment (TME) is a complex niche consisting of tumor-associated cells, such as fibroblasts, endothelial cells, leukocytes, that influences tumor initiation, progression, invasion, and metastasis. Cells in the TME communicate through various mechanisms, of note, exosomes, ligand-receptor interactions, cytokines and chemokines are active players in the construction of TME, characterized by an abundance of immune infiltrates with suppressed immune activities. The NPC microenvironment serves as a target-rich niche for the discovery of potential promising predictive or diagnostic biomarkers and the development of therapeutic strategies. Thus, huge efforts have been made to exploit the role of the NPC microenvironment. The whole picture of the NPC microenvironment remains to be portrayed to understand the mechanisms underlying tumor biology and implement research into clinical practice. The current review discusses the recent insights into the role of TME in the development and progression of NPC which results in different clinical outcomes of patients. Clinical interventions with the use of TME components as potential biomarkers or therapeutic targets, their challenges, and future perspectives will be introduced. This review anticipates to provide insights to the researchers for future preclinical, translational and clinical research on the NPC microenvironment.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Centre of Cancer and Stem Cells Research, International Medical University, Kuala Lumpur, Malaysia
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Damrauer JS, Smith MA, Walter V, Thennavan A, Mose LE, Selitsky SR, Hoadley KA. Genomic characterization of rare molecular subclasses of hepatocellular carcinoma. Commun Biol 2021; 4:1150. [PMID: 34608257 PMCID: PMC8490450 DOI: 10.1038/s42003-021-02674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer, consisting of both cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC), is the second leading cause of cancer deaths worldwide. Our goal is to genomically characterize rare HCC subclasses to provide insight into disease biology. Leveraging The Cancer Genome Atlas (TCGA) to perform a combined analysis of CCA (n = 36) and HCC (n = 275), we integrated multiple genomic platforms, to assess transcriptional profiles, mutational signatures, and copy number patterns to uncover underlying etiology and linage specific patterns. We identified two molecular classes distinct from prototypical HCC tumors. The first, CCA-Like, although histologically indistinguishable from HCC, had enrichment of CCA mutations (IDH1, BAP1), mutational signatures, and transcriptional patterns (SOX9, KRT19). CCA-Like, however, retained a copy number landscape similar to HCC, suggesting a hepatocellular linage. The second, Blast-Like, is enriched in TP53 mutations, HBV infection, exposure related mutational signatures and transcriptionally similar to hepatoblasts. Although these subclasses are molecularly distinct, they both have a worse progression-free survival compared to classical HCC tumors, yet are clinically treated the same. The identification of and characterization of CCA-Like and Blast-Like subclasses advance our knowledge of HCC as well as represents an urgent need for the identification of class specific biomarkers and targeted therapy.
Collapse
Affiliation(s)
- Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Markia A Smith
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Aatish Thennavan
- Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Hu B, Sun M, Wang Z, Zheng Y, Cai W, Shi HHH, Zhuang Y, Lin Q. Prognostic Value of Programmed Cell Death-Ligand 1 Expression in Tumor-Infiltrating Lymphocytes and Viral Load in Peripheral Blood Mononuclear Cells for Epstein-Barr Virus-Positive Nasopharyngeal Carcinoma. Clin Chem 2021; 66:1219-1227. [PMID: 32870999 DOI: 10.1093/clinchem/hvaa170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) infection has a role in the development and progression of nasopharyngeal carcinoma (NPC); however, it is unclear whether EBV load correlates with tumor prognosis or the need for immunotherapy. This study evaluated whether the EBV DNA concentration in peripheral blood mononuclear cells (PBMC) or programmed cell death-ligand1 (PD-L1) expression in tumor-infiltrating lymphocytes (TIL) could predict the clinical outcomes of patients with NPC. METHODS Clinicopathological parameters of 198 patients with NPC were analyzed retrospectively from June 2012 to May 2018. Patients' EBV loads were determined by droplet digital PCR. TIL PD-L1 was analyzed by immunohistochemistry. RESULTS A log value of 1.98 log IU/mL for PBMC EBV DNA and a percentage of PD-L1 expression of 15% in TILs marked distinguishing cutoffs in NPC prognosis. The 5-year progression-free survival (PFS) rates in patients with high vs low log (PBMC EBV DNA) were 68.2% and 93.1%, respectively (P = 0.002). The 5-year PFS rates in patients with high vs low TIL PD-L1 expression were 66.3% and 33.7%, respectively (P = 0.03). The 5-year PFS rates of the high-risk group (high log [PBMC EBV DNA] and low TIL PD-L1), low-risk group (low log [PBMC EBV DNA] and high TIL PD-L1), and those in between (intermediate group) were 0%, 91.9%, and 71.4%, respectively (P < 0.001). CONCLUSION Concentrations of PBMC EBV DNA and TIL PD-L1 expression can be used as prognostic markers in NPC. The combination of both an increased EBV DNA concentration and suppressed TIL PD-L1 expression is associated with metastasis or relapse.
Collapse
Affiliation(s)
- Bin Hu
- Clinical Laboratory of Oncology, Xiamen Cancer Center and Department of Clinical Laboratory Medicine, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
| | - Ming Sun
- Department of Reproductive Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zijin Wang
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yanping Zheng
- Clinical Laboratory of Oncology, Xiamen Cancer Center and Department of Clinical Laboratory Medicine, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Weifeng Cai
- Clinical Laboratory of Oncology, Xiamen Cancer Center and Department of Clinical Laboratory Medicine, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | | | - Yanzhen Zhuang
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
7
|
The impaired anti-tumoral effect of immune surveillance cells in the immune microenvironment of gastric cancer. Clin Immunol 2020; 219:108551. [DOI: 10.1016/j.clim.2020.108551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
|
8
|
Zhao J, Guo C, Xiong F, Yu J, Ge J, Wang H, Liao Q, Zhou Y, Gong Q, Xiang B, Zhou M, Li X, Li G, Xiong W, Fang J, Zeng Z. Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer Lett 2020; 477:131-143. [PMID: 32061950 DOI: 10.1016/j.canlet.2020.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most malignant tumors in Southern China and southeast Asia, which is characterized by a dense lymphocyte infiltration and a poor prognosis. The emergence of single-cell sequencing represents a powerful tool to resolve tumor heterogeneity and delineate the complex communication among the tumor cells with neighboring stromal and immune cells in the tumor microenvironment (TME). Here, we performed single cell RNA-seq and analyzed tumor cells together with the infiltrating immune cells from three NPC tumor tissues. In our study, the malignant cells display the intra- and inter-tumoral heterogeneity among the individual patients. Analysis of the immune cells reveal the heterogeneous composition of the distinct immune cells and the various functional states of T cells in NPC tumors. Additionally, coupled with the reconstruct of the T cell receptor (TCR) sequences from immune cells full-length single-cell sequence data, we identify the diverse T cell clonotypes and expansion distribution in individual tumors. Overall, we firstly reveal the landscape of tumor and infiltrating immune cells in nasopharyngeal cancer. These results provide deeper insights on the mechanisms of tumor clearance by immune cells in the surrounding microenvironment, which will be helpful in improving the targeted and immune therapies for NPC.
Collapse
Affiliation(s)
- Jin Zhao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jianjun Yu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qian Gong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jian Fang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Selitsky SR, Marron D, Hollern D, Mose LE, Hoadley KA, Jones C, Parker JS, Dittmer DP, Perou CM. Virus expression detection reveals RNA-sequencing contamination in TCGA. BMC Genomics 2020; 21:79. [PMID: 31992194 PMCID: PMC6986043 DOI: 10.1186/s12864-020-6483-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Contamination of reagents and cross contamination across samples is a long-recognized issue in molecular biology laboratories. While often innocuous, contamination can lead to inaccurate results. Cantalupo et al., for example, found HeLa-derived human papillomavirus 18 (H-HPV18) in several of The Cancer Genome Atlas (TCGA) RNA-sequencing samples. This work motivated us to assess a greater number of samples and determine the origin of possible contaminations using viral sequences. To detect viruses with high specificity, we developed the publicly available workflow, VirDetect, that detects virus and laboratory vector sequences in RNA-seq samples. We applied VirDetect to 9143 RNA-seq samples sequenced at one TCGA sequencing center (28/33 cancer types) over 5 years. RESULTS We confirmed that H-HPV18 was present in many samples and determined that viral transcripts from H-HPV18 significantly co-occurred with those from xenotropic mouse leukemia virus-related virus (XMRV). Using laboratory metadata and viral transcription, we determined that the likely contaminant was a pool of cell lines known as the "common reference", which was sequenced alongside TCGA RNA-seq samples as a control to monitor quality across technology transitions (i.e. microarray to GAII to HiSeq), and to link RNA-seq to previous generation microarrays that standardly used the "common reference". One of the cell lines in the pool was a laboratory isolate of MCF-7, which we discovered was infected with XMRV; another constituent of the pool was likely HeLa cells. CONCLUSIONS Altogether, this indicates a multi-step contamination process. First, MCF-7 was infected with an XMRV. Second, this infected cell line was added to a pool of cell lines, which contained HeLa. Finally, RNA from this pool of cell lines contaminated several TCGA tumor samples most-likely during library construction. Thus, these human tumors with H-HPV or XMRV reads were likely not infected with H-HPV 18 or XMRV.
Collapse
Affiliation(s)
- Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - David Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Daniel Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Corbin Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
10
|
Manocha U, Kardos J, Selitsky S, Zhou M, Johnson SM, Breslauer C, Epstein JI, Kim WY, Wobker SE. RNA Expression Profiling of Lymphoepithelioma-Like Carcinoma of the Bladder Reveals a Basal-Like Molecular Subtype. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:134-144. [PMID: 31610173 PMCID: PMC6943801 DOI: 10.1016/j.ajpath.2019.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022]
Abstract
Lymphoepithelioma-like carcinoma of the bladder (LELC-B) is a rare subtype of urothelial carcinoma consisting of undifferentiated epithelial cells within a dense inflammatory cell infiltrate. We set out to molecularly characterize LELC-B through RNA expression profiling as well as immunohistochemistry (IHC) to understand its underlying biology. Sixteen cases of LELC-B were identified at Johns Hopkins University. RNA sequencing was performed on 14 cases. IHC staining for programmed cell death ligand 1 (PD-L1) and mismatch repair proteins MutL homolog 1 (MLH1), MutS homolog 2 (MSH2), MSH6, and PMS1 homolog, mismatch repair system component 2 (PMS2) was performed. Transcriptomic profiling of LELC-B showed that they are enriched in a basal-like phenotype, with 12 of 14 LELC-B cases correlating to the basal centroid of the bladder cancer analysis of subtypes by gene expression 47 (BASE47) predictive analysis of microarrays (PAM) classifier. Gene signature analysis confirmed the lymphocyte infiltration profile consistent with the histomorphology. LELC-B lacked features to explain the robust lymphocytic infiltrate, such as loss of mismatch repair protein expression or expression of Epstein-Barr virus transcripts. Nonetheless, PD-L1 IHC was positive in 93% of LELC cases. Our study demonstrates that LELC-B tumors are enriched in a basal-like molecular subtype and share a high level of immune infiltration and PD-L1 expression, similar to basal tumors. The basal-like phenotype is consistent with the known sensitivity of LELC-B to chemotherapy and suggests that immune checkpoint therapy should be explored in this rare disease.
Collapse
Affiliation(s)
- Ujjawal Manocha
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Jordan Kardos
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Sara Selitsky
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Mi Zhou
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Steven M Johnson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cori Breslauer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan I Epstein
- Departments of Pathology, Urology and Oncology, Johns Hopkins Hospitals, Baltimore, Maryland
| | - William Y Kim
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sara E Wobker
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
11
|
Montgomery ND, Randall C, Painschab M, Seguin R, Kaimila B, Kasonkanji E, Zuze T, Krysiak R, Sanders MK, Elliott A, Miller MB, Kampani C, Chimzimu F, Mulenga M, Damania B, Tomoka T, Fedoriw Y, Dittmer DP, Gopal S. High pretreatment plasma Epstein-Barr virus (EBV) DNA level is a poor prognostic marker in HIV-associated, EBV-negative diffuse large B-cell lymphoma in Malawi. Cancer Med 2020; 9:552-561. [PMID: 31782984 PMCID: PMC6970037 DOI: 10.1002/cam4.2710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Plasma Epstein-Barr virus (EBV) DNA measurement has established prognostic utility in EBV-driven lymphomas, where it serves as a circulating tumor DNA marker. The value of plasma EBV measurement may be amplified in sub-Saharan Africa (SSA), where advanced imaging and molecular technologies for risk stratification are not typically available. However, its utility in diffuse large B-cell lymphoma (DLBCL) is less certain, given that only a subset of DLBCLs are EBV-positive. To explore this possibility, we measured plasma EBV DNA at diagnosis in a cohort of patients with DLBCL in Malawi. High plasma EBV DNA at diagnosis (≥3.0 log10 copies/mL) was associated with decreased overall survival (OS) (P = .048). When stratified by HIV status, the prognostic utility of baseline plasma EBV DNA level was restricted to HIV-positive patients. Unexpectedly, most HIV-positive patients with high plasma EBV DNA at diagnosis had EBV-negative lymphomas, as confirmed by multiple methods. Even in these HIV-positive patients with EBV-negative DLBCL, high plasma EBV DNA remained associated with shorter OS (P = .014). These results suggest that EBV reactivation in nontumor cells is a poor prognostic finding even in HIV-positive patients with convincingly EBV-negative DLBCL, extending the potential utility of EBV measurement as a valuable and implementable prognostic marker in SSA.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/blood
- DNA, Viral/blood
- DNA, Viral/genetics
- Epstein-Barr Virus Infections/blood
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/diagnosis
- Epstein-Barr Virus Infections/virology
- Female
- Follow-Up Studies
- HIV/isolation & purification
- HIV Infections/blood
- HIV Infections/complications
- HIV Infections/diagnosis
- HIV Infections/virology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Lymphoma, AIDS-Related/blood
- Lymphoma, AIDS-Related/epidemiology
- Lymphoma, AIDS-Related/mortality
- Lymphoma, AIDS-Related/virology
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/virology
- Malawi/epidemiology
- Male
- Middle Aged
- Prognosis
- Prospective Studies
- Survival Rate
- Young Adult
Collapse
Affiliation(s)
- Nathan D. Montgomery
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
| | - Cara Randall
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
| | - Matthew Painschab
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
- Department of MedicineDivision of Hematology & OncologyUniversity of North CarolinaChapel HillNCUSA
| | | | | | | | | | | | - Marcia K. Sanders
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
| | | | - Melissa B. Miller
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
| | | | | | | | - Blossom Damania
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- Department of Microbiology & ImmunologyUniversity of North CarolinaChapel HillNCUSA
| | | | - Yuri Fedoriw
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- Department of Microbiology & ImmunologyUniversity of North CarolinaChapel HillNCUSA
| | - Satish Gopal
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
- Department of MedicineDivision of Hematology & OncologyUniversity of North CarolinaChapel HillNCUSA
| |
Collapse
|
12
|
Smith CC, Bixby LM, Miller KL, Selitsky SR, Bortone DS, Hoadley KA, Vincent BG, Serody JS. Using RNA Sequencing to Characterize the Tumor Microenvironment. Methods Mol Biol 2020; 2055:245-272. [PMID: 31502156 DOI: 10.1007/978-1-4939-9773-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA sequencing (RNA-seq) is an integral tool in immunogenomics, allowing for interrogation of the transcriptome of a tumor and its microenvironment. Analytical methods to deconstruct the genomics data can then be applied to infer gene expression patterns associated with the presence of various immunocyte populations. High quality RNA-seq is possible from formalin-fixed, paraffin-embedded (FFPE), fresh-frozen, and fresh tissue, with a wide variety of sequencing library preparation methods, sequencing platforms, and downstream bioinformatics analyses currently available. Selection of an appropriate library preparation method is largely determined by tissue type, quality of RNA, and quantity of RNA. Downstream of sequencing, many analyses can be applied to the data, including differential gene expression analysis, immune gene signature analysis, gene pathway analysis, T/B-cell receptor inference, HLA inference, and viral transcript quantification. In this chapter, we will describe our workflow for RNA-seq from bulk tissue to evaluable data, including extraction of RNA, library preparation methods, sequencing of libraries, alignment and quality assurance of data, and initial downstream analyses of RNA-seq data to extract relevant immunogenomics features. Systems biology methods that draw additional insights by integrating these features are covered further in Chapters 28 - 30 .
Collapse
Affiliation(s)
- C C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L M Bixby
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K L Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D S Bortone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J S Serody
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Movassagh M, Oduor C, Forconi C, Moormann AM, Bailey JA. Sensitive detection of EBV microRNAs across cancer spectrum reveals association with decreased survival in adult acute myelocytic leukemia. Sci Rep 2019; 9:20321. [PMID: 31889055 PMCID: PMC6937232 DOI: 10.1038/s41598-019-56472-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Epstein Barr virus (EBV) is the etiologic agent involved in numerous human cancers. After infecting the host, EBV establishes a latent infection, with low levels of messenger RNA (mRNA) and protein expression, evolved to evade immune recognition. Conversely, EBV microRNAs (miRNA) are expressed ubiquitously and abundantly within infected cells. Their role in tumor biology and clinical outcomes across the spectrum of cancer is not fully explained. Here, we applied our bioinformatics pipeline for quantitative EBV miRNA detection to examine sequencing data of 8,955 individual tumor samples across 27 tumor types representing the breadth of cancer. We uncover an association of intermediate levels of viral miRNA with decreased survival in adult acute myeloid leukemia (AML) patients (P = 0.00013). Prognostic modeling of this association suggests that increased EBV miRNA levels represent an independent risk factor for poor patient outcomes. Furthermore, we explore differences in expression between elevated and absent viral miRNA loads in adult AML tumors finding that EBV positivity was associated with proinflammatory signals. Together, given no associations were found for pediatric AML, our analyses suggests EBV positivity has the potential for being a prognostic biomarker and might represent a surrogate measure related to immune impairment in adult patients.
Collapse
MESH Headings
- Computational Biology/methods
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/virology
- Gene Expression Regulation, Viral
- Herpesvirus 4, Human/genetics
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/complications
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- MicroRNAs
- Prognosis
- Proportional Hazards Models
- RNA, Viral
- ROC Curve
Collapse
Affiliation(s)
- Mercedeh Movassagh
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cliff Oduor
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Catherine Forconi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ann M Moormann
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeffrey A Bailey
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
14
|
Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS. Alternative tumour-specific antigens. Nat Rev Cancer 2019; 19:465-478. [PMID: 31278396 PMCID: PMC6874891 DOI: 10.1038/s41568-019-0162-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
The study of tumour-specific antigens (TSAs) as targets for antitumour therapies has accelerated within the past decade. The most commonly studied class of TSAs are those derived from non-synonymous single-nucleotide variants (SNVs), or SNV neoantigens. However, to increase the repertoire of available therapeutic TSA targets, 'alternative TSAs', defined here as high-specificity tumour antigens arising from non-SNV genomic sources, have recently been evaluated. Among these alternative TSAs are antigens derived from mutational frameshifts, splice variants, gene fusions, endogenous retroelements and other processes. Unlike the patient-specific nature of SNV neoantigens, some alternative TSAs may have the advantage of being widely shared by multiple tumours, allowing for universal, off-the-shelf therapies. In this Opinion article, we will outline the biology, available computational tools, preclinical and/or clinical studies and relevant cancers for each alternative TSA class, as well as discuss both current challenges preventing the therapeutic application of alternative TSAs and potential solutions to aid in their clinical translation.
Collapse
Affiliation(s)
- Christof C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Bioinformatics Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Marsico Hall, Chapel Hill, NC, USA
| | - Shengjie Chai
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jonathan S Serody
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Nakhoul H, Lin Z, Wang X, Roberts C, Dong Y, Flemington E. High-Throughput Sequence Analysis of Peripheral T-Cell Lymphomas Indicates Subtype-Specific Viral Gene Expression Patterns and Immune Cell Microenvironments. mSphere 2019; 4:e00248-19. [PMID: 31292228 PMCID: PMC6620372 DOI: 10.1128/msphere.00248-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Certain peripheral T-cell lymphomas (PTCLs) have been associated with viral infection, particularly infection with Epstein-Barr virus (EBV). However, a comprehensive virome analysis across PTCLs has not previously been reported. Here we utilized published whole-transcriptome RNA sequencing (RNA-seq) data sets from seven different PTCL studies and new RNA-seq data from our laboratory to screen for virus association, to analyze viral gene expression, and to assess B- and T-cell receptor diversity paradigms across PTCL subtypes. In addition to identifying EBV in angioimmunoblastic T-cell lymphoma (AITL) and extranodal NK/T-cell lymphoma (ENKTL), two PTCL subtypes with well-established EBV associations, we also detected EBV in several cases of anaplastic large-cell lymphoma (ALCL), and we found evidence of infection by the oncogenic viruses Kaposi's sarcoma-associated herpesvirus and human T-cell leukemia virus type 1 in isolated PTCL cases. In AITLs, EBV gene expression analysis showed expression of immediate early, early, and late lytic genes, suggesting either low-level lytic gene expression or productive infection in a subset of EBV-infected B-lymphocyte stromal cells. Deconvolution of immune cell subpopulations demonstrated a greater B-cell signal in AITLs than in other PTCL subtypes, consistent with a larger role for B-cell support in the pathogenesis of AITL. Reconstructed T-cell receptor (TCR) and B-cell receptor (BCR) repertoires demonstrated increased BCR diversity in AITLs, consistent with a possible EBV-driven polyclonal response. These findings indicate potential alternative roles for EBV in PTCLs, in addition to the canonical oncogenic mechanisms associated with EBV latent infection. Our findings also suggest the involvement of other viruses in PTCL pathogenesis and demonstrate immunological alterations associated with these cancers.IMPORTANCE In this study, we utilized next-generation sequencing data from 7 different studies of peripheral T-cell lymphoma (PTCL) patient samples to globally assess viral associations, provide insights into the contributions of EBV gene expression to the tumor phenotype, and assess the unique roles of EBV in modulating the immune cell tumor microenvironment. These studies revealed potential roles for EBV replication genes in some PTCL subtypes, the possible role of additional human tumor viruses in rare cases of PTCLs, and a role for EBV in providing a unique immune microenvironmental niche in one subtype of PTCLs. Together, these studies provide new insights into the understudied role of tumor viruses in PTCLs.
Collapse
Affiliation(s)
- Hani Nakhoul
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Zhen Lin
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Xia Wang
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Claire Roberts
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Erik Flemington
- Department of Pathology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
16
|
Nasopharyngeal cancer in Saudi Arabia: Epidemiology and possible risk factors. JOURNAL OF ONCOLOGICAL SCIENCES 2019. [DOI: 10.1016/j.jons.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|