1
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
3
|
Yılmaz TM, Mungan MD, Berasategui A, Ziemert N. FunARTS, the Fungal bioActive compound Resistant Target Seeker, an exploration engine for target-directed genome mining in fungi. Nucleic Acids Res 2023:7173779. [PMID: 37207330 DOI: 10.1093/nar/gkad386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
There is an urgent need to diversify the pipeline for discovering novel natural products due to the increase in multi-drug resistant infections. Like bacteria, fungi also produce secondary metabolites that have potent bioactivity and rich chemical diversity. To avoid self-toxicity, fungi encode resistance genes which are often present within the biosynthetic gene clusters (BGCs) of the corresponding bioactive compounds. Recent advances in genome mining tools have enabled the detection and prediction of BGCs responsible for the biosynthesis of secondary metabolites. The main challenge now is to prioritize the most promising BGCs that produce bioactive compounds with novel modes of action. With target-directed genome mining methods, it is possible to predict the mode of action of a compound encoded in an uncharacterized BGC based on the presence of resistant target genes. Here, we introduce the 'fungal bioactive compound resistant target seeker' (FunARTS) available at https://funarts.ziemertlab.com. This is a specific and efficient mining tool for the identification of fungal bioactive compounds with interesting and novel targets. FunARTS rapidly links housekeeping and known resistance genes to BGC proximity and duplication events, allowing for automated, target-directed mining of fungal genomes. Additionally, FunARTS generates gene cluster networking by comparing the similarity of BGCs from multi-genomes.
Collapse
Affiliation(s)
- Turgut Mesut Yılmaz
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Mehmet Direnç Mungan
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Aileen Berasategui
- University of Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Nadine Ziemert
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
5
|
Whole genome sequence characterization of Aspergillus terreus ATCC 20541 and genome comparison of the fungi A. terreus. Sci Rep 2023; 13:194. [PMID: 36604572 PMCID: PMC9814666 DOI: 10.1038/s41598-022-27311-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Aspergillus terreus is well-known for lovastatin and itaconic acid production with biomedical and commercial importance. The mechanisms of metabolite formation have been extensively studied to improve their yield through genetic engineering. However, the combined repertoire of carbohydrate-active enzymes (CAZymes), cytochrome P450s (CYP) enzymes, and secondary metabolites (SMs) in the different A. terreus strains has not been well studied yet, especially with respect to the presence of biosynthetic gene clusters (BGCs). Here we present a 30 Mb whole genome sequence of A. terreus ATCC 20541 in which we predicted 10,410 protein-coding genes. We compared the CAZymes, CYPs enzyme, and SMs across eleven A. terreus strains, and the results indicate that all strains have rich pectin degradation enzyme and CYP52 families. The lovastatin BGC of lovI was linked with lovF in A. terreus ATCC 20541, and the phenomenon was not found in the other strains. A. terreus ATCC 20541 lacked a non-ribosomal peptide synthetase (AnaPS) participating in acetylaszonalenin production, which was a conserved protein in the ten other strains. Our results present a comprehensive analysis of CAZymes, CYPs enzyme, and SM diversities in A. terreus strains and will facilitate further research in the function of BGCs associated with valuable SMs.
Collapse
|
6
|
Yuan B, Keller NP, Oakley BR, Stajich JE, Wang CCC. Manipulation of the Global Regulator mcrA Upregulates Secondary Metabolite Production in Aspergillus wentii Using CRISPR-Cas9 with In Vitro Assembled Ribonucleoproteins. ACS Chem Biol 2022; 17:2828-2835. [PMID: 36197945 PMCID: PMC9624091 DOI: 10.1021/acschembio.2c00456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genome sequencing of filamentous fungi has demonstrated that most secondary metabolite biosynthetic gene clusters (BGCs) are silent under standard laboratory conditions. In this work, we have established an in vitro CRISPR-Cas9 system in Aspergillus wentii. To activate otherwise silent BGCs, we deleted the negative transcriptional regulator mcrA. Deletion of mcrA (mcrAΔ) resulted in differential production of 17 SMs in total when the strain was cultivated on potato dextrose media (PDA). Nine out of fifteen of these SMs were fully characterized, including emodin (1), physcion (2), sulochrin (3), physcion bianthrone (4), 14-O-demethylsulochrin (5), (trans/cis)-emodin bianthrone (6 and 7), and (trans/cis)-emodin physcion bianthrone (8 and 9). These compounds were all found to be produced by the same polyketide synthase (PKS) BGC. We then performed a secondary knockout targeting this PKS cluster in the mcrAΔ background. The metabolite profile of the dual-knockout strain revealed new metabolites that were not previously detected in the mcrAΔ parent strain. Two additional SMs were purified from the dual-knockout strain and were characterized as aspergillus acid B (16) and a structurally related but previously unidentified compound (17). For the first time, this work presents a facile genetic system capable of targeted gene editing in A. wentii. This work also illustrates the utility of performing a dual knockout to eliminate major metabolic products, enabling additional SM discovery.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California 92521, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
8
|
Bradley NP, Wahl KL, Steenwyk JL, Rokas A, Eichman BF. Resistance-Guided Mining of Bacterial Genotoxins Defines a Family of DNA Glycosylases. mBio 2022; 13:e0329721. [PMID: 35311535 PMCID: PMC9040887 DOI: 10.1128/mbio.03297-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Unique DNA repair enzymes that provide self-resistance against therapeutically important, genotoxic natural products have been discovered in bacterial biosynthetic gene clusters (BGCs). Among these, the DNA glycosylase AlkZ is essential for azinomycin B production and belongs to the HTH_42 superfamily of uncharacterized proteins. Despite their widespread existence in antibiotic producers and pathogens, the roles of these proteins in production of other natural products are unknown. Here, we determine the evolutionary relationship and genomic distribution of all HTH_42 proteins from Streptomyces and use a resistance-based genome mining approach to identify homologs associated with known and uncharacterized BGCs. We find that AlkZ-like (AZL) proteins constitute one distinct HTH_42 subfamily and are highly enriched in BGCs and variable in sequence, suggesting each has evolved to protect against a specific secondary metabolite. As a validation of the approach, we show that the AZL protein, HedH4, associated with biosynthesis of the alkylating agent hedamycin, excises hedamycin-DNA adducts with exquisite specificity and provides resistance to the natural product in cells. We also identify a second, phylogenetically and functionally distinct subfamily whose proteins are never associated with BGCs, are highly conserved with respect to sequence and genomic neighborhood, and repair DNA lesions not associated with a particular natural product. This work delineates two related families of DNA repair enzymes-one specific for complex alkyl-DNA lesions and involved in self-resistance to antimicrobials and the other likely involved in protection against an array of genotoxins-and provides a framework for targeted discovery of new genotoxic compounds with therapeutic potential. IMPORTANCE Bacteria are rich sources of secondary metabolites that include DNA-damaging genotoxins with antitumor/antibiotic properties. Although Streptomyces produce a diverse number of therapeutic genotoxins, efforts toward targeted discovery of biosynthetic gene clusters (BGCs) producing DNA-damaging agents is lacking. Moreover, work on toxin-resistance genes has lagged behind our understanding of those involved in natural product synthesis. Here, we identified over 70 uncharacterized BGCs producing potentially novel genotoxins through resistance-based genome mining using the azinomycin B-resistance DNA glycosylase AlkZ. We validate our analysis by characterizing the enzymatic activity and cellular resistance of one AlkZ ortholog in the BGC of hedamycin, a potent DNA alkylating agent. Moreover, we uncover a second, phylogenetically distinct family of proteins related to Escherichia coli YcaQ, a DNA glycosylase capable of unhooking interstrand DNA cross-links, which differs from the AlkZ-like family in sequence, genomic location, proximity to BGCs, and substrate specificity. This work defines two families of DNA glycosylase for specialized repair of complex genotoxic natural products and generalized repair of a broad range of alkyl-DNA adducts and provides a framework for targeted discovery of new compounds with therapeutic potential.
Collapse
Affiliation(s)
- Noah P. Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Katherine L. Wahl
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Brandt F. Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet 2021; 22:553-571. [PMID: 34083778 PMCID: PMC8364890 DOI: 10.1038/s41576-021-00363-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
All organisms produce specialized organic molecules, ranging from small volatile chemicals to large gene-encoded peptides, that have evolved to provide them with diverse cellular and ecological functions. As natural products, they are broadly applied in medicine, agriculture and nutrition. The rapid accumulation of genomic information has revealed that the metabolic capacity of virtually all organisms is vastly underappreciated. Pioneered mainly in bacteria and fungi, genome mining technologies are accelerating metabolite discovery. Recent efforts are now being expanded to all life forms, including protists, plants and animals, and new integrative omics technologies are enabling the increasingly effective mining of this molecular diversity.
Collapse
Affiliation(s)
- Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Scherlach K, Hertweck C. Mining and unearthing hidden biosynthetic potential. Nat Commun 2021; 12:3864. [PMID: 34162873 PMCID: PMC8222398 DOI: 10.1038/s41467-021-24133-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Genetically encoded small molecules (secondary metabolites) play eminent roles in ecological interactions, as pathogenicity factors and as drug leads. Yet, these chemical mediators often evade detection, and the discovery of novel entities is hampered by low production and high rediscovery rates. These limitations may be addressed by genome mining for biosynthetic gene clusters, thereby unveiling cryptic metabolic potential. The development of sophisticated data mining methods and genetic and analytical tools has enabled the discovery of an impressive array of previously overlooked natural products. This review shows the newest developments in the field, highlighting compound discovery from unconventional sources and microbiomes. Natural products are an important source of bioactive compounds and have versatile applications in different fields, but their discovery is challenging. Here, the authors review the recent developments in genome mining for discovery of natural products, focusing on compounds from unconventional microorganisms and microbiomes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
11
|
Perlatti B, Nichols CB, Lan N, Wiemann P, Harvey CJB, Alspaugh JA, Bills GF. Identification of the Antifungal Metabolite Chaetoglobosin P From Discosia rubi Using a Cryptococcus neoformans Inhibition Assay: Insights Into Mode of Action and Biosynthesis. Front Microbiol 2020; 11:1766. [PMID: 32849391 PMCID: PMC7399079 DOI: 10.3389/fmicb.2020.01766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcus neoformans is an important human pathogen with limited options for treatments. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition, differential thermosensitivity, and synergy with existing antifungal drugs. Extracts from fermentations of strains of Discosia rubi from eastern Texas showed anticryptococcal bioactivity with preferential activity in agar zone of inhibition assays against C. neoformans at 37°C versus 25°C. Assay-guided fractionation led to the purification and identification of chaetoglobosin P as the active component of these extracts. Genome sequencing of these strains revealed a biosynthetic gene cluster consistent with chaetoglobosin biosynthesis and β-methylation of the tryptophan residue. Proximity of genes of the actin-binding protein twinfilin-1 to the chaetoglobosin P and K gene clusters suggested a possible self-resistance mechanism involving twinfilin-1 which is consistent with the predicted mechanism of action involving interference with the polymerization of the capping process of filamentous actin. A C. neoformans mutant lacking twinfilin-1 was hypersensitive to chaetoglobosin P. Chaetoglobosins also potentiated the effects of amphotericin B and caspofungin on C. neoformans.
Collapse
Affiliation(s)
- Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | - Connie B Nichols
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Nan Lan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | | | | | - J Andrew Alspaugh
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| |
Collapse
|
12
|
Larkin PMK, Multani A, Beaird OE, Dayo AJ, Fishbein GA, Yang S. A Collaborative Tale of Diagnosing and Treating Chronic Pulmonary Aspergillosis, from the Perspectives of Clinical Microbiologists, Surgical Pathologists, and Infectious Disease Clinicians. J Fungi (Basel) 2020; 6:E106. [PMID: 32664547 PMCID: PMC7558816 DOI: 10.3390/jof6030106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic pulmonary aspergillosis (CPA) refers to a spectrum of Aspergillus-mediated disease that is associated with high morbidity and mortality, with its true prevalence vastly underestimated. The diagnosis of CPA includes characteristic radiographical findings in conjunction with persistent and systemic symptoms present for at least three months, and evidence of Aspergillus infection. Traditionally, Aspergillus infection has been confirmed through histopathology and microbiological studies, including fungal culture and serology, but these methodologies have limitations that are discussed in this review. The treatment of CPA requires an individualized approach and consideration of both medical and surgical options. Most Aspergillus species are considered susceptible to mold-active triazoles, echinocandins, and amphotericin B; however, antifungal resistance is emerging and well documented, demonstrating the need for novel therapies and antifungal susceptibility testing that correlates with clinical response. Here, we describe the clinical presentation, diagnosis, and treatment of CPA, with an emphasis on the strengths and pitfalls of diagnostic and treatment approaches, as well as future directions, including whole genome sequencing and metagenomic sequencing. The advancement of molecular technology enables rapid and precise species level identification, and the determination of molecular mechanisms of resistance, bridging the clinical infectious disease, anatomical pathology, microbiology, and molecular biology disciplines.
Collapse
Affiliation(s)
- Paige M. K. Larkin
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.M.K.L.); (A.J.D.); (G.A.F.)
- Department of Pathology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Ashrit Multani
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.M.); (O.E.B.)
| | - Omer E. Beaird
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.M.); (O.E.B.)
| | - Ayrton J. Dayo
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.M.K.L.); (A.J.D.); (G.A.F.)
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.M.K.L.); (A.J.D.); (G.A.F.)
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.M.K.L.); (A.J.D.); (G.A.F.)
| |
Collapse
|
13
|
Yan Y, Liu N, Tang Y. Recent developments in self-resistance gene directed natural product discovery. Nat Prod Rep 2020; 37:879-892. [PMID: 31912842 PMCID: PMC7340575 DOI: 10.1039/c9np00050j] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: 2000 to 2019Natural products (NPs) are important sources of human therapeutic agents and pesticides. To prevent self-harm from bioactive NPs, some microbial producers employ self-resistance genes to protect themselves. One effective strategy is to employ a self-resistance enzyme (SRE), which is a slightly mutated version of the original metabolic enzyme, and is resistant to the toxic NP but is still functional. The presence of a SRE in a gene cluster can serve as a predictive window to the biological activity of the NPs synthesized by the pathway. In this highlight, we summarize representative examples of NP biosynthetic pathways that utilize self-resistance genes for protection. Recent discoveries based on self-resistance gene identification have helped in bridging the gap between activity-guided and genome-driven approaches for NP discovery and functional assignment.
Collapse
Affiliation(s)
- Yan Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
14
|
Lan N, Perlatti B, Kvitek DJ, Wiemann P, Harvey CJB, Frisvad J, An Z, Bills GF. Acrophiarin (antibiotic S31794/F-1) from Penicillium arenicola shares biosynthetic features with both Aspergillus- and Leotiomycete-type echinocandins. Environ Microbiol 2020; 22:2292-2311. [PMID: 32239586 DOI: 10.1111/1462-2920.15004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/28/2020] [Indexed: 11/30/2022]
Abstract
The antifungal echinocandin lipopeptide, acrophiarin, was circumscribed in a patent in 1979. We confirmed that the producing strain NRRL 8095 is Penicillium arenicola and other strains of P. arenicola produced acrophiarin and acrophiarin analogues. Genome sequencing of NRRL 8095 identified the acrophiarin gene cluster. Penicillium arenicola and echinocandin-producing Aspergillus species belong to the family Aspergillaceae of the Eurotiomycetes, but several features of acrophiarin and its gene cluster suggest a closer relationship with echinocandins from Leotiomycete fungi. These features include hydroxy-glutamine in the peptide core instead of a serine or threonine residue, the inclusion of a non-heme iron, α-ketoglutarate-dependent oxygenase for hydroxylation of the C3 of the glutamine, and a thioesterase. In addition, P. arenicola bears similarity to Leotiomycete echinocandin-producing species because it exhibits self-resistance to exogenous echinocandins. Phylogenetic analysis of the genes of the echinocandin biosynthetic family indicated that most of the predicted proteins of acrophiarin gene cluster exhibited higher similarity to the predicted proteins of the pneumocandin gene cluster of the Leotiomycete Glarea lozoyensis than to those of the echinocandin B gene cluster from A. pachycristatus. The fellutamide gene cluster and related gene clusters are recognized as relatives of the echinocandins. Inclusion of the acrophiarin gene cluster into a comprehensive phylogenetic analysis of echinocandin gene clusters indicated the divergent evolutionary lineages of echinocandin gene clusters are descendants from a common ancestral progenitor. The minimal 10-gene cluster may have undergone multiple gene acquisitions or losses and possibly horizontal gene transfer after the ancestral separation of the two lineages.
Collapse
Affiliation(s)
- Nan Lan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | | | | | | | - Jens Frisvad
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| |
Collapse
|
15
|
Navarro-Muñoz JC, Collemare J. Evolutionary Histories of Type III Polyketide Synthases in Fungi. Front Microbiol 2020; 10:3018. [PMID: 32038517 PMCID: PMC6985275 DOI: 10.3389/fmicb.2019.03018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Type III polyketide synthases (PKSs) produce secondary metabolites with diverse biological activities, including antimicrobials. While they have been extensively studied in plants and bacteria, only a handful of type III PKSs from fungi has been characterized in the last 15 years. The exploitation of fungal type III PKSs to produce novel bioactive compounds requires understanding the diversity of these enzymes, as well as of their biosynthetic pathways. Here, phylogenetic and reconciliation analyses of 522 type III PKSs from 1,193 fungal genomes revealed complex evolutionary histories with massive gene duplications and losses, explaining their discontinuous distribution in the fungal tree of life. In addition, horizontal gene transfer events from bacteria to fungi and, to a lower extent, between fungi, could be inferred. Ancestral gene duplication events have resulted in the divergence of eight phylogenetic clades. Especially, two clades show ancestral linkage and functional co-evolution between a type III PKS and a reducing PKS genes. Investigation of the occurrence of protein domains in fungal type III PKS predicted gene clusters highlighted the diversity of biosynthetic pathways, likely reflecting a large chemical landscape. Type III PKS genes are most often located next to genes encoding cytochrome P450s, MFS transporters and transcription factors, defining ancestral core gene clusters. This analysis also allowed predicting gene clusters for the characterized fungal type III PKSs and provides working hypotheses for the elucidation of the full biosynthetic pathways. Altogether, our analyses provide the fundamental knowledge to motivate further characterization and exploitation of fungal type III PKS biosynthetic pathways.
Collapse
|
16
|
Slot JC, Gluck-Thaler E. Metabolic gene clusters, fungal diversity, and the generation of accessory functions. Curr Opin Genet Dev 2019; 58-59:17-24. [DOI: 10.1016/j.gde.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
|
17
|
Greco C, Keller NP, Rokas A. Unearthing fungal chemodiversity and prospects for drug discovery. Curr Opin Microbiol 2019; 51:22-29. [PMID: 31071615 PMCID: PMC6832774 DOI: 10.1016/j.mib.2019.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Natural products have drastically improved our lives by providing an excellent source of molecules to fight cancer, pathogens, and cardiovascular diseases that have revolutionized medicine. Fungi are prolific producers of diverse natural products and several recent advances in synthetic biology, genetics, bioinformatics, and natural product chemistry have greatly enhanced our ability to efficiently mine their genomes for the discovery of novel drugs. In this article, we provide an overview of improved heterologous expression platforms for targeted production of fungal secondary metabolites, of advances in chemical and bioinformatics dereplication, and of novel bioinformatic platforms to discover biosynthetic genes involved in the production of metabolites with specific bioactivities. These advances, coupled with the presence of vast numbers of biosynthetic gene clusters in fungal genomes whose natural products remain unknown, have revitalized efforts to mine the fungal treasure chest and renewed the promise of discovering new drugs.
Collapse
Affiliation(s)
- Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
MycopathologiaGENOMES: The New 'Home' for the Publication of Fungal Genomes. Mycopathologia 2019; 184:551-554. [PMID: 31399887 DOI: 10.1007/s11046-019-00366-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/20/2019] [Indexed: 10/26/2022]
Abstract
The wider availability of information on genomes has become essential for future advances in fungal biology, pathogenesis and epidemiology, and for the discovery of new drugs and diagnostics. MycopathologiaGENOMES is designed for the rapid publication of new genomes of human and animal pathogenic fungi using a checklist-based, standardized format.
Collapse
|