1
|
Babich TL, Grouzdev DS, Sokolova DS, Tourova TP, Poltaraus AB, Nazina TN. Genome analysis of Pollutimonas subterranea gen. nov., sp. nov. and Pollutimonas nitritireducens sp. nov., isolated from nitrate- and radionuclide-contaminated groundwater, and transfer of several Pusillimonas species into three new genera Allopusillimonas, Neopusillimonas, and Mesopusillimonas. Antonie Van Leeuwenhoek 2023; 116:109-127. [PMID: 36244039 DOI: 10.1007/s10482-022-01781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
Two facultatively anaerobic, chemoorganoheterotrophic bacterial strains, designated JR1/69-2-13T and JR1/69-3-13T, were isolated from nitrate- and radionuclide-contaminated groundwater (Ozyorsk town, South Urals, Russia). Both strains were found to be motile, Gram-stain negative rod-shaped neutrophilic, psychrotolerant bacteria that grow within the temperature range from 5-10 to 33 °C at 0-3 (0-5)% NaCl (w/v). The major cellular fatty acids were identified as C16:0, C16:1 ω7c, C18:1 ω7c and C17:0 cyclo. The major polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol and unidentified aminophospholipids. The genomic G + C content of strains JR1/69-2-13T and JR1/69-3-13T was determined to be 57.2 and 57.9%, respectively. The 16S rRNA gene sequences of the strains showed high similarity between each other (98.6%) and to members of the genera Pusillimonas (96.8-98.4%) and Candidimonas (97.1-98.0%). The average nucleotide identity and digital DNA-DNA hybridization (dDDH) values among genomes of the new isolates and Pusillimonas and Candidimonas genomes were below 84.5 and 28.8%, respectively, i.e., below the thresholds for species delineation. Based on the phylogenomic, phenotypic and chemotaxonomic characterisation, we propose assignment of strains JR1/69-3-13T (= VKM B-3223T = KCTC 62615T) and JR1/69-2-13T (= VKM B-3222T = KCTC 62614T) to a new genus Pollutimonas as the type strains of two new species, Pollutimonas subterranea gen. nov., sp. nov. and Pollutimonas nitritireducens sp. nov., respectively. As a result of the taxonomic revision of the genus Pusillimonas, three novel genera, Allopusillimonas, Neopusillimonas, and Mesopusillimonas are also proposed; and Candidimonas bauzanensis is reclassified as Pollutimonas bauzanensis comb. nov. Genome analysis of the new isolates suggested molecular mechanisms of their adaptation to an environment highly polluted with nitrate and radionuclides.
Collapse
Affiliation(s)
- Tamara L Babich
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia, 119071
| | - Denis S Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna linnaosa, 10115, Tallinn, Estonia
| | - Diyana S Sokolova
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia, 119071
| | - Tatyana P Tourova
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia, 119071
| | - Andrey B Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32, bld. 1 Vavilova, Moscow, Russia, 119991
| | - Tamara N Nazina
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia, 119071.
| |
Collapse
|
2
|
Kolodziejek AM, Hovde CJ, Minnich SA. Contributions of Yersinia pestis outer membrane protein Ail to plague pathogenesis. Curr Opin Infect Dis 2022; 35:188-195. [PMID: 35665712 PMCID: PMC9186061 DOI: 10.1097/qco.0000000000000830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Pathogenic Yersinia have been a productive model system for studying bacterial pathogenesis. Hallmark contributions of Yersinia research to medical microbiology are legion and include: (i) the first identification of the role of plasmids in virulence, (ii) the important mechanism of iron acquisition from the host, (iii) the first identification of bacterial surface proteins required for host cell invasion, (iv) the archetypical type III secretion system, and (v) elucidation of the role of genomic reduction in the evolutionary trajectory from a fairly innocuous pathogen to a highly virulent species. RECENT FINDINGS The outer membrane (OM) protein Ail (attachment invasion locus) was identified over 30 years ago as an invasin-like protein. Recent work on Ail continues to provide insights into Gram-negative pathogenesis. This review is a synopsis of the role of Ail in invasion, serum resistance, OM stability, thermosensing, and vaccine development. SUMMARY Ail is shown to be an essential virulence factor with multiple roles in pathogenesis. The recent adaptation of Yersinia pestis to high virulence, which included genomic reduction to eliminate redundant protein functions, is a model to understand the emergence of new bacterial pathogens.
Collapse
Affiliation(s)
- Anna M. Kolodziejek
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Carolyn J. Hovde
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A. Minnich
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
3
|
Gahlot DK, Wai SN, Erickson DL, Francis MS. Cpx-signalling facilitates Hms-dependent biofilm formation by Yersinia pseudotuberculosis. NPJ Biofilms Microbiomes 2022; 8:13. [PMID: 35351893 PMCID: PMC8964730 DOI: 10.1038/s41522-022-00281-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bacteria often reside in sessile communities called biofilms, where they adhere to a variety of surfaces and exist as aggregates in a viscous polymeric matrix. Biofilms are resistant to antimicrobial treatments, and are a major contributor to the persistence and chronicity of many bacterial infections. Herein, we determined that the CpxA-CpxR two-component system influenced the ability of enteropathogenic Yersinia pseudotuberculosis to develop biofilms. Mutant bacteria that accumulated the active CpxR~P isoform failed to form biofilms on plastic or on the surface of the Caenorhabditis elegans nematode. A failure to form biofilms on the worm surface prompted their survival when grown on the lawns of Y. pseudotuberculosis. Exopolysaccharide production by the hms loci is the major driver of biofilms formed by Yersinia. We used a number of molecular genetic approaches to demonstrate that active CpxR~P binds directly to the promoter regulatory elements of the hms loci to activate the repressors of hms expression and to repress the activators of hms expression. Consequently, active Cpx-signalling culminated in a loss of exopolysaccharide production. Hence, the development of Y. pseudotuberculosis biofilms on multiple surfaces is controlled by the Cpx-signalling, and at least in part this occurs through repressive effects on the Hms-dependent exopolysaccharide production.
Collapse
|
4
|
What do we know about osmoadaptation of Yersinia pestis? Arch Microbiol 2021; 204:11. [PMID: 34878588 DOI: 10.1007/s00203-021-02610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The plague agent Yersinia pestis mainly spreads among mammalian hosts and their associated fleas. Production of a successful mammal-flea-mammal life cycle implies that Y. pestis senses and responds to distinct cues in both host and vector. Among these cues, osmolarity is a fundamental parameter. The plague bacillus lives in a tightly regulated environment in the mammalian host, while osmolarity fluctuates in the flea gut (300-550 mOsM). Here, we review the mechanisms that enable Y. pestis to perceive fluctuations in osmolarity, as well as genomic plasticity and physiological adaptation of the bacterium to this stress.
Collapse
|
5
|
Price SL, Vadyvaloo V, DeMarco JK, Brady A, Gray PA, Kehl-Fie TE, Garneau-Tsodikova S, Perry RD, Lawrenz MB. Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts. Proc Natl Acad Sci U S A 2021; 118:e2104073118. [PMID: 34716262 PMCID: PMC8612365 DOI: 10.1073/pnas.2104073118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023] Open
Abstract
Yersinia pestis causes human plague and colonizes both a mammalian host and a flea vector during its transmission cycle. A key barrier to bacterial infection is the host's ability to actively sequester key biometals (e.g., iron, zinc, and manganese) required for bacterial growth. This is referred to as nutritional immunity. Mechanisms to overcome nutritional immunity are essential virulence factors for bacterial pathogens. Y. pestis produces an iron-scavenging siderophore called yersiniabactin (Ybt) that is required to overcome iron-mediated nutritional immunity and cause lethal infection. Recently, Ybt has been shown to bind to zinc, and in the absence of the zinc transporter ZnuABC, Ybt improves Y. pestis growth in zinc-limited medium. These data suggest that, in addition to iron acquisition, Ybt may also contribute to overcoming zinc-mediated nutritional immunity. To test this hypothesis, we used a mouse model defective in iron-mediated nutritional immunity to demonstrate that Ybt contributes to virulence in an iron-independent manner. Furthermore, using a combination of bacterial mutants and mice defective in zinc-mediated nutritional immunity, we identified calprotectin as the primary barrier for Y. pestis to acquire zinc during infection and that Y. pestis uses Ybt to compete with calprotectin for zinc. Finally, we discovered that Y. pestis encounters zinc limitation within the flea midgut, and Ybt contributes to overcoming this limitation. Together, these results demonstrate that Ybt is a bona fide zinc acquisition mechanism used by Y. pestis to surmount zinc limitation during the infection of both the mammalian and insect hosts.
Collapse
Affiliation(s)
- Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164
| | - Jennifer K DeMarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40292
| | - Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Phoenix A Gray
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Thomas E Kehl-Fie
- Department of Microbiology and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL 61820
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40506
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202;
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40292
| |
Collapse
|
6
|
Suntsov VV. Genomogenesis of the Plague Bacteria Yersinia pestis as a Process of Mosaic Evolution. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Hinnebusch BJ, Jarrett CO, Bland DM. Molecular and Genetic Mechanisms That Mediate Transmission of Yersinia pestis by Fleas. Biomolecules 2021; 11:210. [PMID: 33546271 PMCID: PMC7913351 DOI: 10.3390/biom11020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to cause plague in mammals represents only half of the life history of Yersinia pestis. It is also able to colonize and produce a transmissible infection in the digestive tract of the flea, its insect host. Parallel to studies of the molecular mechanisms by which Y. pestis is able to overcome the immune response of its mammalian hosts, disseminate, and produce septicemia, studies of Y. pestis-flea interactions have led to the identification and characterization of important factors that lead to transmission by flea bite. Y. pestis adapts to the unique conditions in the flea gut by altering its metabolic physiology in ways that promote biofilm development, a common strategy by which bacteria cope with a nutrient-limited environment. Biofilm localization to the flea foregut disrupts normal fluid dynamics of blood feeding, resulting in regurgitative transmission. Many of the important genes, regulatory pathways, and molecules required for this process have been identified and are reviewed here.
Collapse
Affiliation(s)
- B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (C.O.J.); (D.M.B.)
| | | | | |
Collapse
|
8
|
Bosio CF, Jarrett CO, Scott DP, Fintzi J, Hinnebusch BJ. Comparison of the transmission efficiency and plague progression dynamics associated with two mechanisms by which fleas transmit Yersinia pestis. PLoS Pathog 2020; 16:e1009092. [PMID: 33284863 PMCID: PMC7746306 DOI: 10.1371/journal.ppat.1009092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/17/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022] Open
Abstract
Yersinia pestis can be transmitted by fleas during the first week after an infectious blood meal, termed early-phase or mass transmission, and again after Y. pestis forms a cohesive biofilm in the flea foregut that blocks normal blood feeding. We compared the transmission efficiency and the progression of infection after transmission by Oropsylla montana fleas at both stages. Fleas were allowed to feed on mice three days after an infectious blood meal to evaluate early-phase transmission, or after they had developed complete proventricular blockage. Transmission was variable and rather inefficient by both modes, and the odds of early-phase transmission was positively associated with the number of infected fleas that fed. Disease progression in individual mice bitten by fleas infected with a bioluminescent strain of Y. pestis was tracked. An early prominent focus of infection at the intradermal flea bite site and dissemination to the draining lymph node(s) soon thereafter were common features, but unlike what has been observed in intradermal injection models, this did not invariably lead to further systemic spread and terminal disease. Several of these mice resolved the infection without progression to terminal sepsis and developed an immune response to Y. pestis, particularly those that received an intermediate number of early-phase flea bites. Furthermore, two distinct types of terminal disease were noted: the stereotypical rapid onset terminal disease within four days, or a prolonged onset preceded by an extended, fluctuating infection of the lymph nodes before eventual systemic dissemination. For both modes of transmission, bubonic plague rather than primary septicemic plague was the predominant disease outcome. The results will help to inform mathematical models of flea-borne plague dynamics used to predict the relative contribution of the two transmission modes to epizootic outbreaks that erupt periodically from the normal enzootic background state. Yersinia pestis can be transmitted by fleas within a few days after taking a blood meal from a highly bacteremic host, termed early-phase or mass transmission; and again after it forms a dense biofilm in the foregut of its vector that can eventually block blood feeding. The relative importance of the two transmission modes in the ecology of plague is a matter of current debate, but estimates of transmission rate, efficiency, and other parameters are limited. We compared transmission and disease progression dynamics in mice bitten by groups of fleas three days after their infectious blood meal (early-phase or mass transmission mode) and in mice bitten by individual blocked fleas. In general, a higher percentage of transmissions by blocked fleas led to terminal disease, whereas early-phase transmissions more often led to survival and an immune response, which are nonproductive infections in the sense that the bacteremia required to continue the Y. pestis life cycle did not develop and these animals would be removed from the pool of susceptibles in the host population. The data will be useful in mathematical models of plague dynamics in wild rodent populations.
Collapse
Affiliation(s)
- Christopher F. Bosio
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Clayton O. Jarrett
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jonathan Fintzi
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
9
|
Antioxidant Function and Metabolomics Study in Mice after Dietary Supplementation with Methionine. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9494528. [PMID: 33145362 PMCID: PMC7596454 DOI: 10.1155/2020/9494528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/15/2020] [Indexed: 01/11/2023]
Abstract
The antioxidant function and metabolic profiles in mice after dietary supplementation with methionine were investigated. The results showed that methionine supplementation enhanced liver GSH-Px activity and upregulated Gpx1 expression in the liver and SOD1 and Gpx4 expressions in the jejunum. Nrf2/Keap1 is involved in oxidative stress, and the western blotting data exhibited that dietary methionine markedly increased Keap1 abundance, while failed to influence the Nrf2 signal. Metabolomics investigation showed that methionine administration increased 2-hydroxypyridine, salicin, and asparagine and reduced D-Talose, maltose, aminoisobutyric acid, and inosine 5'-monophosphate in the liver, which are widely reported to involve in oxidative stress, lipid metabolism, and nucleotides generation. In conclusion, our study provides insights into antioxidant function and liver metabolic profiles in response to dietary supplementation with methionine.
Collapse
|
10
|
Gao X, Wang M, Liu Z, Bi Y, Song Y, Yang R, Han Y. Altered Yersinia pestis virulence is associated with the small regulatory RNA HmsA encoded on the plasmid pPCP1. Future Microbiol 2020; 15:1207-1215. [PMID: 33026884 DOI: 10.2217/fmb-2019-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this study was to access the effect of HmsA, a 65-nt small regulatory RNA encoded by the pPCP1 plasmid, on Yersinia pestis virulence. Materials & methods: Survival and the competition index were determined in mice infected with wild-type Y. pestis and an hmsA deletion mutant. RNA-seq was used to identify HmsA-regulated genes. Results: HmsA deletion enhanced Y. pestis virulence. However, there was no overlap between 18 upregulated genes associated with pathogenicity and potential direct HmsA targets, based on gene expression screening after HmsA-pulse overexpression. Conclusion: HmsA inhibits Y. pestis virulence, but this effect may be mediated by indirect effects on pathogenesis, iron homeostasis and/or other cellular processes.
Collapse
Affiliation(s)
- Xiaofang Gao
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China.,Microbiology Laboratory, Jiading Center for Disease Control & Prevention, Shanghai 201800, China
| | - Min Wang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Zizhong Liu
- China Astronaut Research & Training Center, Beijing 100094, China
| | - Yujing Bi
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Yajun Song
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Yanping Han
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| |
Collapse
|
11
|
A Trimeric Autotransporter Enhances Biofilm Cohesiveness in Yersinia pseudotuberculosis but Not in Yersinia pestis. J Bacteriol 2020; 202:JB.00176-20. [PMID: 32778558 DOI: 10.1128/jb.00176-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/01/2020] [Indexed: 12/17/2022] Open
Abstract
Cohesion of biofilms made by Yersinia pestis and Yersinia pseudotuberculosis has been attributed solely to an extracellular polysaccharide matrix encoded by the hms genes (Hms-dependent extracellular matrix [Hms-ECM]). However, mutations in the Y. pseudotuberculosis BarA/UvrY/CsrB regulatory cascade enhance biofilm stability without dramatically increasing Hms-ECM production. We found that treatment with proteinase K enzyme effectively destabilized Y. pseudotuberculosis csrB mutant biofilms, suggesting that cell-cell interactions might be mediated by protein adhesins or extracellular matrix proteins. We identified an uncharacterized trimeric autotransporter lipoprotein (YPTB2394), repressed by csrB, which has been referred to as YadE. Biofilms made by a ΔyadE mutant strain were extremely sensitive to mechanical disruption. Overexpression of yadE in wild-type Y. pseudotuberculosis increased biofilm cohesion, similar to biofilms made by csrB or uvrY mutants. We found that the Rcs signaling cascade, which represses Hms-ECM production, activated expression of yadE The yadE gene appears to be functional in Y. pseudotuberculosis but is a pseudogene in modern Y. pestis strains. Expression of functional yadE in Y. pestis KIM6+ weakened biofilms made by these bacteria. This suggests that although the YadE autotransporter protein increases Y. pseudotuberculosis biofilm stability, it may be incompatible with the Hms-ECM production that is essential for Y. pestis biofilm production in fleas. Inactivation of yadE in Y. pestis may be another instance of selective gene loss in the evolution of flea-borne transmission by this species.IMPORTANCE The evolution of Yersinia pestis from its Y. pseudotuberculosis ancestor involved gene acquisition and gene losses, leading to differences in biofilm production. Characterizing the unique biofilm features of both species may provide better understanding of how each adapts to its specific niches. This study identifies a trimeric autotransporter, YadE, that promotes biofilm stability of Y. pseudotuberculosis but which has been inactivated in Y. pestis, perhaps because it is not compatible with the Hms polysaccharide that is crucial for biofilms inside fleas. We also reveal that the Rcs signaling cascade, which represses Hms expression, activates YadE in Y. pseudotuberculosis The ability of Y. pseudotuberculosis to use polysaccharide or YadE protein for cell-cell adhesion may help it produce biofilms in different environments.
Collapse
|
12
|
Transcriptomic profiling of the digestive tract of the rat flea, Xenopsylla cheopis, following blood feeding and infection with Yersinia pestis. PLoS Negl Trop Dis 2020; 14:e0008688. [PMID: 32946437 PMCID: PMC7526888 DOI: 10.1371/journal.pntd.0008688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/30/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly lethal pathogen transmitted by the bite of infected fleas. Once ingested by a flea, Y. pestis establish a replicative niche in the gut and produce a biofilm that promotes foregut colonization and transmission. The rat flea Xenopsylla cheopis is an important vector to several zoonotic bacterial pathogens including Y. pestis. Some fleas naturally clear themselves of infection; however, the physiological and immunological mechanisms by which this occurs are largely uncharacterized. To address this, RNA was extracted, sequenced, and distinct transcript profiles were assembled de novo from X. cheopis digestive tracts isolated from fleas that were either: 1) not fed for 5 days; 2) fed sterile blood; or 3) fed blood containing ~5x108 CFU/ml Y. pestis KIM6+. Analysis and comparison of the transcript profiles resulted in identification of 23 annotated (and 11 unknown or uncharacterized) digestive tract transcripts that comprise the early transcriptional response of the rat flea gut to infection with Y. pestis. The data indicate that production of antimicrobial peptides regulated by the immune-deficiency pathway (IMD) is the primary flea immune response to infection with Y. pestis. The remaining infection-responsive transcripts, not obviously associated with the immune response, were involved in at least one of 3 physiological themes: 1) alterations to chemosensation and gut peristalsis; 2) modification of digestion and metabolism; and 3) production of chitin-binding proteins (peritrophins). Despite producing several peritrophin transcripts shortly after feeding, including a subset that were infection-responsive, no thick peritrophic membrane was detectable by histochemistry or electron microscopy of rat flea guts for the first 24 hours following blood-feeding. Here we discuss the physiological implications of rat flea infection-responsive transcripts, the function of X. cheopis peritrophins, and the mechanisms by which Y. pestis may be cleared from the flea gut. The goal of this study was to characterize the transcriptional response of the digestive tract of the rat flea, Xenopsylla cheopis, to infection with Yersinia pestis, the causative agent of plague. This flea is generally considered the most prevalent and efficient vector of Y. pestis. Because most pathogens transmitted by fleas, including Y. pestis, reside in the insect digestive tract prior to transmission, the transcriptional program induced in the gut epithelium likely influences bacterial colonization of the flea. To determine the specific response to infection, RNA profiles were generated from fleas that were either unfed, fed sterile blood, or fed blood containing Y. pestis. Comparative analyses of the transcriptomes resulted in identification of 34 infection-responsive transcripts. The functions of these differentially regulated genes indicate that infection of fleas with Y. pestis induces a limited immune response and potentially alters the insect’s behavior, metabolism, and other aspects of its physiology. Based on these data, we describe potential mechanisms fleas use to eliminate bacteria and the corresponding strategies Y. pestis uses to resist elimination. These findings may be helpful for developing targeted strategies to make fleas resistant to microbial infection and thereby reduce the incidence of diseases they spread.
Collapse
|
13
|
Knittel V, Sadana P, Seekircher S, Stolle AS, Körner B, Volk M, Jeffries CM, Svergun DI, Heroven AK, Scrima A, Dersch P. RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression. PLoS Pathog 2020; 16:e1008552. [PMID: 32966346 PMCID: PMC7535981 DOI: 10.1371/journal.ppat.1008552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 08/01/2020] [Indexed: 12/05/2022] Open
Abstract
Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.
Collapse
Affiliation(s)
- Vanessa Knittel
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pooja Sadana
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Seekircher
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne-Sophie Stolle
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Britta Körner
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Scrima
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
- German Center for Infection Research, Baunschweig, Germany
| |
Collapse
|
14
|
Irons JL, Hodge-Hanson K, Downs DM. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol Mol Biol Rev 2020; 84:e00024-20. [PMID: 32669283 PMCID: PMC7373157 DOI: 10.1128/mmbr.00024-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.
Collapse
Affiliation(s)
- Jessica L Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Putative Horizontally Acquired Genes, Highly Transcribed during Yersinia pestis Flea Infection, Are Induced by Hyperosmotic Stress and Function in Aromatic Amino Acid Metabolism. J Bacteriol 2020; 202:JB.00733-19. [PMID: 32205462 PMCID: PMC7221256 DOI: 10.1128/jb.00733-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
Distinct gene repertoires are expressed during Y. pestis infection of its flea and mammalian hosts. The functions of many of these genes remain predicted or unknown, necessitating their characterization, as this may provide a better understanding of Y. pestis specialized biological adaptations to the discrete environments of its two hosts. This study provides functional context to adjacently clustered horizontally acquired genes predominantly expressed in the flea host by deciphering their fundamental processes with regard to (i) transcriptional organization, (ii) transcription activation signals, and (iii) biochemical function. Our data support a role for these genes in osmoadaptation and aromatic amino acid metabolism, highlighting these as preferential processes by which Y. pestis gene expression is modulated during flea infection. While alternating between insects and mammals during its life cycle, Yersinia pestis, the flea-transmitted bacterium that causes plague, regulates its gene expression appropriately to adapt to these two physiologically disparate host environments. In fleas competent to transmit Y. pestis, low-GC-content genes y3555, y3551, and y3550 are highly transcribed, suggesting that these genes have a highly prioritized role in flea infection. Here, we demonstrate that y3555, y3551, and y3550 are transcribed as part of a single polycistronic mRNA comprising the y3555, y3554, y3553, y355x, y3551, and y3550 genes. Additionally, y355x-y3551-y3550 compose another operon, while y3550 can be also transcribed as a monocistronic mRNA. The expression of these genes is induced by hyperosmotic salinity stress, which serves as an explicit environmental stimulus that initiates transcriptional activity from the predicted y3550 promoter. Y3555 has homology to pyridoxal 5′-phosphate (PLP)-dependent aromatic aminotransferases, while Y3550 and Y3551 are homologous to the Rid protein superfamily (YjgF/YER057c/UK114) members that forestall damage caused by reactive intermediates formed during PLP-dependent enzymatic activity. We demonstrate that y3551 specifically encodes an archetypal RidA protein with 2-aminoacrylate deaminase activity but Y3550 lacks Rid deaminase function. Heterologous expression of y3555 generates a critical aspartate requirement in a Salmonella entericaaspC mutant, while its in vitro expression, and specifically its heterologous coexpression with y3550, enhances the growth rate of an Escherichia coli ΔaspC ΔtyrB mutant in a defined minimal amino acid-supplemented medium. Our data suggest that the y3555, y3551, and y3550 genes operate cooperatively to optimize aromatic amino acid metabolism and are induced under conditions of hyperosmotic salinity stress. IMPORTANCE Distinct gene repertoires are expressed during Y. pestis infection of its flea and mammalian hosts. The functions of many of these genes remain predicted or unknown, necessitating their characterization, as this may provide a better understanding of Y. pestis specialized biological adaptations to the discrete environments of its two hosts. This study provides functional context to adjacently clustered horizontally acquired genes predominantly expressed in the flea host by deciphering their fundamental processes with regard to (i) transcriptional organization, (ii) transcription activation signals, and (iii) biochemical function. Our data support a role for these genes in osmoadaptation and aromatic amino acid metabolism, highlighting these as preferential processes by which Y. pestis gene expression is modulated during flea infection.
Collapse
|