1
|
Fuzi M. The fitness connection of antibiotic resistance. Front Microbiol 2025; 16:1556656. [PMID: 40276228 PMCID: PMC12020126 DOI: 10.3389/fmicb.2025.1556656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
More than three decades ago multidrug-resistant (MDR) clones of the pathogens: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Clostridioides difficile, Enterococcus faecium, Pseudomonas aeruginosa and Acinetobacter baumannii have started to disseminate across wide geographical areas. A characteristic feature of all these MDR lineages is the carriage of some mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV which besides conferring resistance to fluoroquinolones are associated with a fitness benefit. Several lines of evidence strongly suggest that extra fitness conferred by these mutations facilitated the dissemination of the international MDR lineages. MDR pathogens require extra energy to cover the fitness cost conferred by the excess antibiotic resistance gene cargo. However, extra energy generated by upgraded metabolic activity was demonstrated to increase the uptake of antibiotics enhancing susceptibility. Accordingly, MDR bacteria need additional positive fitness schemes which, similarly to the QRDR advantage, will not compromise resistance. Some of these, not clone-specific effects are large genomes, the carriage of low-cost plasmids, the transfer of plasmid genes to the chromosome, the application of weak promoters in integrons and various techniques for the economic control of the activity of the integrase enzyme including a highly sophisticated system in A. baumannii. These impacts - among others - will confer a fitness advantage promoting the spread of MDR pathogens. However, even the potential of extra fitness generated by the combined effect of various schemes is not without limit and virulence-related genes or less relevant antibiotic resistance gene cargoes will often be sacrificed to permit the acquisition of high-priority resistance determinants. Accordingly major MDR clone strains are usually less virulent than susceptible isolates. In summary, a fitness approach to the research of antibiotic resistance is very useful since the fitness status of MDR bacteria seem to profoundly impact the capacity to disseminate in the healthcare setting.
Collapse
Affiliation(s)
- Miklos Fuzi
- Independent Researcher, Seattle, WA, United States
| |
Collapse
|
2
|
Gomathinayagam S, Kodiveri Muthukaliannan G. Dynamics of antibiotic resistance genes in plasmids and bacteriophages. Crit Rev Microbiol 2025; 51:219-228. [PMID: 38651513 DOI: 10.1080/1040841x.2024.2339262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
This brief review explores the intricate interplay between bacteriophages and plasmids in the context of antibiotic resistance gene (ARG) dissemination. Originating from studies in the late 1950s, the review traces the evolution of knowledge regarding extrachromosomal factors facilitating horizontal gene transfer and adaptation in bacteria. Analyzing the gene repertoires of plasmids and bacteriophages, the study highlights their contributions to bacterial evolution and adaptation. While plasmids encode essential and accessory genes influencing host characteristics, bacteriophages carry auxiliary metabolic genes (AMGs) that augment host metabolism. The debate on phages carrying ARGs is explored through a critical evaluation of various studies, revealing contrasting findings from researchers. Additionally, the review addresses the interplay between prophages and plasmids, underlining their similarities and divergences. Based on the available literature evidence, we conclude that plasmids generally encode ARGs while bacteriophages typically do not contain ARGs. But extra-chromosomaly present prophages with plasmid characteristics can encode and disseminate ARGs.
Collapse
|
3
|
Toribio-Celestino L, Calvo-Villamañán A, Herencias C, Alonso-Del Valle A, Sastre-Dominguez J, Quesada S, Mazel D, Rocha EPC, Fernández-Calvet A, San Millan A. A plasmid-chromosome crosstalk in multidrug resistant enterobacteria. Nat Commun 2024; 15:10859. [PMID: 39738078 PMCID: PMC11686079 DOI: 10.1038/s41467-024-55169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Conjugative plasmids promote the dissemination and evolution of antimicrobial resistance in bacterial pathogens. However, plasmid acquisition can produce physiological alterations in the bacterial host, leading to potential fitness costs that determine the clinical success of bacteria-plasmid associations. In this study, we use a transcriptomic approach to characterize the interactions between a globally disseminated carbapenem resistance plasmid, pOXA-48, and a diverse collection of multidrug resistant (MDR) enterobacteria. Although pOXA-48 produces mostly strain-specific transcriptional alterations, it also leads to the common overexpression of a small chromosomal operon present in Klebsiella spp. and Citrobacter freundii strains. This operon includes two genes coding for a pirin and an isochorismatase family proteins (pfp and ifp), and shows evidence of horizontal mobilization across Proteobacteria species. Combining genetic engineering, transcriptomics, and CRISPRi gene silencing, we show that a pOXA-48-encoded LysR regulator is responsible for the plasmid-chromosome crosstalk. Crucially, the operon overexpression produces a fitness benefit in a pOXA-48-carrying MDR K. pneumoniae strain, suggesting that this crosstalk promotes the dissemination of carbapenem resistance in clinical settings.
Collapse
Affiliation(s)
| | | | - Cristina Herencias
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Susana Quesada
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Didier Mazel
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Bacterial Genome Plasticity, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | | | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Xue W, Hong J, Wang T. The evolutionary landscape of prokaryotic chromosome/plasmid balance. Commun Biol 2024; 7:1434. [PMID: 39496780 PMCID: PMC11535066 DOI: 10.1038/s42003-024-07167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
The balance between chromosomal and plasmid DNAs determines the genomic plasticity of prokaryotes. Natural selections, acting on the level of organisms or plasmids, shape the abundances of plasmid DNAs in prokaryotic genomes. Despite the importance of plasmids in health and engineering, there have been rare systematic attempts to quantitatively model and predict the determinants underlying the strength of different selection forces. Here, we develop a metabolic flux model that describes the intracellular resource competition between chromosomal and plasmid-encoded reactions. By coarse graining, this model predicts a landscape of natural selections on chromosome/plasmid balance, which is featured by the tradeoff between phenotypic and non-phenotypic selection pressures. This landscape is further validated by the observed pattern of plasmid distributions in the vast collection of prokaryotic genomes retrieved from the NCBI database. Our results establish a universal paradigm to understand the prokaryotic chromosome/plasmid interplay and provide insights into the evolutionary origin of plasmid diversity.
Collapse
Affiliation(s)
- Wenzhi Xue
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Sastre-Dominguez J, DelaFuente J, Toribio-Celestino L, Herencias C, Herrador-Gómez P, Costas C, Hernández-García M, Cantón R, Rodríguez-Beltrán J, Santos-Lopez A, San Millan A. Plasmid-encoded insertion sequences promote rapid adaptation in clinical enterobacteria. Nat Ecol Evol 2024; 8:2097-2112. [PMID: 39198572 PMCID: PMC7616626 DOI: 10.1038/s41559-024-02523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Plasmids are extrachromosomal genetic elements commonly found in bacteria. They are known to fuel bacterial evolution through horizontal gene transfer, and recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond horizontal gene transfer is poorly explored. In this study, we investigated the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of several multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveiled that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence 1 (IS1) elements. Specifically, IS1-mediated gene inactivation expedites the adaptation rate of clinical strains in vitro and fosters within-patient adaptation in the gut microbiota. We deciphered the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings suggest that plasmid-mediated IS1 transposition represents a crucial mechanism for swift bacterial adaptation.
Collapse
Affiliation(s)
| | | | | | - Cristina Herencias
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coloma Costas
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Santos-Lopez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Hall RJ, Snaith AE, Thomas MJN, Brockhurst MA, McNally A. Multidrug resistance plasmids commonly reprogram the expression of metabolic genes in Escherichia coli. mSystems 2024; 9:e0119323. [PMID: 38376169 PMCID: PMC10949484 DOI: 10.1128/msystems.01193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Multidrug-resistant Escherichia coli is a leading cause of global mortality. Transfer of plasmids carrying genes encoding beta-lactamases, carbapenamases, and colistin resistance between lineages is driving the rising rates of hard-to-treat nosocomial and community infections. Multidrug resistance (MDR) plasmid acquisition commonly causes transcriptional disruption, and while a number of studies have shown strain-specific fitness and transcriptional effects of an MDR plasmid across diverse bacterial lineages, fewer studies have compared the impacts of different MDR plasmids in a common bacterial host. As such, our ability to predict which MDR plasmids are the most likely to be maintained and spread in bacterial populations is limited. Here, we introduced eight diverse MDR plasmids encoding resistances against a range of clinically important antibiotics into E. coli K-12 MG1655 and measured their fitness costs and transcriptional impacts. The scale of the transcriptional responses varied substantially between plasmids, ranging from >650 to <20 chromosomal genes being differentially expressed. However, the scale of regulatory disruption did not correlate significantly with the magnitude of the plasmid fitness cost, which also varied between plasmids. The identities of differentially expressed genes differed between transconjugants, although the expression of certain metabolic genes and functions were convergently affected by multiple plasmids, including the downregulation of genes involved in L-methionine transport and metabolism. Our data show the complexity of the interaction between host genetic background and plasmid genetic background in determining the impact of MDR plasmid acquisition on E. coli. IMPORTANCE The increase in infections that are resistant to multiple classes of antibiotics, including those isolates that carry carbapenamases, beta-lactamases, and colistin resistance genes, is of global concern. Many of these resistances are spread by conjugative plasmids. Understanding more about how an isolate responds to an incoming plasmid that encodes antibiotic resistance will provide information that could be used to predict the emergence of MDR lineages. Here, the identification of metabolic networks as being particularly sensitive to incoming plasmids suggests the possible targets for reducing plasmid transfer.
Collapse
Affiliation(s)
- Rebecca J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ann E. Snaith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew J. N. Thomas
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Alonso-del Valle A, Toribio-Celestino L, Quirant A, Pi CT, DelaFuente J, Canton R, Rocha EPC, Ubeda C, Peña-Miller R, San Millan A. Antimicrobial resistance level and conjugation permissiveness shape plasmid distribution in clinical enterobacteria. Proc Natl Acad Sci U S A 2023; 120:e2314135120. [PMID: 38096417 PMCID: PMC10741383 DOI: 10.1073/pnas.2314135120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Conjugative plasmids play a key role in the dissemination of antimicrobial resistance (AMR) genes across bacterial pathogens. AMR plasmids are widespread in clinical settings, but their distribution is not random, and certain associations between plasmids and bacterial clones are particularly successful. For example, the globally spread carbapenem resistance plasmid pOXA-48 can use a wide range of enterobacterial species as hosts, but it is usually associated with a small number of specific Klebsiella pneumoniae clones. These successful associations represent an important threat for hospitalized patients. However, knowledge remains limited about the factors determining AMR plasmid distribution in clinically relevant bacteria. Here, we combined in vitro and in vivo experimental approaches to analyze pOXA-48-associated AMR levels and conjugation dynamics in a collection of wild-type enterobacterial strains isolated from hospitalized patients. Our results revealed significant variability in these traits across different bacterial hosts, with Klebsiella spp. strains showing higher pOXA-48-mediated AMR and conjugation frequencies than Escherichia coli strains. Using experimentally determined parameters, we developed a simple mathematical model to interrogate the contribution of AMR levels and conjugation permissiveness to plasmid distribution in bacterial communities. The simulations revealed that a small subset of clones, combining high AMR levels and conjugation permissiveness, play a critical role in stabilizing the plasmid in different polyclonal microbial communities. These results help to explain the preferential association of plasmid pOXA-48 with K. pneumoniae clones in clinical settings. More generally, our study reveals that species- and strain-specific variability in plasmid-associated phenotypes shape AMR evolution in clinically relevant bacterial communities.
Collapse
Affiliation(s)
- Aida Alonso-del Valle
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Anna Quirant
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia46020, Spain
| | - Carles Tardio Pi
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca62209, México
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica Yucatán, Universidad Nacional Autónoma de México, Yucatán04510, México
| | - Javier DelaFuente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramon y Cajal de Investigacion Sanitaria, Madrid28034, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris75015, France
| | - Carles Ubeda
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia46020, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Rafael Peña-Miller
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca62209, México
| | - Alvaro San Millan
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid28029, Spain
| |
Collapse
|
8
|
Kosterlitz O, Grassi N, Werner B, McGee RS, Top EM, Kerr B. Evolutionary "Crowdsourcing": Alignment of Fitness Landscapes Allows for Cross-species Adaptation of a Horizontally Transferred Gene. Mol Biol Evol 2023; 40:msad237. [PMID: 37931146 PMCID: PMC10657783 DOI: 10.1093/molbev/msad237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Genes that undergo horizontal gene transfer (HGT) evolve in different genomic backgrounds. Despite the ubiquity of cross-species HGT, the effects of switching hosts on gene evolution remains understudied. Here, we present a framework to examine the evolutionary consequences of host-switching and apply this framework to an antibiotic resistance gene commonly found on conjugative plasmids. Specifically, we determined the adaptive landscape of this gene for a small set of mutationally connected genotypes in 3 enteric species. We uncovered that the landscape topographies were largely aligned with minimal host-dependent mutational effects. By simulating gene evolution over the experimentally gauged landscapes, we found that the adaptive evolution of the mobile gene in one species translated to adaptation in another. By simulating gene evolution over artificial landscapes, we found that sufficient alignment between landscapes ensures such "adaptive equivalency" across species. Thus, given adequate landscape alignment within a bacterial community, vehicles of HGT such as plasmids may enable a distributed form of genetic evolution across community members, where species can "crowdsource" adaptation.
Collapse
Affiliation(s)
- Olivia Kosterlitz
- Biology Department, University of Washington, Seattle, WA 98195, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, MI 48824, USA
| | - Nathan Grassi
- Biology Department, University of Washington, Seattle, WA 98195, USA
| | - Bailey Werner
- Biology Department, University of Washington, Seattle, WA 98195, USA
| | - Ryan Seamus McGee
- BEACON Center for the Study of Evolution in Action, East Lansing, MI 48824, USA
- Department of Neuroscience, Washington University, St.Louis, MO 63110, USA
| | - Eva M Top
- BEACON Center for the Study of Evolution in Action, East Lansing, MI 48824, USA
- Department of Biological Sciences and Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Benjamin Kerr
- Biology Department, University of Washington, Seattle, WA 98195, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Allain M, Mahérault AC, Gachet B, Martinez C, Condamine B, Magnan M, Kempf I, Denamur E, Landraud L. Dissemination of IncI plasmid encoding bla CTX-M-1 is not hampered by its fitness cost in the pig's gut. Antimicrob Agents Chemother 2023; 67:e0011123. [PMID: 37702541 PMCID: PMC10583664 DOI: 10.1128/aac.00111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/01/2023] [Indexed: 09/14/2023] Open
Abstract
Multiresistance plasmids belonging to the IncI incompatibility group have become one of the most pervasive plasmid types in extended-spectrum beta-lactamase-producing Escherichia coli of animal origin. The extent of the burden imposed on the bacterial cell by these plasmids seems to modulate the emergence of "epidemic" plasmids. However, in vivo data in the natural environment of the strains are scarce. Here, we investigated the cost of a bla CTX-M-1-IncI1 epidemic plasmid in a commensal E. coli animal strain, UB12-RC, before and after oral inoculation of 15 6- to 8-week- old specific-pathogen-free pigs. Growth rate in rich medium was determined on (i) UB12-RC and derivatives, with or without plasmid, in vivo and/or in vitro evolved, and (ii) strains that acquired the plasmid in the gut during the experiment. Although bla CTX-M-1-IncI1 plasmid imposed no measurable burden on the recipient strain after conjugation and during the longitudinal carriage in the pig's gut, we observed a significant difference in the bacterial growth rate between IncI1 plasmid-carrying and plasmid-free isolates collected during in vivo carriage. Only a few mutations on the chromosome of the UB12-RC derivatives were detected by whole-genome sequencing. RNA-Seq analysis of a selected set of these strains showed that transcriptional responses to the bla CTX-M-1-IncI1 acquisition were limited, affecting metabolism, stress response, and motility functions. Our data suggest that the effect of IncI plasmid on host cells is limited, fitness cost being insufficient to act as a barrier to IncI plasmid spread among natural population of E. coli in the gut niche.
Collapse
Affiliation(s)
- Margaux Allain
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Anne Claire Mahérault
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Benoit Gachet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Caroline Martinez
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Bénédicte Condamine
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Mélanie Magnan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Erick Denamur
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Luce Landraud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| |
Collapse
|
10
|
Weisberg AJ, Chang JH. Mobile Genetic Element Flexibility as an Underlying Principle to Bacterial Evolution. Annu Rev Microbiol 2023; 77:603-624. [PMID: 37437216 DOI: 10.1146/annurev-micro-032521-022006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mobile genetic elements are key to the evolution of bacteria and traits that affect host and ecosystem health. Here, we use a framework of a hierarchical and modular system that scales from genes to populations to synthesize recent findings on mobile genetic elements (MGEs) of bacteria. Doing so highlights the role that emergent properties of flexibility, robustness, and genetic capacitance of MGEs have on the evolution of bacteria. Some of their traits can be stored, shared, and diversified across different MGEs, taxa of bacteria, and time. Collectively, these properties contribute to maintaining functionality against perturbations while allowing changes to accumulate in order to diversify and give rise to new traits. These properties of MGEs have long challenged our abilities to study them. Implementation of new technologies and strategies allows for MGEs to be analyzed in new and powerful ways.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
11
|
Huang C, Pham HQ, Zhu L, Wang R, Law OK, Lin SL, Nie QC, Zhang L, Wang X, Lau TCK. Comparative Analysis of Transcriptome and Proteome Revealed the Common Metabolic Pathways Induced by Prevalent ESBL Plasmids in Escherichia coli. Int J Mol Sci 2023; 24:14009. [PMID: 37762311 PMCID: PMC10531281 DOI: 10.3390/ijms241814009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance has emerged as one of the most significant threats to global public health. Plasmids, which are highly efficient self-replicating genetic vehicles, play a critical role in the dissemination of drug-resistant genes. Previous studies have mainly focused on drug-resistant genes only, often neglecting the complete functional role of multidrug-resistant (MDR) plasmids in bacteria. In this study, we conducted a comprehensive investigation of the transcriptomes and proteomes of Escherichia coli J53 transconjugants harboring six major MDR plasmids of different incompatibility (Inc) groups, which were clinically isolated from patients. The RNA-seq analysis revealed that MDR plasmids influenced the gene expression in the bacterial host, in particular, the genes related to metabolic pathways. A proteomic analysis demonstrated the plasmid-induced regulation of several metabolic pathways including anaerobic respiration and the utilization of various carbon sources such as serine, threonine, sialic acid, and galactarate. These findings suggested that MDR plasmids confer a growth advantage to bacterial hosts in the gut, leading to the expansion of plasmid-carrying bacteria over competitors without plasmids. Moreover, this study provided insights into the versatility of prevalent MDR plasmids in moderating the cellular gene network of bacteria, which could potentially be utilized in therapeutics development for bacteria carrying MDR plasmids.
Collapse
Affiliation(s)
- Chuan Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Hoa-Quynh Pham
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Lina Zhu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Rui Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Oi-Kwan Law
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Shu-Ling Lin
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Qi-Chang Nie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Xin Wang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Fuzi M, Sokurenko E. Commensal Fitness Advantage May Contribute to the Global Dissemination of Multidrug-Resistant Lineages of Bacteria-The Case of Uropathogenic E. coli. Pathogens 2023; 12:1150. [PMID: 37764958 PMCID: PMC10536240 DOI: 10.3390/pathogens12091150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
It is widely accepted that favorable fitness in commensal colonization is one of the prime facilitators of clonal dissemination in bacteria. The question arises as to what kind of fitness advantage may be wielded by uropathogenic strains of the two predominant fluoroquinolone- and multidrug-resistant clonal groups of E. coli-ST131-H30 and ST1193, which has permitted their unprecedented pandemic-like global expansion in the last few decades. The colonization-associated genes' content, carriage of low-cost plasmids, and integrons with weak promoters could certainly contribute to the fitness of the pandemic groups, although those genetic factors are common among other clonal groups as well. Also, ST131-H30 and ST1193 strains harbor fluoroquinolone-resistance conferring mutations targeting serine residues in DNA gyrase (GyrA-S83) and topoisomerase IV (ParC-S80) that, in those clonal backgrounds, might result in a commensal fitness benefit, i.e., beyond the antibiotic resistance per se. This fitness gain might have contributed not only to the widespread dissemination of these major clones in the healthcare setting but also to their long-term colonization of healthy individuals and, thus, circulation in the community, even in a low or no fluoroquinolone use environment. This evolutionary shift affecting commensal E. coli, initiated by mutations co-favorable in both antibiotics-treated patients and healthy individuals warrants more in-depth studies to monitor further changes in the epidemiological situation and develop effective measures to reduce the antibiotic resistance spread.
Collapse
Affiliation(s)
- Miklos Fuzi
- Independent Researcher, Seattle, WA 98195, USA
| | - Evgeni Sokurenko
- Department of Microbiology, University of Washington School of Medicine, 1705 NE Pacific St., Seattle, WA 98195, USA;
| |
Collapse
|
13
|
Element SJ, Moran RA, Beattie E, Hall RJ, van Schaik W, Buckner MM. Growth in a biofilm promotes conjugation of a bla NDM-1-bearing plasmid between Klebsiella pneumoniae strains. mSphere 2023; 8:e0017023. [PMID: 37417759 PMCID: PMC10449501 DOI: 10.1128/msphere.00170-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/08/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing problem, especially in Gram-negative Enterobacteriaceae such as Klebsiella pneumoniae. Horizontal transfer of conjugative plasmids contributes to AMR gene dissemination. Bacteria such as K. pneumoniae commonly exist in biofilms, yet most studies focus on planktonic cultures. Here we studied the transfer of a multi-drug resistance plasmid in planktonic and biofilm populations of K. pneumoniae. We determined plasmid transfer from a clinical isolate, CPE16, which carried four plasmids, including the 119-kbp blaNDM-1-bearing F-type plasmid pCPE16_3, in planktonic and biofilm conditions. We found that transfer frequency of pCPE16_3 in a biofilm was orders-of-magnitude higher than between planktonic cells. In 5/7 sequenced transconjugants (TCs) multiple plasmids had transferred. Plasmid acquisition had no detectable growth impact on TCs. Gene expression of the recipient and a transconjugant was investigated by RNA-sequencing in three lifestyles: planktonic exponential growth, planktonic stationary phase, and biofilm. We found that lifestyle had a substantial impact on chromosomal gene expression, and plasmid carriage affected chromosomal gene expression most in stationary planktonic and biofilm lifestyles. Furthermore, expression of plasmid genes was lifestyle-dependent, with distinct signatures across the three conditions. Our study shows that growth in biofilm greatly increased the risk of conjugative transfer of a carbapenem resistance plasmid in K. pneumoniae without fitness costs and minimal transcriptional rearrangements, thus highlighting the importance of biofilms in the spread of AMR in this opportunistic pathogen. IMPORTANCE Carbapenem-resistant K. pneumoniae is particularly problematic in hospital settings. Carbapenem resistance genes can transfer between bacteria via plasmid conjugation. Alongside drug resistance, K. pneumoniae can form biofilms on hospital surfaces, at infection sites and on implanted devices. Biofilms are naturally protected and can be inherently more tolerant to antimicrobials than their free-floating counterparts. There have been indications that plasmid transfer may be more likely in biofilm populations, thus creating a conjugation "hotspot". However, there is no clear consensus on the effect of the biofilm lifestyle on plasmid transfer. Therefore, we aimed to explore the transfer of a plasmid in planktonic and biofilm conditions, and the impact of plasmid acquisition on a new bacterial host. Our data show transfer of a resistance plasmid is increased in a biofilm, which may be a significant contributing factor to the rapid dissemination of resistance plasmids in K. pneumoniae.
Collapse
Affiliation(s)
- Sarah J. Element
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Robert A. Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Emilie Beattie
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Rebecca J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Michelle M.C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| |
Collapse
|
14
|
Carrilero L, Dunn SJ, Moran RA, McNally A, Brockhurst MA. Evolutionary Responses to Acquiring a Multidrug Resistance Plasmid Are Dominated by Metabolic Functions across Diverse Escherichia coli Lineages. mSystems 2023; 8:e0071322. [PMID: 36722946 PMCID: PMC9948715 DOI: 10.1128/msystems.00713-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/02/2023] [Indexed: 02/02/2023] Open
Abstract
Multidrug resistance (MDR) plasmids drive the spread of antibiotic resistance between bacterial lineages. The immediate impact of MDR plasmid acquisition on fitness and cellular processes varies among bacterial lineages, but how the evolutionary processes enabling the genomic integration of MDR plasmids vary is less well understood, particularly in clinical pathogens. Using diverse Escherichia coli lineages experimentally evolved for ~700 generations, we show that the evolutionary response to gaining the MDR plasmid pLL35 was dominated by chromosomal mutations affecting metabolic and regulatory functions, with both strain-specific and shared mutational targets. The expression of several of these functions, such as anaerobic metabolism, is known to be altered upon acquisition of pLL35. Interactions with resident mobile genetic elements, notably several IS-elements, potentiated parallel mutations, including insertions upstream of hns that were associated with its upregulation and the downregulation of the plasmid-encoded extended-spectrum beta-lactamase gene. Plasmid parallel mutations targeted conjugation-related genes, whose expression was also commonly downregulated in evolved clones. Beyond their role in horizontal gene transfer, plasmids can be an important selective force shaping the evolution of bacterial chromosomes and core cellular functions. IMPORTANCE Plasmids drive the spread of antimicrobial resistance genes between bacterial genomes. However, the evolutionary processes allowing plasmids to be assimilated by diverse bacterial genomes are poorly understood, especially in clinical pathogens. Using experimental evolution with diverse E. coli lineages and a clinical multidrug resistance plasmid, we show that although plasmids drove unique evolutionary paths per lineage, there was a surprising degree of convergence in the functions targeted by mutations across lineages, dominated by metabolic functions. Remarkably, these same metabolic functions show higher evolutionary rates in MDR-lineages in nature and in some cases, like anaerobic metabolism, their expression is directly manipulated by the plasmid. Interactions with other mobile elements resident in the genomes accelerated adaptation by disrupting genes and regulatory sequences that they inserted into. Beyond their role in horizontal gene transfer, plasmids are an important selective force driving the evolution of bacterial genomes and core cellular functions.
Collapse
Affiliation(s)
- Laura Carrilero
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- School of Biosciences, University of Sheffield, United Kingdom
| | - Steven J. Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. Moran
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Genomics, Transcriptomics, and Metabolomics Reveal That Minimal Modifications in the Host Are Crucial for the Compensatory Evolution of ColE1-Like Plasmids. mSphere 2022; 7:e0018422. [PMID: 36416553 PMCID: PMC9769657 DOI: 10.1128/msphere.00184-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmid-mediated antimicrobial resistance is one of the major threats to public health worldwide. The mechanisms involved in the plasmid/host coadaptation are still poorly characterized, and their understanding is crucial to comprehend the genesis and evolution of multidrug-resistant bacteria. With this purpose, we designed an experimental evolution using Haemophilus influenzae RdKW20 as the model strain carrying the ColE1-like plasmid pB1000. Five H. influenzae populations adapted previously to the culture conditions were transformed with pB1000 and subsequently evolved to compensate for the plasmid-associated fitness cost. Afterward, we performed an integrative multiomic analysis combining genomics, transcriptomics, and metabolomics to explore the molecular mechanisms involved in the compensatory evolution of the plasmid. Our results demonstrate that minimal modifications in the host are responsible for plasmid adaptation. Among all of them, the most enriched process was amino acid metabolism, especially those pathways related to serine, tryptophan, and arginine, eventually related to the genesis and resolution of plasmid dimers. Additional rearrangements occurred during the plasmid adaptation, such as an overexpression of the ribonucleotide reductases and metabolic modifications within specific membrane phospholipids. All these findings demonstrate that the plasmid compensation occurs through the combination of diverse host-mediated mechanisms, of which some are beyond genomic and transcriptomic modifications. IMPORTANCE The ability of bacteria to horizontally transfer genetic material has turned antimicrobial resistance into one of the major sanitary crises of the 21st century. Plasmid conjugation is considered the main mechanism responsible for the mobilization of resistance genes, and its understanding is crucial to tackle this crisis. It is generally accepted that the acquisition and maintenance of mobile genetic elements entail a fitness cost to its host, which is susceptible to be alleviated through a coadaptation process or compensatory evolution. Notwithstanding, despite recent major efforts, the underlying mechanisms involved in this adaptation remain poorly characterized. Analyzing the plasmid/host coadaptation from a multiomic perspective sheds light on the physiological processes involved in the compensation, providing a new understanding on the genesis and evolution of plasmid-mediated antimicrobial-resistant bacteria.
Collapse
|
16
|
Downing T, Rahm A. Bacterial plasmid-associated and chromosomal proteins have fundamentally different properties in protein interaction networks. Sci Rep 2022; 12:19203. [PMID: 36357451 PMCID: PMC9649638 DOI: 10.1038/s41598-022-20809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Plasmids facilitate horizontal gene transfer, which enables the diversification of pathogens into new anatomical and environmental niches, implying that plasmid-encoded genes can cooperate well with chromosomal genes. We hypothesise that such mobile genes are functionally different to chromosomal ones due to this ability to encode proteins performing non-essential functions like antimicrobial resistance and traverse distinct host cells. The effect of plasmid-driven gene gain on protein-protein interaction network topology is an important question in this area. Moreover, the extent to which these chromosomally- and plasmid-encoded proteins interact with proteins from their own groups compared to the levels with the other group remains unclear. Here, we examined the incidence and protein-protein interactions of all known plasmid-encoded proteins across representative specimens from most bacteria using all available plasmids. We found that plasmid-encoded genes constitute ~ 0.65% of the total number of genes per bacterial sample, and that plasmid genes are preferentially associated with different species but had limited taxonomical power beyond this. Surprisingly, plasmid-encoded proteins had both more protein-protein interactions compared to chromosomal proteins, countering the hypothesis that genes with higher mobility rates should have fewer protein-level interactions. Nonetheless, topological analysis and investigation of the protein-protein interaction networks' connectivity and change in the number of independent components demonstrated that the plasmid-encoded proteins had limited overall impact in > 96% of samples. This paper assembled extensive data on plasmid-encoded proteins, their interactions and associations with diverse bacterial specimens that is available for the community to investigate in more detail.
Collapse
Affiliation(s)
- Tim Downing
- grid.15596.3e0000000102380260School of Biotechnology, Dublin City University, Dublin, Ireland ,grid.63622.330000 0004 0388 7540Present Address: The Pirbright Institute, Pirbright, UK
| | - Alexander Rahm
- grid.449688.f0000 0004 0647 1487GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
17
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
18
|
Bottery MJ. Ecological dynamics of plasmid transfer and persistence in microbial communities. Curr Opin Microbiol 2022; 68:102152. [PMID: 35504055 PMCID: PMC9586876 DOI: 10.1016/j.mib.2022.102152] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Plasmids are a major driver of horizontal gene transfer in prokaryotes, allowing the sharing of ecologically important accessory traits between distantly related bacterial taxa. Within microbial communities, interspecies transfer of conjugative plasmids can rapidly drive the generation genomic innovation and diversification. Recent studies are starting to shed light on how the microbial community context, that is, the bacterial diversity together with interspecies interactions that occur within a community, can alter the dynamics of conjugative plasmid transfer and persistence. Here, I summarise the latest research exploring how community ecology can both facilitate and impose barriers to the spread of conjugative plasmids within complex microbial communities. Ultimately, the fate of plasmids within communities is unlikely to be determined by any one individual host, rather it will depend on the interacting factors imposed by the community in which it is embedded.
Collapse
Affiliation(s)
- Michael J Bottery
- Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
19
|
Billane K, Harrison E, Cameron D, Brockhurst MA. Why do plasmids manipulate the expression of bacterial phenotypes? Philos Trans R Soc Lond B Biol Sci 2022; 377:20200461. [PMID: 34839708 PMCID: PMC8628079 DOI: 10.1098/rstb.2020.0461] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conjugative plasmids play an important role in bacterial evolution by transferring niche-adaptive traits between lineages, thus driving adaptation and genome diversification. It is increasingly clear, however, that in addition to this evolutionary role, plasmids also manipulate the expression of a broad range of bacterial phenotypes. In this review, we argue that the effects that plasmids have on the expression of bacterial phenotypes may often represent plasmid adaptations, rather than mere deleterious side effects. We begin by summarizing findings from untargeted omics analyses, which give a picture of the global effects of plasmid acquisition on host cells. Thereafter, because many plasmids are capable of both vertical and horizontal transmission, we distinguish plasmid-mediated phenotypic effects into two main classes based upon their potential fitness benefit to plasmids: (i) those that promote the competitiveness of the host cell in a given niche and thereby increase plasmid vertical transmission, and (ii) those that promote plasmid conjugation and thereby increase plasmid horizontal transmission. Far from being mere vehicles for gene exchange, we propose that plasmids often act as sophisticated genetic parasites capable of manipulating their bacterial hosts for their own benefit. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- Kathryn Billane
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Duncan Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Brockhurst MA, Harrison E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol 2021; 30:534-543. [PMID: 34848115 DOI: 10.1016/j.tim.2021.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
The 'plasmid paradox' arises because, although plasmids are common features of bacterial genomes, theoretically they should not exist: rates of conjugation were believed insufficient to allow plasmids to persist by infectious transmission, whereas the costs of plasmid maintenance meant that plasmids should be purged by negative selection regardless of whether they encoded beneficial accessory traits because these traits should eventually be captured by the chromosome, enabling the loss of the redundant plasmid. In the decade since the plasmid paradox was described, new data and theory show that a range of ecological and evolutionary mechanisms operate in bacterial populations and communities to explain the widespread distribution and stable maintenance of plasmids. We conclude, therefore, that multiple solutions to the plasmid paradox are now well understood. The current challenge for the field, however, is to better understand how these solutions operate in natural bacterial communities to explain and predict the distribution of plasmids and the dynamics of the horizontal gene transfer that they mediate in bacterial (pan)genomes.
Collapse
Affiliation(s)
- Michael A Brockhurst
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Ellie Harrison
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
21
|
Tedim AP, Lanza VF, Rodríguez CM, Freitas AR, Novais C, Peixe L, Baquero F, Coque TM. Fitness cost of vancomycin-resistant Enterococcus faecium plasmids associated with hospital infection outbreaks. J Antimicrob Chemother 2021; 76:2757-2764. [PMID: 34450635 DOI: 10.1093/jac/dkab249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vancomycin resistance is mostly associated with Enterococcus faecium due to Tn1546-vanA located on narrow- and broad-host plasmids of various families. This study's aim was to analyse the effects of acquiring Tn1546-carrying plasmids with proven epidemicity in different bacterial host backgrounds. METHODS Widespread Tn1546-carrying plasmids of different families RepA_N (n = 5), Inc18 (n = 4) and/or pHTβ (n = 1), and prototype plasmids RepA_N (pRUM) and Inc18 (pRE25, pIP501) were analysed. Plasmid transferability and fitness cost were assessed using E. faecium (GE1, 64/3) and Enterococcus faecalis (JH2-2/FA202/UV202) recipient strains. Growth curves (Bioscreen C) and Relative Growth Rates were obtained in the presence/absence of vancomycin. Plasmid stability was analysed (300 generations). WGS (Illumina-MiSeq) of non-evolved and evolved strains (GE1/64/3 transconjugants, n = 49) was performed. SNP calling (Breseq software) of non-evolved strains was used for comparison. RESULTS All plasmids were successfully transferred to different E. faecium clonal backgrounds. Most Tn1546-carrying plasmids and Inc18 and RepA_N prototypes reduced host fitness (-2% to 18%) while the cost of Tn1546 expression varied according to the Tn1546-variant and the recipient strain (9%-49%). Stability of Tn1546-carrying plasmids was documented in all cases, often with loss of phenotypic resistance and/or partial plasmid deletions. SNPs and/or indels associated with essential bacterial functions were observed on the chromosome of evolved strains, some of them linked to increased fitness. CONCLUSIONS The stability of E. faecium Tn1546-carrying plasmids in the absence of selective pressure and the high intra-species conjugation rates might explain the persistence of vancomycin resistance in E. faecium populations despite the significant burden they might impose on bacterial host strains.
Collapse
Affiliation(s)
- Ana P Tedim
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Val F Lanza
- Unit of Bioinformatics, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | - Ana R Freitas
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Fernando Baquero
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain.,Centres for Biomedical Research in the Epidemiology and Public Health Network (CIBER-ESP), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| |
Collapse
|