1
|
Chen S, Zhang C, Liu X, Shi Y, Lyu L, Gao G, Yang T, Fan K, Zhang L, Li J, Song L, Yan S, Chu H. Trophic transfer efficiency of microbial food webs differs in water and sediment in alpine wetlands across the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2025; 274:121291. [PMID: 40049352 DOI: 10.1016/j.envres.2025.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
The Tibetan Plateau contains the world's largest area of alpine wetlands, where coexisting water and sediment environments provide habitats for multitrophic microbial communities. However, the microbial food web (MFW) of coexisting water and sediment in wetland ecosystems and their responses to environmental changes remain unclear. In this study, we investigated MFWs (including archaea, bacteria, and eukaryotes) across 21 paired samples from alpine wetlands on the Tibetan Plateau along a salinity gradient. In both water and sediment, the MFWs exhibited enhanced predation and decreased mutualism with increasing salinity, with the total trophic transfer efficiency (TTE) community of bacteria, protists and metazoa increasing. The TTE of MFWs in sediment was higher than that in water, and the competition associations among species decreased while the cooperation associations increased. Compared to sediment, the MFWs in water were more complex and vulnerable. Salinity exerted top-down control on MFWs by directly influencing higher trophic levels (e.g., metazoa) in water. In contrast, salinity affected the MFWs through bottom-up effects by impacting lower trophic levels (heterotrophic archaea, heterotrophic bacteria) in sediment. Overall, this study provides new insights into understanding the trophic cycle and interactions of multi-trophic biological communities in coexisting water and sediment, and how MFWs adapt to environmental change.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cunzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lihui Lyu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Liyan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiasui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Luyao Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Subo Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Lauzon J, Caron D, Lazar CS. The Saint-Leonard Urban Glaciotectonic Cave Harbors Rich and Diverse Planktonic and Sedimentary Microbial Communities. Microorganisms 2024; 12:1791. [PMID: 39338466 PMCID: PMC11434022 DOI: 10.3390/microorganisms12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers. Our study is the first to investigate the microbial communities of the Saint-Leonard cave. By using amplicon sequencing, we analyzed the taxonomic diversity and composition of bacterial, archaeal and eukaryote communities living in the groundwater (0.1 µm- and 0.2 µm-filtered water), in the sediments and in surface soils. We identified a microbial biodiversity typical of cave ecosystems. Communities were mainly shaped by habitat type and harbored taxa associated with a wide variety of lifestyles and metabolic capacities. Although we found evidence of a geochemical connection between the above soils and the cave's galleries, our results suggest that the community assembly dynamics are driven by habitat selection rather than dispersal. Furthermore, we found that the cave's groundwater, in addition to being generally richer in microbial taxa than sediments, contained a considerable diversity of ultra-small bacteria and archaea.
Collapse
Affiliation(s)
- Jocelyn Lauzon
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | | | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
3
|
Islam W, Zeng F, Almoallim HS, Ansari MJ. Unveiling soil animal community dynamics beneath dominant shrub species in natural desert environment: Implications for ecosystem management and conservation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121697. [PMID: 38976951 DOI: 10.1016/j.jenvman.2024.121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The Taklimakan Desert, known for extreme aridity and unique ecological challenges, maintains a delicate life balance beneath its harsh surface. This study investigates intricate dynamics of soil animal communities within this desert ecosystem, with a particular focus on vertical profile variations beneath four dominant shrub species (AS-Alhagi sparsifolia, KC-Karelinia caspia, TR- Tamarix ramosissima, CC- Calligonum caput-medusae). Utilizing comprehensive soil sampling and metagenomics techniques, we reveal the diversity and distribution patterns of soil animal communities from the soil surface down to deeper layers (0-100 cm). Our research outcomes have unveiled that Nematoda and Arthropoda emerge as the most predominant classes of soil animals across all studied shrubs. Specifically, Nematoda exhibited notably high abundance in the KC area, while Arthropoda thrived predominantly in the TR region. We also observed a linear decrease in Nematoda populations as soil depth increased, consistent among all shrub species. Moreover, the highest Shannon diversity within soil animal communities was recorded in the KC area, underscoring a trend of declining alpha diversity in the AS region and an increase in other shrub areas as soil depth increased. Notably, the zones dominated by CC and TR displayed the highest levels of beta diversity. Our correlation analysis of soil animals and environmental factors has pinpointed soil water content, available phosphorus, and available potassium as the most influential drivers of variations in the top-classified soil animal communities. This study provides insights into soil animals in deserts, supporting future research to preserve these fragile deserts and enhance our understanding of life below the surface in challenging ecosystems.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| |
Collapse
|
4
|
Myeong NR, Kwon MJ, Göckede M, Tripathi BM, Kim M. Responses of soil micro-eukaryotic communities to decadal drainage in a Siberian wet tussock tundra. Front Microbiol 2024; 14:1227909. [PMID: 38249484 PMCID: PMC10797069 DOI: 10.3389/fmicb.2023.1227909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Climate warming holds the potential to cause extensive drying of wetlands in the Arctic, but the warming-drying effects on belowground ecosystems, particularly micro-eukaryotes, remain poorly understood. We investigated the responses of soil micro-eukaryotic communities, including fungi, protists, and microbial metazoa, to decadal drainage manipulation in a Siberian wet tundra using both amplicon and shotgun metagenomic sequencing. Our results indicate that drainage treatment increased the abundance of both fungal and non-fungal micro-eukaryotic communities, with key groups such as Ascomycota (mostly order Helotiales), Nematoda, and Tardigrada being notably abundant in drained sites. Functional traits analysis showed an increase in litter saprotrophic fungi and protistan consumers, indicating their increased activities in drained sites. The effects of drainage were more pronounced in the surface soil layer than the deeper layer, as soils dry and warm from the surface. Marked compositional shifts were observed for both communities, with fungal communities being more strongly influenced by drainage-induced vegetation change than the lowered water table itself, while the vegetation effect on non-fungal micro-eukaryotes was moderate. These findings provide insights into how belowground micro-eukaryotic communities respond to the widespread drying of wetlands in the Arctic and improve our predictive understanding of future ecosystem changes.
Collapse
Affiliation(s)
- Nu Ri Myeong
- Korea Polar Research Institute (KOPRI), Incheon, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Min Jung Kwon
- Institute of Soil Science, University of Hamburg, Hamburg, Germany
| | | | - Binu M. Tripathi
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Mincheol Kim
- Korea Polar Research Institute (KOPRI), Incheon, Republic of Korea
| |
Collapse
|
5
|
Huaiquipán R, Quiñones J, Díaz R, Velásquez C, Sepúlveda G, Velázquez L, Paz EA, Tapia D, Cancino D, Sepúlveda N. Review: Effect of Experimental Diets on the Microbiome of Productive Animals. Microorganisms 2023; 11:2219. [PMID: 37764062 PMCID: PMC10536378 DOI: 10.3390/microorganisms11092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
The microorganisms that inhabit the gastrointestinal tract are responsible for multiple chains of reactions that affect their environment and modify the internal metabolism, their study receives the name of microbiome, which has become more relevant in recent years. In the near future, the challenges related to feeding are anticipated to escalate, encompassing the nutritional needs to sustain an overpopulated world. Therefore, it is expected that a better understanding of the interactions between microorganisms within the digestive tract will allow their modulation in order to provide an improvement in the immune system, feed efficiency or the promotion of nutritional characteristics in production animals, among others. In the present study, the main effects of experimental diets in production animals were described, emphasizing the diversity of the bacterial populations found in response to the diets, ordering them between polygastric and monogastric animals, and then describing the experimental diets used and their effect on the microorganisms. It is hoped that this study will help as a first general approach to the study of the role of the microbiome in production animals under different diets.
Collapse
Affiliation(s)
- Rodrigo Huaiquipán
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - John Quiñones
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carla Velásquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Gastón Sepúlveda
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Lidiana Velázquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Erwin A. Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - Daniela Tapia
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - David Cancino
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
6
|
Microbiomes of microscopic marine invertebrates do not reveal signatures of phylosymbiosis. Nat Microbiol 2022; 7:810-819. [PMID: 35618773 DOI: 10.1038/s41564-022-01125-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/12/2022] [Indexed: 01/02/2023]
Abstract
Animals and microorganisms often establish close ecological relationships. However, much of our knowledge about animal microbiomes comes from two deeply studied groups: vertebrates and arthropods. To understand interactions on a broader scale of diversity, we characterized the bacterial microbiomes of close to 1,000 microscopic marine invertebrates from 21 phyla, spanning most of the remaining tree of metazoans. Samples were collected from five temperate and tropical locations covering three marine habitats (sediment, water column and intertidal macroalgae) and bacterial microbiomes were characterized using 16S ribosomal RNA gene sequencing. Our data show that, despite their size, these animals harbour bacterial communities that differ from those in the surrounding environment. Distantly related but coexisting invertebrates tend to share many of the same bacteria, suggesting that guilds of microorganisms preferentially associated with animals, but not tied to any specific host lineage, are the main drivers of the ecological relationship. Host identity is a minor factor shaping these microbiomes, which do not show the same correlation with host phylogeny, or 'phylosymbiosis', observed in many large animals. Hence, the current debate on the varying strength of phylosymbiosis within selected lineages should be reframed to account for the possibility that such a pattern might be the exception rather than the rule.
Collapse
|
7
|
Wang H, Weil M, Dumack K, Zak D, Münch D, Günther A, Jurasinski G, Blume-Werry G, Kreyling J, Urich T. Eukaryotic rather than prokaryotic microbiomes change over seasons in rewetted fen peatlands. FEMS Microbiol Ecol 2021; 97:6356952. [PMID: 34427631 DOI: 10.1093/femsec/fiab121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, rewetting of drained peatlands is on the rise worldwide, to restore their significant carbon sink function. Despite the increasing understanding of peat microbiomes, little is known about the seasonal dynamics and network interactions of the microbial communities in these ecosystems, especially in rewetted fens (groundwater-fed peatlands). Here, we investigated the seasonal dynamics in both prokaryotic and eukaryotic microbiomes in three common fen types in Northern Germany. The eukaryotic microbiomes, including fungi, protists and microbial metazoa, showed significant changes in their community structures across the seasons in contrast to largely unaffected prokaryotic microbiomes. Furthermore, our results proved that the dynamics in eukaryotic microbiomes in the rewetted sites differed between fen types, specifically in terms of saprotrophs, arbuscular mycorrhiza and grazers of bacteria. The co-occurrence networks also exhibited strong seasonal dynamics that differed between rewetted and drained sites, and the correlations involving protists and prokaryotes were the major contributors to these dynamics. Our study provides the insight that microbial eukaryotes mainly define the seasonal dynamics of microbiomes in rewetted fen peatlands. Accordingly, future research should unravel the importance of eukaryotes for biogeochemical processes, especially the under-characterized protists and metazoa, in these poorly understood ecosystems.
Collapse
Affiliation(s)
- Haitao Wang
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany
| | - Micha Weil
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany
| | - Kenneth Dumack
- Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Dominik Zak
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark.,Department of Chemical Analytics and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Diana Münch
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany
| | - Anke Günther
- Faculty of Agriculture and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Gerald Jurasinski
- Faculty of Agriculture and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Gesche Blume-Werry
- Experimental Plant Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany
| | - Jürgen Kreyling
- Experimental Plant Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany
| |
Collapse
|