1
|
Jiang H, Lv M, He T, Xie M, Zhao Z, He J, Luo S, Guo Y, Chen J. Effects of ex situ conservation on commensal bacteria of crocodile lizard and conservation implications. Vet Q 2025; 45:1-14. [PMID: 39930789 PMCID: PMC11816626 DOI: 10.1080/01652176.2025.2463704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/07/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025] Open
Abstract
Ex situ conservation is an important wildlife conservation strategy, but endangered wildlife in captivity often exhibit high disease rates. Commensal microorganisms are vital for homeostasis, immunity, and linked to diseases. This study analyzed the structure, assembly, variations of the symbiotic microbiota of the endangered crocodile lizard, and their relationship with environment, as well as the effects of captivity on them, to explore why captive reptiles face high dermatosis rates. Results showed that the reptile's microbiota significantly differ from that of its habitat, demonstrating niche specificity. While species richness among organs showed no significant differences, microbial diversity varied considerably. Skin microbiota showed no site-specific clustering. The assembly of skin, oral, and intestinal bacterial communities was dominated by homogeneous selection. The gut and oral bacterial networks were resilient to disturbances, while the skin bacterial network was sensitive. Captivity primarily affected the skin microbiota, reducing its diversity and stability, thereby increasing disease risk, and these effects were not solely attributable to environmental changes. These findings suggested that skin microbial changes in captive reptiles may be responsible for their increased susceptibility to dermatosis in ex situ conservation. This study underscored the importance of understanding reptile-associated microbes for effective conservation strategies and offers potential solutions.
Collapse
Affiliation(s)
- Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mei Lv
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tengfei He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mujiao Xie
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiwen Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiasong He
- Guangxi Daguishan Crocodile Lizard National Nature Reserve, Hezhou, China
| | - Shuyi Luo
- Guangxi Daguishan Crocodile Lizard National Nature Reserve, Hezhou, China
| | - Yide Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Huang L, Dai W, Sun X, Pu Y, Feng J, Jin L, Sun K. Diet-driven diversity of antibiotic resistance genes in wild bats: implications for public health. Microbiol Res 2025; 293:128086. [PMID: 39892320 DOI: 10.1016/j.micres.2025.128086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/15/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Wild bats may serve as reservoirs for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria, potentially contributing to antibiotic resistance and pathogen transmission. However, current assessments of bats' antibiotic resistance potential are limited to culture-dependent bacterial snapshots. In this study, we present metagenomic evidence supporting a strong association between diet, gut microbiota, and the resistome, highlighting bats as significant vectors for ARG propagation. We characterized gut microbiota, ARGs, and mobile genetic elements (MGEs) in bats with five distinct diets: frugivory, insectivory, piscivory, carnivory, and sanguivory. Our analysis revealed high levels of ARGs in bat guts, with limited potential for horizontal transfer, encompassing 1106 ARGs conferring resistance to 26 antibiotics. Multidrug-resistant and polymyxin-resistant genes were particularly prevalent among identified ARG types. The abundance and diversity of ARGs/MGEs varied significantly among bats with different dietary habits, possibly due to diet-related differences in microbial composition. Additionally, genetic linkage between high-risk ARGs and multiple MGEs was observed on the genomes of various zoonotic pathogens, indicating a potential threat to human health from wild bats. Overall, our study provides a comprehensive analysis of the resistome in wild bats and underscores the role of dietary habits in wildlife-associated public health risks.
Collapse
Affiliation(s)
- Long Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaoyu Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yingting Pu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
3
|
Bennett AJ, Suski CD, O'Keefe JM. Molecular epidemiology of Eimeria spp. parasites and the faecal microbiome of Indiana bats ( Myotis sodalis): a non-invasive, multiplex metabarcode survey of an endangered species. Microb Genom 2025; 11. [PMID: 40009543 DOI: 10.1099/mgen.0.001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Assessing individual and population health in endangered wildlife poses unique challenges due to the lack of an adequate baseline and ethical constraints on invasive sampling. For endangered bats, minimally invasive samples like guano can often be the ethical and technical limit for studies of pathogens and the microbiome. In this study, we use multiplex metabarcode sequencing to describe the faecal microbiome and parasites of 56 Indiana bats (Myotis sodalis). We show evidence of a high prevalence of Eimeria spp. protozoan parasite and characterize associations between infection and changes to the faecal microbiome. We identify a strong and significant enrichment of Clostridium species in Eimeria-positive bats, including isolates related to Clostridium perfringens.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Cory D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Joy M O'Keefe
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
4
|
Melville DW, Meyer M, Kümmerle C, Alvarado-Barrantes KA, Wilhelm K, Sommer S, Tschapka M, Risely A. Delayed feeding disrupts diurnal oscillations in the gut microbiome of a neotropical bat in captivity. FEMS Microbiol Ecol 2025; 101:fiaf012. [PMID: 39844346 PMCID: PMC11783575 DOI: 10.1093/femsec/fiaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 01/24/2025] Open
Abstract
Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations. In this study, we experimentally manipulated the feeding schedule of captive lesser long-nosed bats, Leptonycteris yerbabuenae, to dissociate photic and feeding cues, and measured the faecal microbiota and gut pH every 2 h. We detected strong diurnal rhythms in both microbial alpha diversity and beta diversity as well as in pH within the control group. However, a delay in feeding disrupted oscillations of gut microbial diversity and composition, but did not affect rhythms in gut pH. The oscillations of some genera, such as Streptococcus, which aid in metabolizing nutrients, shifted in accordance with the delayed-feeding cue and were correlated with pH. For other bacterial genera, oscillations were disturbed and no connection to pH was found. Our findings suggest that the rhythmic proliferation of bacteria matches peak feeding times, providing evidence that diurnal rhythms of the gut microbiota likely evolved to optimize their metabolic support to the host's circadian phenotype.
Collapse
Affiliation(s)
- Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Corbinian Kümmerle
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | | | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Alice Risely
- School of Science, Engineering and Environment, Salford University, M5 4WT Manchester, United Kingdom
| |
Collapse
|
5
|
Melville DW, Meyer M, Risely A, Wilhelm K, Baldwin HJ, Badu EK, Nkrumah EE, Oppong SK, Schwensow N, Tschapka M, Vallo P, Corman VM, Drosten C, Sommer S. Hibecovirus (genus Betacoronavirus) infection linked to gut microbial dysbiosis in bats. ISME COMMUNICATIONS 2025; 5:ycae154. [PMID: 40134608 PMCID: PMC11936109 DOI: 10.1093/ismeco/ycae154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 12/14/2024] [Indexed: 03/27/2025]
Abstract
Little is known about how zoonotic virus infections manifest in wildlife reservoirs. However, a common health consequence of enteric virus infections is gastrointestinal diseases following a shift in gut microbial composition. The sub-Saharan hipposiderid bat complex has recently emerged to host at least three coronaviruses (CoVs), with Hipposideros caffer D appearing particularly susceptible to Hibecovirus CoV-2B infection. In this study, we complement body condition and infection status data with information about the gut microbial community to understand the health impact of CoV infections in a wild bat population. Of the three CoVs, only infections with the distantly SARS-related Hibecovirus CoV-2B were associated with lower body condition and altered the gut microbial diversity and composition. The gut microbial community of infected bats became progressively less diverse and more dissimilar with infection intensity, arguing for dysbiosis as per the Anna Karenina principle. Putatively beneficial bacteria, such as Alistipes and Christensenella, decreased with infection intensity, while potentially pathogenic bacteria, namely Mycoplasma and Staphylococcus, increased. Infections with enterically replicating viruses may therefore cause changes in body condition and gut dysbiosis with potential negative health consequences even in virus reservoirs. We argue that high-resolution data on multiple health markers, ideally including microbiome information, will provide a more nuanced picture of bat disease ecology.
Collapse
Affiliation(s)
- Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Alice Risely
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- School of Science, Engineering, and the Environment, Salford University, Salford M5 4NT, UK
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2113, Australia
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 675 02, Czech Republic
| | - Victor M Corman
- German Centre for Infection Research (DZIF) and Charité—Universitätsmedizin Berlin Institute of Virology, Berlin 10117, Germany
| | - Christian Drosten
- German Centre for Infection Research (DZIF) and Charité—Universitätsmedizin Berlin Institute of Virology, Berlin 10117, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| |
Collapse
|
6
|
Lemieux-Labonté V, Pathmanathan JS, Terrat Y, Tromas N, Simard A, Haase CG, Lausen CL, Willis CKR, Lapointe FJ. Pseudogymnoascus destructans invasion stage impacts the skin microbial functions of highly vulnerable Myotis lucifugus. FEMS Microbiol Ecol 2024; 100:fiae138. [PMID: 39400741 PMCID: PMC11523048 DOI: 10.1093/femsec/fiae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024] Open
Abstract
The role of the skin microbiome in resistance and susceptibility of wildlife to fungal pathogens has been examined from a taxonomic perspective but skin microbial function, in the context of fungal infection, has yet to be studied. Our objective was to understand effects of a bat fungal pathogen site infection status and course of invasion on skin microbial function. We sampled seven hibernating colonies of Myotis lucifugus covering three-time points over the course of Pseudogymnoascus destructans (Pd) invasion and white nose syndrome (pre-invasion, epidemic, and established). Our results support three new hypotheses about Pd and skin functional microbiome: (1) there is an important effect of Pd invasion stage, especially at the epidemic stage; (2) disruption by the fungus at the epidemic stage could decrease anti-fungal functions with potential negative effects on the microbiome and bat health; (3) the collection site might have a larger influence on microbiomes at the pre-invasion stage rather than at epidemic and established stages. Future studies with larger sample sizes and using meta-omics approaches will help confirm these hypotheses, and determine the influence of the microbiome on wildlife survival to fungal disease.
Collapse
Affiliation(s)
| | - Jananan S Pathmanathan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Paris, 75005, France
| | - Yves Terrat
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Nicolas Tromas
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Anouk Simard
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, G1R 5V7, Canada
| | - Catherine G Haase
- Department of Biology, Austin Peay State University, Clarksville, TN, 37044, United States
| | - Cori L Lausen
- Wildlife Conservation Society Canada, Kaslo, British-Columbia, V0G 1M0, Canada
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada
| | | |
Collapse
|
7
|
Insuk C, Cheeptham N, Lausen C, Xu J. DNA metabarcoding analyses reveal fine-scale microbiome structures on Western Canadian bat wings. Microbiol Spectr 2024; 12:e0037624. [PMID: 39436130 PMCID: PMC11619579 DOI: 10.1128/spectrum.00376-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Healthy wings are vital for the survival and reproduction of bats, and wing microbiome is a key component of bat wing health. However, relatively little is known about the wing microbiome of bats in western Canada where the white nose syndrome has become an increasing threat. Here, we used DNA metabarcoding to investigate the bacterial and fungal communities on the wings of three bat species: the big brown bat (Eptesicus fuscus), the Yuma myotis (Myotis yumanensis), and the little brown myotis (M. lucifugus) from four field sites in Lillooet, British Columbia, Canada. The bacterial 16S rRNA metabarcoding revealed a total of 4,167 amplicon sequence variants (ASVs) belonging to 27 phyla, 639 genera, and 533 known and 2,423 unknown species. The wing bacteria were dominated by phyla Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria, and the most common genera were Delftia, Bordetella, Sphingomonas, Phyllobacterium, Bradyrhizobium, Pseudomonas, and Corynebacterium. The fungal internal transcribed spacer (ITS) metabarcoding revealed a total of 11,722 ASVs belonging to 16 phyla, 806 genera, and 1,420 known and 10,302 unknown species. The wing fungi were dominated by phyla Ascomycota, Basidiomycota, and Motierellomycota, and the most common genera were Cladosporium, Aspergillus, and Mycosphaerella. Principal coordinates analysis showed that both bat species and field sites contributed variably to the diversity and distribution of bacterial and fungal communities on bat wings. Interestingly, both positive and negative correlations were found in their relative abundances among several groups of microbial taxa. We discuss the implications of our results for bat health, including the management of P. destructans infection and white-nose syndrome spread. IMPORTANCE Microbiomes play important roles in host health. White-nose syndrome (WNS), a fungal infection of bat wings and muzzles, has threatened bat populations across North America since 2006. Recent research suggest that the skin microbiome of bats may play a significant role in bat's susceptibility to WNS. However, relatively little is known about the skin microbiome composition and function in bats in Western Canada, a region with a high diversity of bats, but WNS has yet to be a major issue. Here, we revealed high bacterial and fungal diversities on the skin of three common bat species in Lillooet, British Columbia, including several highly prevalent microbial species that have been rarely reported in other regions. Our analyses showed fine-scale structures of bat wing microbiome based on local sites and bat species. The knowledge obtained from WNS-naïve bat populations in this study may help develop mitigation and management strategies against WNS.
Collapse
Affiliation(s)
- Chadabhorn Insuk
- Department of Biology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Cori Lausen
- Wildlife Conservation Society Canada, Kaslo, British Columbia, Canada
| | - Jianping Xu
- Department of Biology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Qian Y, Mou X, Wang W, Zhang W, Li Y, Wu L, Zhao C, Jiao Z, Li S. New record of Miniopterusmagnater (Chiroptera, Miniopteridae) from south-western China and a comparative study of three species of Miniopterus in China. Biodivers Data J 2024; 12:e129879. [PMID: 39309533 PMCID: PMC11415622 DOI: 10.3897/bdj.12.e129879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Background This research documents a new record of Miniopterusmagnater in the south-western region of China, a significant discovery given the limited diversity of the Miniopterus genus within the country. Only three species of Miniopterus occur in China: Miniopterusmagnater, Miniopterusfuliginosus and Miniopteruspusillus. These species share a high degree of morphological similarity, particularly in their external characteristics. This underscores the necessity for the identification of additional distinguishing traits that can aid in the taxonomic differentiation of these closely-related species. New information During the 2023 field expedition to various nature reserves in Yunnan Province, China, we encountered specimens of the genus Miniopterus. Utilising a combination of morphological assessments and phylogenetic analyses, we identified six individuals as Miniopterusmagnater. A review of the existing geographical distribution data revealed that this species is primarily found in central and southern regions of China, with no previous records from the south-western part of the country. Based on our findings, we present a novel record of Miniopterusmagnater's distribution in the south-western region of China.
Collapse
Affiliation(s)
- Yishun Qian
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, ChinaKunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Xin Mou
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, ChinaKunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Wen Wang
- Huanglianshan National Nature Reserve in Yunnan Province, Honghe Hani and Yi Autonomous, ChinaHuanglianshan National Nature Reserve in Yunnan ProvinceHonghe Hani and Yi AutonomousChina
| | - Wenxiang Zhang
- Huanglianshan National Nature Reserve in Yunnan Province, Honghe Hani and Yi Autonomous, ChinaHuanglianshan National Nature Reserve in Yunnan ProvinceHonghe Hani and Yi AutonomousChina
| | - Yuanyuan Li
- Yunnan Academy of Forestry and Grassland, Kunming, ChinaYunnan Academy of Forestry and GrasslandKunmingChina
- Yunnan Key Laboratory of Biodiversity of Gaoligong Mountain, Kunming, ChinaYunnan Key Laboratory of Biodiversity of Gaoligong MountainKunmingChina
| | - Li Wu
- Yunnan Academy of Forestry and Grassland, Kunming, ChinaYunnan Academy of Forestry and GrasslandKunmingChina
- Gaoligong Mountain Forest Ecosystem Observation and Research Station of Yunnan Province, Kunming, ChinaGaoligong Mountain Forest Ecosystem Observation and Research Station of Yunnan ProvinceKunmingChina
| | - Canjun Zhao
- Cangshan Erhai National Nature Reserve Administration, Dali Bai Autonomous Prefecture, ChinaCangshan Erhai National Nature Reserve AdministrationDali Bai Autonomous PrefectureChina
| | - Zhiwei Jiao
- Cangshan Erhai National Nature Reserve Administration, Dali Bai Autonomous Prefecture, ChinaCangshan Erhai National Nature Reserve AdministrationDali Bai Autonomous PrefectureChina
| | - Song Li
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, ChinaKunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, ChinaYunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
9
|
Mena Canata DA, Benfato MS, Pereira FD, Ramos Pereira MJ, Hackenhaar FS, Mann MB, Frazzon APG, Rampelotto PH. Comparative Analysis of the Gut Microbiota of Bat Species with Different Feeding Habits. BIOLOGY 2024; 13:363. [PMID: 38927243 PMCID: PMC11200740 DOI: 10.3390/biology13060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Bats are a diverse and ecologically important group of mammals that exhibit remarkable diversity in their feeding habits. These diverse feeding habits are thought to be reflected in the composition and function of their gut microbiota, which plays important roles in nutrient acquisition, immune function, and overall health. Despite the rich biodiversity of bat species in South America, there is a lack of microbiome studies focusing on bats from this region. Such studies could offer major insights into conservation efforts and the preservation of biodiversity in South America. In this work, we aimed to compare the gut microbiota of four bat species with different feeding habits from Southern Brazil, including nectarivorous, frugivorous, insectivorous, and hematophagous bats. Our findings demonstrate that feeding habits can have a significant impact on the diversity and composition of bat gut microbiotas, with each species exhibiting unique metabolic potentials related to their dietary niches. In addition, the identification of potentially pathogenic bacteria suggests that the carriage of microbial pathogens by bats may vary, depending on feeding habits and host-specific factors. These findings provide novel insights into the relationship between bat feeding habits and gut microbiota composition, highlighting the need to promote diverse habitats and food sources to support these ecologically important species.
Collapse
Affiliation(s)
- Diego Antonio Mena Canata
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Mara Silveira Benfato
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Francielly Dias Pereira
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - María João Ramos Pereira
- Graduate Program in Animal Biology, Laboratory of Evolution, Systematics and Ecology of Birds and Mammals, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Michele Bertoni Mann
- Graduate Program in Agricole and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Ana Paula Guedes Frazzon
- Graduate Program in Agricole and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
10
|
Dai W, Leng H, Li J, Li A, Li Z, Zhu Y, Li X, Jin L, Sun K, Feng J. The role of host traits and geography in shaping the gut microbiome of insectivorous bats. mSphere 2024; 9:e0008724. [PMID: 38509042 PMCID: PMC11036801 DOI: 10.1128/msphere.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, including Miniopterus fuliginosus, Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus affinis, and Rhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCE The gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat's gut microbiome together and provides a study case on host-microbe interactions in wildlife.
Collapse
Affiliation(s)
- Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yue Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Vijayan N, McAnulty SJ, Sanchez G, Jolly J, Ikeda Y, Nishiguchi MK, Réveillac E, Gestal C, Spady BL, Li DH, Burford BP, Kerwin AH, Nyholm SV. Evolutionary history influences the microbiomes of a female symbiotic reproductive organ in cephalopods. Appl Environ Microbiol 2024; 90:e0099023. [PMID: 38315021 PMCID: PMC10952459 DOI: 10.1128/aem.00990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray-Curtis, P = 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%) Opitutae (Verrucomicrobia) and Ruegeria (Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel test r = 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness.IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15-120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host-symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod-bacteria relationships and provides a foundation to explore defensive symbionts in other systems.
Collapse
Affiliation(s)
- Nidhi Vijayan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah J. McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan
| | - Jeffrey Jolly
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Yuzuru Ikeda
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of Ryukyus, Ryukyus, Japan
| | - Michele K. Nishiguchi
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| | - Elodie Réveillac
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS–La Rochelle Université, La Rochelle, France
| | - Camino Gestal
- Institute of Marine Research (IIM), CSIC, Vigo, Spain
| | - Blake L. Spady
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- U.S. National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, Center for Satellite Applications and Research, Coral Reef Watch, College Park, Maryland, USA
| | - Diana H. Li
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Benjamin P. Burford
- Institute of Marine Sciences, University of California, affiliated with the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - Allison H. Kerwin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Biology, McDaniel College, Westminster, Maryland, USA
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
12
|
Podar NA, Carrell AA, Cassidy KA, Klingeman DM, Yang Z, Stahler EA, Smith DW, Stahler DR, Podar M. From wolves to humans: oral microbiome resistance to transfer across mammalian hosts. mBio 2024; 15:e0334223. [PMID: 38299854 PMCID: PMC10936156 DOI: 10.1128/mbio.03342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Collapse
Affiliation(s)
- Nicholas A. Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kira A. Cassidy
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Dawn M. Klingeman
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin Yang
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Erin A. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Douglas W. Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Mircea Podar
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
13
|
Hill MS, Gilbert JA. Microbiology of the built environment: harnessing human-associated built environment research to inform the study and design of animal nests and enclosures. Microbiol Mol Biol Rev 2023; 87:e0012121. [PMID: 38047636 PMCID: PMC10732082 DOI: 10.1128/mmbr.00121-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYOver the past decade, hundreds of studies have characterized the microbial communities found in human-associated built environments (BEs). These have focused primarily on how the design and use of our built spaces have shaped human-microbe interactions and how the differential selection of certain taxa or genetic traits has influenced health outcomes. It is now known that the more removed humans are from the natural environment, the greater the risk for the development of autoimmune and allergic diseases, and that indoor spaces can be harsh, selective environments that can increase the emergence of antimicrobial-resistant and virulent phenotypes in surface-bound communities. However, despite the abundance of research that now points to the importance of BEs in determining human-microbe interactions, only a fraction of non-human animal structures have been comparatively explored. It is here, in the context of human-associated BE research, that we consider the microbial ecology of animal-built natural nests and burrows, as well as artificial enclosures, and point to areas of primary interest for future research.
Collapse
Affiliation(s)
- Megan S. Hill
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Popov IV, Popov IV, Krikunova AA, Lipilkina TA, Derezina TN, Chikindas ML, Venema K, Ermakov AM. Gut Microbiota Composition of Insectivorous Synanthropic and Fructivorous Zoo Bats: A Direct Metagenomic Comparison. Int J Mol Sci 2023; 24:17301. [PMID: 38139130 PMCID: PMC10744024 DOI: 10.3390/ijms242417301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Bats are natural reservoirs for many emerging viral diseases. That is why their virome is widely studied. But at the same time, studies of their bacterial gut microbiota are limited, creating a degree of uncertainty about the role of bats in global microbial ecology. In this study, we analyzed gut microbiota of insectivorous Nyctalus noctula and Vespertilio murinus from rehabilitation centers from Rostov-on-Don and Moscow, respectively, and fructivorous Carollia perspicillata from the Moscow Zoo based on V3-V4 16S rRNA metagenomic sequencing. We revealed that microbial diversity significantly differs between the insectivorous and fructivorous species studied, while the differences between N. noctula and V. murinus are less pronounced, which shows that bats' gut microbiota is not strictly species-specific and depends more on diet type. In the gut microbiota of synanthropic bats, we observed bacteria that are important for public health and animal welfare such as Bacteroides, Enterobacter, Clostridiaceae, Enterococcus, Ureaplasma, Faecalibacterium, and Helicobacter, as well as some lactic acid bacteria such as Pediococcus, Lactobacillus, Lactococcus, and Weisella. All these bacteria, except for Bacteroides and Weisella, were significantly less abundant in C. perspicillata. This study provides a direct metagenomic comparison of synanthropic insectivorous and zoo fructivorous bats, suggesting future directions for studying these animals' role in microbial ecology.
Collapse
Affiliation(s)
- Igor V. Popov
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Federal Territory Sirius, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University Campus Venlo, 5928 SZ Venlo, The Netherlands;
| | - Ilia V. Popov
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| | - Anastasya A. Krikunova
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| | - Tatyana A. Lipilkina
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| | - Tatyana N. Derezina
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| | - Michael L. Chikindas
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University Campus Venlo, 5928 SZ Venlo, The Netherlands;
| | - Alexey M. Ermakov
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| |
Collapse
|
15
|
Sadeghi J, Chaganti SR, Johnson TB, Heath DD. Host species and habitat shape fish-associated bacterial communities: phylosymbiosis between fish and their microbiome. MICROBIOME 2023; 11:258. [PMID: 37981701 PMCID: PMC10658978 DOI: 10.1186/s40168-023-01697-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND While many studies have reported that the structure of the gut and skin microbiota is driven by both species-specific and habitat-specific factors, the relative importance of host-specific versus environmental factors in wild vertebrates remains poorly understood. The aim of this study was to determine the diversity and composition of fish skin, gut, and surrounding water bacterial communities (hereafter referred to as microbiota) and assess the extent to which host habitat and phylogeny predict microbiota similarity. Skin swabs and gut samples from 334 fish belonging to 17 species were sampled in three Laurentian Great Lakes (LGLs) habitats (Detroit River, Lake Erie, Lake Ontario). We also collected and filtered water samples at the time of fish collection. We analyzed bacterial community composition using 16S metabarcoding and tested for community variation. RESULTS We found that the water microbiota was distinct from the fish microbiota, although the skin microbiota more closely resembled the water microbiota. We also found that environmental (sample location), habitat, fish diet, and host species factors shape and promote divergence or convergence of the fish microbiota. Since host species significantly affected both gut and skin microbiota (separately from host species effects), we tested for phylosymbiosis using pairwise host species phylogenetic distance versus bacterial community dissimilarity. We found significant phylogenetic effects on bacterial community dissimilarity, consistent with phylosymbiosis for both the fish skin and gut microbiota, perhaps reflecting the longstanding co-evolutionary relationship between the host species and their microbiomes. CONCLUSIONS Analyzing the gut and skin mucus microbiota across diverse fish species in complex natural ecosystems such as the LGLs provides insights into the potential for habitat and species-specific effects on the microbiome, and ultimately the health, of the host. Video Abstract.
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Timothy B Johnson
- Ontario Ministry of Natural Resources and Forestry, Glenora Fisheries Station, Picton, ON, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
16
|
André MR, Ikeda P, Lee DAB, do Amaral RB, Carvalho LAL, Pinheiro DG, Torres JM, de Mello VVC, Rice GK, Cer RZ, Lourenço EC, Oliveira CE, Herrera HM, Barros-Battesti DM, Machado RZ, Bishop-Lilly KA, Dalgard CL, Dumler JS. Characterization of the bacterial microbiome of non-hematophagous bats and associated ectoparasites from Brazil. Front Microbiol 2023; 14:1261156. [PMID: 37928691 PMCID: PMC10620512 DOI: 10.3389/fmicb.2023.1261156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Bats, along with their ectoparasites, harbor a wide diversity of symbiotic and potential pathogenic bacteria. Despite the enormous diversity of bats (181 species), few studies aimed to investigate the bacterial microbiome of Brazilian chiropterans and associated ectoparasites. This study aimed to characterize the bacterial microbiome of non-hematophagous bats and associated Streblidae flies and Macronyssidae and Spinturnicidae mites in the state of Mato Grosso do Sul, midwestern Brazil. Methods Oral and rectal swabs were collected from 30 bats (Artibeus lituratus [n = 13], Artibeus planirostris [n = 9], Eptesicus furinalis [n = 5], Carollia perspicillata [n = 2], and Platyrrhinus lineatus [n = 1]). In addition, a total of 58 mites (15 Macronyssidae and 43 Spinturnicidae) and 48 Streblidae bat flies were collected from the captured bats. After DNA extraction and purification, each sample's bacterial composition was analyzed with metagenomic sequencing. Results The microbiome composition of both oral and rectal bat swab samples showed that Gammaproteobacteria was the most abundant bacterial class. Spiroplasma, Wolbachia and Bartonella represented the most abundant genera in Streblidae flies. While Wolbachia (Alphaproteobacteria) was the most abundant genus found in Spinturnicidae, Arsenophonus (Gammaproteobacteria) was found in high abundance in Macronyssidae mites. In addition to characterizing the microbiome of each sample at the class and genus taxonomic levels, we identified medically significant bacteria able to infect both animals and humans in oral (Streptococcus and Anaplasma) and rectal swabs (Enterobacter, Klebsiella, Escherichia, Enterococcus, Streptococcus), Macronyssidae (Anaplasma, Bartonella, Ehrlichia) and Spinturnicidae (Anaplasma, Bartonella) mites as well as Streblidae flies (Spiroplasma, Bartonella). Discussion and conclusion Besides expanding the knowledge on the bacterial microbiome of non-hematophagous bats and Streblidae flies from Brazil, the present work showed, for the first time, the bacterial community of bat-associated Macronyssidae and Spinturnicidae mites.
Collapse
Affiliation(s)
- Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Priscila Ikeda
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Daniel Antônio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Renan Bressianini do Amaral
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lucas Amoroso Lopes Carvalho
- Departamento de Biotecnologia Ambiental e Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Biotecnologia Ambiental e Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Jaire Marinho Torres
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Victória Valente Califre de Mello
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Gregory K. Rice
- Leidos, Inc., Reston, VA, United States
- Department of Genomics and Bioinformatics, Naval Medical Research Command, Fort Detrick, Frederick, MD, United States
| | - Regina Z. Cer
- Department of Genomics and Bioinformatics, Naval Medical Research Command, Fort Detrick, Frederick, MD, United States
| | | | - Carisa Elisei Oliveira
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Heitor Miraglia Herrera
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Darci Moraes Barros-Battesti
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Kimberly A. Bishop-Lilly
- Department of Genomics and Bioinformatics, Naval Medical Research Command, Fort Detrick, Frederick, MD, United States
| | - Clifton L. Dalgard
- The American Genome Center, Center for Military Precision Health and Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - J. Stephen Dumler
- Department of Pathology, University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
17
|
Kearns PJ, Winter AS, Woodhams DC, Northup DE. The Mycobiome of Bats in the American Southwest Is Structured by Geography, Bat Species, and Behavior. MICROBIAL ECOLOGY 2023; 86:1565-1574. [PMID: 37126126 DOI: 10.1007/s00248-023-02230-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/23/2023] [Indexed: 06/19/2023]
Abstract
Bats are widespread mammals that play key roles in ecosystems as pollinators and insectivores. However, there is a paucity of information about bat-associated microbes, in particular their fungal communities, despite the important role microbes play in host health and overall host function. The emerging fungal disease, white-nose syndrome, presents a potential challenge to the bat microbiome and understanding healthy bat-associated taxa will provide valuable information about potential microbiome-pathogen interactions. To address this knowledge gap, we collected 174 bat fur/skin swabs from 14 species of bats captured in five locations in New Mexico and Arizona and used high-throughput sequencing of the fungal internal transcribed (ITS) region to characterize bat-associated fungal communities. Our results revealed a highly heterogeneous bat mycobiome that was structured by geography and bat species. Furthermore, our data suggest that bat-associated fungal communities are affected by bat foraging, indicating the bat skin microbiota is dynamic on short time scales. Finally, despite the strong effects of site and species, we found widespread and abundant taxa from several taxonomic groups including the genera Alternaria and Metschnikowia that have the potential to be inhibitory towards fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Patrick J Kearns
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Ara S Winter
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
18
|
Liu S, Xiao Y, Wang X, Guo D, Wang Y, Wang Y. Effects of Microhabitat Temperature Variations on the Gut Microbiotas of Free-Living Hibernating Animals. Microbiol Spectr 2023; 11:e0043323. [PMID: 37378560 PMCID: PMC10434193 DOI: 10.1128/spectrum.00433-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Variations in ambient temperature (Ta) may significantly influence the gut microbiotas of ectothermic and endothermic animals, affecting fitness. It remains unclear, however, whether temperature fluctuations affect the gut microbial communities of hibernating animals during torpor. To investigate temperature-induced changes in the gut microbiota during hibernation under entirely natural conditions, we took advantage of two adjacent but distinct populations of the least horseshoe bat (Rhinolophus pusillus), which inhabit sites with a similar summer Ta but a different winter Ta. Using 16S rRNA gene high-throughput sequencing, we estimated differences in gut microbial diversity and composition between the hibernating (winter) and active (summer) R. pusillus populations at both sites. During the active period, gut microbiotas did not differ significantly between the two populations, probably due to the similar Tas. However, during hibernation, a higher Ta was associated with decreased α-diversity in the gut microbiome. During hibernation, temperature variation did not significantly affect the relative abundance of Proteobacteria, the dominant phylum at both sites, but marked site-specific differences were detected in the relative abundances of Firmicutes, Actinobacteria, and Tenericutes. In total, 74 amplicon sequence variants (ASVs) were significantly differentially abundant between the hibernating and active bat guts across the two sites; most of these ASVs were associated with the cooler site, and many belonged to pathogenic genera, suggesting that lower ambient temperatures during hibernation may increase the risk of pathogen proliferation in the host gut. Our findings help to clarify the mechanisms underlying the gut microbiota-driven adaptation of hibernating mammals to temperature changes. IMPORTANCE Temperature variations affect gut microbiome diversity and structure in both ectothermic and endothermic animals. Here, we aimed to characterize temperature-induced changes in the gut microbiotas of adjacent natural populations of the least horseshoe bat (Rhinolophus pusillus) which hibernate at different ambient temperatures. We found that the ambient temperature significantly affected the α-diversity, but not the β-diversity, of the gut microbiota. Bats hibernating at cooler temperatures experienced more drastic shifts in gut microbiome structure, with consequent effects on energy-related metabolic pathways. Our results provide novel insights into the effects of ambient temperature on the gut microbiotas of hibernating animals.
Collapse
Affiliation(s)
- Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xufan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Dongge Guo
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanmei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
19
|
Guo M, Xie S, Wang J, Zhang Y, He X, Luo P, Deng J, Zhou C, Qin J, Huang C, Zhang L. The difference in the composition of gut microbiota is greater among bats of different phylogenies than among those with different dietary habits. Front Microbiol 2023; 14:1207482. [PMID: 37577418 PMCID: PMC10419214 DOI: 10.3389/fmicb.2023.1207482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Bats have a very long evolutionary history and are highly differentiated in their physiological functions. Results of recent studies suggest effects of some host factors (e.g., phylogeny and dietary habit) on their gut microbiota. In this study, we examined the gut microbial compositions of 18 different species of bats. Results showed that Firmicutes, Gammaproteobacteria, and Actinobacteria were dominant in all fecal samples of bats. However, the difference in the diversity of gut microbiota among bats of different phylogenies was notable (p = 0.06). Various species of Firmicutes, Actinobacteria, and Gammaproteobacteria were found to contribute to the majority of variations in gut microbiota of all bats examined, and Aeromonas species were much more abundant in bats that feed on both insects and fish than in those of insectivores. The abundance of various species of Clostridium, Euryarchaeota, and ancient bacterial phyla was found to vary among bats of different phylogenies, and various species of Vibrio varied significantly among bats with different dietary habits. No significant difference in the number of genes involved in various metabolic pathways was detected among bats of different phylogenies, but the abundance of genes involved in 5 metabolic pathways, including transcription; replication, recombination, and repair; amino acid transport and metabolism; and signal transduction mechanisms, was different among bats with different dietary habits. The abundance of genes in 3 metabolic pathways, including those involved in stilbenoid, diarylheptanoid, and gingerol biosynthesis, was found to be different between insectivorous bats and bats that feed on both insects and fish. Results of this study suggest a weak association between dietary habit and gut microbiota in most bats but a notable difference in gut microbiota among bats of different phylogenies.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Siwei Xie
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Junhua Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuzhi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Pengfei Luo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jin Deng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- College of Life Sciences, South China Normal University, Guangzhou, China
| | - Chunhui Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiao Qin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
20
|
Keady MM, Jimenez RR, Bragg M, Wagner JCP, Bornbusch SL, Power ML, Muletz-Wolz CR. Ecoevolutionary processes structure milk microbiomes across the mammalian tree of life. Proc Natl Acad Sci U S A 2023; 120:e2218900120. [PMID: 37399384 PMCID: PMC10334807 DOI: 10.1073/pnas.2218900120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/22/2023] [Indexed: 07/05/2023] Open
Abstract
Milk production is an ancient adaptation that unites all mammals. Milk contains a microbiome that can contribute to offspring health and microbial-immunological development. We generated a comprehensive milk microbiome dataset (16S rRNA gene) for the class Mammalia, representing 47 species from all placental superorders, to determine processes structuring milk microbiomes. We show that across Mammalia, milk exposes offspring to maternal bacterial and archaeal symbionts throughout lactation. Deterministic processes of environmental selection accounted for 20% of milk microbiome assembly processes; milk microbiomes were similar from mammals with the same host superorder (Afrotheria, Laurasiathera, Euarchontoglires, and Xenarthra: 6%), environment (marine captive, marine wild, terrestrial captive, and terrestrial wild: 6%), diet (carnivore, omnivore, herbivore, and insectivore: 5%), and milk nutrient content (sugar, fat, and protein: 3%). We found that diet directly and indirectly impacted milk microbiomes, with indirect effects being mediated by milk sugar content. Stochastic processes, such as ecological drift, accounted for 80% of milk microbiome assembly processes, which was high compared to mammalian gut and mammalian skin microbiomes (69% and 45%, respectively). Even amid high stochasticity and indirect effects, our results of direct dietary effects on milk microbiomes provide support for enteromammary trafficking, representing a mechanism by which bacteria are transferred from the mother's gut to mammary gland and then to offspring postnatally. The microbial species present in milk reflect both selective pressures and stochastic processes at the host level, exemplifying various ecological and evolutionary factors acting on milk microbiomes, which, in turn, set the stage for offspring health and development.
Collapse
Affiliation(s)
- Mia M. Keady
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI53706
| | - Randall R. Jimenez
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Science Team, International Union for Conservation of Nature, 11501San José, Costa Rica
| | - Morgan Bragg
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA22030
| | - Jenna C. P. Wagner
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, National Zoological Park, Washington, DC20008
| | - Sally L. Bornbusch
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Department of Nutrition Science, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
| | - Michael L. Power
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, National Zoological Park, Washington, DC20008
| | - Carly R. Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
| |
Collapse
|
21
|
Luna N, Muñoz M, Castillo-Castañeda A, Hernandez C, Urbano P, Shaban M, Paniz-Mondolfi A, Ramírez JD. Characterizing the blood microbiota of omnivorous and frugivorous bats (Chiroptera: Phyllostomidae) in Casanare, eastern Colombia. PeerJ 2023; 11:e15169. [PMID: 37431467 PMCID: PMC10329821 DOI: 10.7717/peerj.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2023] [Indexed: 07/12/2023] Open
Abstract
Bats are known reservoirs of seemingly-innocuous pathogenic microorganisms (including viruses, bacteria, fungi, and protozoa), which are associated with triggering disease in other zoonotic groups. The taxonomic diversity of the bats' microbiome is likely associated with species-specific phenotypic, metabolic, and immunogenic capacities. To date, few studies have described the diversity of bat blood microbial communities. Then, this study used amplicon-based next generation sequencing of the V4 hypervariable region of the 16S-rRNA gene in blood samples from omnivorous (n = 16) and frugivorous (n = 9) bats from the department of Casanare in eastern Colombia. We found the blood microbiota in bats to be composed of, among others, Bartonella and Mycoplasma bacterial genera which are associated with various disease phenotypes in other mammals. Furthermore, our results suggest that the bats' dietary habits might determine the composition and the persistence of some pathogens over others in their bloodstream. This study is among the first to describe the blood microbiota in bats, to reflect on co-infection rates of multiple pathogens in the same individual, and to consider the influence of diet as a factor affecting the animal's endogenous microbial community.
Collapse
Affiliation(s)
- Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Adriana Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernandez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Plutarco Urbano
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Universidad Internacional del Tropico Americano (Unitropico), Yopal, Colombia
| | - Maryia Shaban
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Incubadora Venezolana de la Ciencia, Caracas, Venezuela
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Incubadora Venezolana de la Ciencia, Caracas, Venezuela
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
22
|
Karunarathna SC, Haelewaters D, Lionakis MS, Tibpromma S, Jianchu X, Hughes AC, Mortimer PE. Assessing the threat of bat-associated fungal pathogens. One Health 2023; 16:100553. [PMID: 37363244 PMCID: PMC10288076 DOI: 10.1016/j.onehlt.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023] Open
Abstract
Fungal pathogens have become an increasingly important topic in recent decades. Yet whilst various cankers and blights have gained attention in temperate woodlands and crops, the scope for fungal pathogens of animals and their potential threat has received far less attention. With a shifting climate, the threat from fungal pathogens is predicted to increase in the future, thus understanding the spread of fungi over landscapes as well as taxa that may be at risk is of particular importance. Cave ecosystems provide potential refugia for various fungi, and roosts for bats. With their well vascularized wings and wide-ranging distributions, bats present potential fungal vectors. Furthermore, whilst bat immune systems are generally robust to bacterial and viral pathogens, they can be susceptible to fungal pathogens, particularly during periods of stress such as hibernation. Here we explore why bats are important and interesting vectors for fungi across landscapes and discuss knowledge gaps that require further research.
Collapse
Affiliation(s)
- Samantha C. Karunarathna
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 65201, PR China
| | - Danny Haelewaters
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Research Group Mycology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, USA
| | - Saowaluck Tibpromma
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 65201, PR China
| | - Xu Jianchu
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 65201, PR China
| | - Alice C. Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, PR China
| | - Peter E. Mortimer
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 65201, PR China
| |
Collapse
|
23
|
Corduneanu A, Wu-Chuang A, Maitre A, Obregon D, Sándor AD, Cabezas-Cruz A. Structural differences in the gut microbiome of bats using terrestrial vs. aquatic feeding resources. BMC Microbiol 2023; 23:93. [PMID: 37005589 PMCID: PMC10067309 DOI: 10.1186/s12866-023-02836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Bat gut microbiomes are adapted to the specific diets of their hosts. Despite diet variation has been associated with differences in bat microbiome diversity, the influence of diet on microbial community assembly have not been fully elucidated. In the present study, we used available data on bat gut microbiome to characterize the microbial community assembly of five selected bat species (i.e., Miniopterus schreibersii, Myotis capaccinii, Myotis myotis, Myotis pilosus, and Myotis vivesi), using network analysis. These bat species with contrasting habitat and food preferences (i.e., My. capaccinii and My. pilosus can be piscivorous and/or insectivorous; Mi. schreibersii and My. myotis are exclusively insectivorous; while My. vivesi is a marine predator) offer an invaluable opportunity to test the impact of diet on bat gut microbiome assembly. The results showed that My. myotis showed the most complex network, with the highest number of nodes, while My. vivesi has the least complex structured microbiome, with lowest number of nodes in its network. No common nodes were observed in the networks of the five bat species, with My. myotis possessing the highest number of unique nodes. Only three bat species, My. myotis, My. pilosus and My. vivesi, presented a core microbiome and the distribution of local centrality measures of nodes was different in the five networks. Taxa removal followed by measurement of network connectivity revealed that My. myotis had the most robust network, while the network of My. vivesi presented the lowest tolerance to taxa removal. Prediction of metabolic pathways using PICRUSt2 revealed that Mi. schreibersii had significantly higher functional pathway's richness compared to the other bat species. Most of predicted pathways (82%, total 435) were shared between all bat species, while My. capaccinii, My. myotis and My. vivesi, but no Mi. schreibersii or My. pilosus, showed specific pathways. We concluded that despite similar feeding habits, microbial community assembly can differ between bat species. Other factors beyond diet may play a major role in bat microbial community assembly, with host ecology, sociality and overlap in roosts likely providing additional predictors governing gut microbiome of insectivorous bats.
Collapse
Affiliation(s)
- Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca-Napoca, Romania
| | - Alejandra Wu-Chuang
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Apolline Maitre
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Attila D Sándor
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
24
|
Zhang M, Wang X, Wang Z, Mao S, Zhang J, Li M, Pan H. Metatranscriptomic Analyses Reveal Important Roles of the Gut Microbiome in Primate Dietary Adaptation. Genes (Basel) 2023; 14:228. [PMID: 36672969 PMCID: PMC9858838 DOI: 10.3390/genes14010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The gut microbiome plays a vital role in host ecological adaptation, especially dietary adaptations. Primates have evolved a variety of dietary and gut physiological structures that are useful to explore the role of the gut microbiome in host dietary adaptations. Here, we characterize gut microbiome transcriptional activity in ten fecal samples from primates with three different diets and compare the results to their previously reported metagenomic profile. Bacteria related to cellulose degradation, like Bacteroidaceae and Alcaligenaceae, were enriched and actively expressed in the gut microbiome of folivorous primates, and functional analysis revealed that the glycan biosynthesis and metabolic pathways were significantly active. In omnivorous primates, Helicobacteraceae, which promote lipid metabolism, were significantly enriched in expression, and activity and xenobiotic biodegradation and metabolism as well as lipid metabolism pathways were significantly active. In frugivorous primates, the abundance and activity of Elusimicrobiaceae, Neisseriaceae, and Succinivibrionaceae, which are associated with digestion of pectin and fructose, were significantly elevated, and the functional pathways involved in the endocrine system were significantly enriched. In conclusion, the gut microbiome contributes to host dietary adaptation by helping hosts digest the inaccessible nutrients in their specific diets.
Collapse
Affiliation(s)
- Mingyi Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Ziming Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuxin Mao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
25
|
Chen C, Chen S, Wang B. A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Front Microbiol 2023; 14:1035944. [PMID: 37125200 PMCID: PMC10140447 DOI: 10.3389/fmicb.2023.1035944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose.
Collapse
Affiliation(s)
- Chuizhe Chen
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shu Chen
- Medical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Wang
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Bo Wang,
| |
Collapse
|
26
|
Berman TS, Weinberg M, Moreno KR, Czirják GÁ, Yovel Y. In sickness and in health: the dynamics of the fruit bat gut microbiota under a bacterial antigen challenge and its association with the immune response. Front Immunol 2023; 14:1152107. [PMID: 37114064 PMCID: PMC10126333 DOI: 10.3389/fimmu.2023.1152107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Interactions between the gut microbiome (GM) and the immune system influence host health and fitness. However, few studies have investigated this link and GM dynamics during disease in wild species. Bats (Mammalia: Chiroptera) have an exceptional ability to cope with intracellular pathogens and a unique GM adapted to powered flight. Yet, the contribution of the GM to bat health, especially immunity, or how it is affected by disease, remains unknown. Methods Here, we examined the dynamics of the Egyptian fruit bats' (Rousettus aegyptiacus) GM during health and disease. We provoked an inflammatory response in bats using lipopolysaccharides (LPS), an endotoxin of Gram-negative bacteria. We then measured the inflammatory marker haptoglobin, a major acute phase protein in bats, and analyzed the GM (anal swabs) of control and challenged bats using high-throughput 16S rRNA sequencing, before the challenge, 24h and 48h post challenge. Results We revealed that the antigen challenge causes a shift in the composition of the bat GM (e.g., Weissella, Escherichia, Streptococcus). This shift was significantly correlated with haptoglobin concentration, but more strongly with sampling time. Eleven bacterial sequences were correlated with haptoglobin concentration and nine were found to be potential predictors of the strength of the immune response, and implicit of infection severity, notably Weissella and Escherichia. The bat GM showed high resilience, regaining the colony's group GM composition rapidly, as bats resumed foraging and social activities. Conclusion Our results demonstrate a tight link between bat immune response and changes in their GM, and emphasize the importance of integrating microbial ecology in ecoimmunological studies of wild species. The resilience of the GM may provide this species with an adaptive advantage to cope with infections and maintain colony health.
Collapse
Affiliation(s)
- Tali S. Berman
- Department of Zoology, Tel Aviv University, Tel Aviv – Yafo, Israel
- *Correspondence: Tali S. Berman, ; Maya Weinberg,
| | - Maya Weinberg
- Department of Zoology, Tel Aviv University, Tel Aviv – Yafo, Israel
- *Correspondence: Tali S. Berman, ; Maya Weinberg,
| | - Kelsey R. Moreno
- Department of Zoology, Tel Aviv University, Tel Aviv – Yafo, Israel
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Yossi Yovel
- Department of Zoology, Tel Aviv University, Tel Aviv – Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv – Yafo, Israel
| |
Collapse
|
27
|
Wang Z, Zhang C, Li G, Yi X. The influence of species identity and geographic locations on gut microbiota of small rodents. Front Microbiol 2022; 13:983660. [PMID: 36532505 PMCID: PMC9751661 DOI: 10.3389/fmicb.2022.983660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/10/2022] [Indexed: 10/29/2023] Open
Abstract
Although the correlation between gut microbiota, species identity and geographic locations has long attracted the interest of scientists, to what extent species identity and geographic locations influence the gut microbiota assemblages in granivorous rodents needs further investigation. In this study, we performed a survey of gut microbial communities of four rodent species (Apodemus agrarius, A. peninsulae, Tamias sibiricus and Clethrionomys rufocanus) distributed in two areas with great distance (> 600 km apart), to assess if species identity dominates over geographic locations in shaping gut microbial profiles using 16S rRNA gene sequencing. We found that gut microbiota composition varied significantly across host species and was closely correlated with host genetics. We identified strong species identity effects on gut microbial composition, with a comparatively weaker signal of geographic provenance on the intestinal microbiota. Specifically, microbiota of one species was on average more similar to that of conspecifics living in separate sites than to members of a closely related species living in the same location. Our study suggests that both host genetics and geographical variations influence gut microbial diversity of four rodent species, which merits further investigation to reveal the patterns of phylogenetic correlation of gut microbial community assembly in mammals across multiple habitats.
Collapse
Affiliation(s)
- Zhenyu Wang
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Chao Zhang
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
28
|
Federici L, Masulli M, De Laurenzi V, Allocati N. An overview of bats microbiota and its implication in transmissible diseases. Front Microbiol 2022; 13:1012189. [PMID: 36338090 PMCID: PMC9631491 DOI: 10.3389/fmicb.2022.1012189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Recent pandemic events have raised the attention of the public on the interactions between human and environment, with particular regard to the more and more feasible transmission to humans of micro-organisms hosted by wild-type species, due to the increasing interspecies contacts originating from human’s activities. Bats, due to their being flying mammals and their increasing promiscuity with humans, have been recognized as hosts frequently capable of transmitting disease-causing microorganisms. Therefore, it is of considerable interest and importance to have a picture as clear as possible of the microorganisms that are hosted by bats. Here we focus on our current knowledge on bats microbiota. We review the most recent literature on this subject, also in view of the bat’s body compartments, their dietary preferences and their habitat. Several pathogenic bacteria, including many carrying multidrug resistance, are indeed common guests of these small mammals, underlining the importance of preserving their habitat, not only to protect them from anthropogenic activities, but also to minimize the spreading of infectious diseases.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- *Correspondence: Nerino Allocati,
| |
Collapse
|
29
|
Eliades SJ, Colston TJ, Siler CD. Gut microbial ecology of Philippine gekkonids: ecoevolutionary effects on microbiome compositions. FEMS Microbiol Ecol 2022; 98:6763418. [PMID: 36259773 PMCID: PMC9681010 DOI: 10.1093/femsec/fiac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 01/21/2023] Open
Abstract
Given the rapidly changing landscapes of habitats across the globe, a sound understanding of host-associated microbial communities and the ecoevolutionary forces that shape them is needed to assess general organismal adaptability. Knowledge of the symbiotic endogenous microbiomes of most reptilian species worldwide remains limited. We sampled gut microbiomes of geckos spanning nine species and four genera in the Philippines to (i) provide baseline data on gut microbiota in these host species, (ii) test for significant associations between host phylogenetic relationships and observed microbial assemblages, potentially indicative of phylosymbiosis, and (iii) identify correlations between multiple ecoevolutionary factors (e.g. species identity, habitat tendencies, range extents, and maximum body sizes) and gut microbiomes in Philippine gekkonids. We recovered no significant association between interspecific host genetic distances and observed gut microbiomes, providing limited evidence for phylosymbiosis in this group. Philippine gekkonid microbiomes were associated most heavily with host species identity, though marked variation among conspecifics at distinct sampling sites indicates that host locality influences gut microbiomes as well. Interestingly, individuals grouped as widespread and microendemic regardless of host species identity displayed significant differences in alpha and beta diversity metrics examined, likely driven by differences in rare OTU presence between groups. These results provide much needed insight in host-associated microbiomes in wild reptiles and the ecoevolutionary forces that structure such communities.
Collapse
Affiliation(s)
- Samuel J Eliades
- Corresponding author: 2401 Chautauqua Avenue, Norman, OK 73072, United States. E-mail:
| | - Timothy J Colston
- Biology Department, University of Puerto Rico at Mayagüez, Call Box 9000, 00681-9000 Mayagüez, Puerto Rico
| | - Cameron D Siler
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072, United States
| |
Collapse
|
30
|
Gregor R, Probst M, Eyal S, Aksenov A, Sasson G, Horovitz I, Dorrestein PC, Meijler MM, Mizrahi I. Mammalian gut metabolomes mirror microbiome composition and host phylogeny. THE ISME JOURNAL 2022; 16:1262-1274. [PMID: 34903850 PMCID: PMC9038745 DOI: 10.1038/s41396-021-01152-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 10/18/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022]
Abstract
In the past decade, studies on the mammalian gut microbiome have revealed that different animal species have distinct gut microbial compositions. The functional ramifications of this variation in microbial composition remain unclear: do these taxonomic differences indicate microbial adaptations to host-specific functionality, or are these diverse microbial communities essentially functionally redundant, as has been indicated by previous metagenomics studies? Here, we examine the metabolic content of mammalian gut microbiomes as a direct window into ecosystem function, using an untargeted metabolomics platform to analyze 101 fecal samples from a range of 25 exotic mammalian species in collaboration with a zoological center. We find that mammalian metabolomes are chemically diverse and strongly linked to microbiome composition, and that metabolome composition is further correlated to the phylogeny of the mammalian host. Specific metabolites enriched in different animal species included modified and degraded host and dietary compounds such as bile acids and triterpenoids, as well as fermentation products such as lactate and short-chain fatty acids. Our results suggest that differences in microbial taxonomic composition are indeed translated to host-specific metabolism, indicating that taxonomically distant microbiomes are more functionally diverse than redundant.
Collapse
Affiliation(s)
- Rachel Gregor
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Maraike Probst
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Stav Eyal
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Alexander Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Goor Sasson
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Igal Horovitz
- The Zoological Center Tel Aviv-Ramat Gan, Ramat Gan, Israel
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Michael M Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Itzhak Mizrahi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| |
Collapse
|
31
|
Mohd-Yusof NS, Abdul-Latiff MAB, Mohd-Ridwan AR, Badrulisham AS, Othman N, Yaakop S, Md-Nor S, Md-Zain BM. First report on metabarcoding analysis of gut microbiome in Island Flying Fox ( Pteropushypomelanus) in island populations of Malaysia. Biodivers Data J 2022; 10:e69631. [PMID: 36761502 PMCID: PMC9848629 DOI: 10.3897/bdj.10.e69631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/09/2022] [Indexed: 01/12/2023] Open
Abstract
Flying fox (Pteropushypomelanus) belongs to the frugivorous bats, which play a crucial role in maintaining proper functioning of an ecosystem and conservation of the environment. Bats are well-known carriers of pathogenic viruses, such as BatCov RaTG13 from the coronavirus family that share 90.55% with SARS-CoV-2, the pathogen causing recent global pandemic coronavirus disease 19 (COVID-19). However, bats' possible role as a carrier of pathogenic bacteria is less explored. Here, using metabarcoding analysis through high-throughput sequencing, we explored the gut microbiome composition of different island populations on the east and west coasts of Peninsula Malaysia. The 16S rRNA gene in samples from Redang Island, Langkawi Island, Pangkor Island and Tinggi Island was amplified. Bacterial community composition and structure were analysed with α and β diversity metrics. A total of 25,658 operational taxonomic units at 97% similarity were assigned to eight phyla, 44 families, 61 genera and 94 species of microbes. The Proteobacteria was the dominant phylum in all populations. Meanwhile, the genera Enterobacter, Pseudomonas and Klebsiella, isolated in this study, were previously found in the rectum of other fruit bats. Our analyses suggest that Redang Island and Langkawi Island have high bacteria diversity. Thus, we found geographic locality is a strong predictor of microbial community composition and observed a positive correlation between ecological features and bacterial richness.
Collapse
Affiliation(s)
- Nur Syafika Mohd-Yusof
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Muhammad Abu Bakar Abdul-Latiff
- Faculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1 Jalan Panchor 84600, Muar, Johor, MalaysiaFaculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1 Jalan Panchor 84600Muar, JohorMalaysia
| | - Abd Rahman Mohd-Ridwan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia,Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, MalaysiaCentre for Pre-University Studies, Universiti Malaysia Sarawak, 94300Kota Samarahan, SarawakMalaysia
| | - Aqilah Sakinah Badrulisham
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Nursyuhada Othman
- Faculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1 Jalan Panchor 84600, Muar, Johor, MalaysiaFaculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1 Jalan Panchor 84600Muar, JohorMalaysia
| | - Salmah Yaakop
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Shukor Md-Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| |
Collapse
|
32
|
Weinhold A. Bowel Movement: Integrating Host Mobility and Microbial Transmission Across Host Taxa. Front Microbiol 2022; 13:826364. [PMID: 35242121 PMCID: PMC8886138 DOI: 10.3389/fmicb.2022.826364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
The gut microbiota of animals displays a high degree of plasticity with respect to environmental or dietary adaptations and is shaped by factors like social interactions, diet diversity or the local environment. But the contribution of these drivers varies across host taxa and our ability to explain microbiome variability within wild populations remains limited. Terrestrial animals have divergent mobility ranges and can either crawl, walk or fly, from a couple of centimeters toward thousands of kilometers. Animal movement has been little regarded in host microbiota frameworks, though it can directly influence major drivers of the host microbiota: (1) Aggregation movement can enhance social transmissions, (2) foraging movement can extend range of diet diversity, and (3) dispersal movement determines the local environment of a host. Here, I would like to outline how movement behaviors of different host taxa matter for microbial acquisition across mammals, birds as well as insects. Host movement can have contrasting effects and either reduce or enlarge spatial scale. Increased dispersal movement could dissolve local effects of sampling location, while aggregation could enhance inter-host transmissions and uniformity among social groups. Host movement can also extend the boundaries of microbial dispersal limitations and connect habitat patches across plant-pollinator networks, while the microbiota of wild populations could converge toward a uniform pattern when mobility is interrupted in captivity or laboratory settings. Hence, the implementation of host movement would be a valuable addition to the metacommunity concept, to comprehend microbial dispersal within and across trophic levels.
Collapse
Affiliation(s)
- Arne Weinhold
- Faculty of Biology, Cellular and Organismic Networks, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
33
|
Taubenheim J, Miklós M, Tökölyi J, Fraune S. Population Differences and Host Species Predict Variation in the Diversity of Host-Associated Microbes in Hydra. Front Microbiol 2022; 13:799333. [PMID: 35308397 PMCID: PMC8927533 DOI: 10.3389/fmicb.2022.799333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Most animals co-exist with diverse host-associated microbial organisms that often form complex communities varying between individuals, habitats, species and higher taxonomic levels. Factors driving variation in the diversity of host-associated microbes are complex and still poorly understood. Here, we describe the bacterial composition of field-collected Hydra, a freshwater cnidarian that forms stable associations with microbial species in the laboratory and displays complex interactions with components of the microbiota. We sampled Hydra polyps from 21 Central European water bodies and identified bacterial taxa through 16S rRNA sequencing. We asked whether diversity and taxonomic composition of host-associated bacteria depends on sampling location, habitat type, host species or host reproductive mode (sexual vs. asexual). Bacterial diversity was most strongly explained by sampling location, suggesting that the source environment plays an important role in the assembly of bacterial communities associated with Hydra polyps. We also found significant differences between host species in their bacterial composition that partly mirrored variations observed in lab strains. Furthermore, we detected a minor effect of host reproductive mode on bacterial diversity. Overall, our results suggest that extrinsic (habitat identity) factors predict the diversity of host-associated bacterial communities more strongly than intrinsic (species identity) factors, however, only a combination of both factors determines microbiota composition in Hydra.
Collapse
Affiliation(s)
- Jan Taubenheim
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Medical Systems Biology, University Hospital Kiel, Kiel, Germany
- Institut für Zoologie und Organismische Interaktionen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Máté Miklós
- MTA-DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Jácint Tökölyi
- MTA-DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Sebastian Fraune
- Institut für Zoologie und Organismische Interaktionen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
Doty AC, Wilson AD, Forse LB, Risch TS. Biomarker Metabolites Discriminate between Physiological States of Field, Cave and White-nose Syndrome Diseased Bats. SENSORS 2022; 22:s22031031. [PMID: 35161777 PMCID: PMC8840073 DOI: 10.3390/s22031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Analysis of volatile organic compound (VOC) emissions using electronic-nose (e-nose) devices has shown promise for early detection of white-nose syndrome (WNS) in bats. Tricolored bats, Perimyotis subflavus, from three separate sampling groups defined by environmental conditions, levels of physical activity, and WNS-disease status were captured temporarily for collection of VOC emissions to determine relationships between these combinations of factors and physiological states, Pseudogymnoascus destructans (Pd)-infection status, and metabolic conditions. Physiologically active (non-torpid) healthy individuals were captured outside of caves in Arkansas and Louisiana. In addition, healthy and WNS-diseased torpid bats were sampled within caves in Arkansas. Whole-body VOC emissions from bats were collected using portable air-collection and sampling-chamber devices in tandem. Electronic aroma-detection data using three-dimensional Principal Component Analysis provided strong evidence that the three groups of bats had significantly different e-nose aroma signatures, indicative of different VOC profiles. This was confirmed by differences in peak numbers, peak areas, and tentative chemical identities indicated by chromatograms from dual-column GC-analyses. The numbers and quantities of VOCs present in whole-body emissions from physiologically active healthy field bats were significantly greater than those of torpid healthy and diseased cave bats. Specific VOCs were identified as chemical biomarkers of healthy and diseased states, environmental conditions (outside and inside of caves), and levels of physiological activity. These results suggest that GC/E-nose dual-technologies based on VOC-detection and analyses of physiological states, provide noninvasive alternative means for early assessments of Pd-infection, WNS-disease status, and other physiological states.
Collapse
Affiliation(s)
- Anna C. Doty
- Department of Biology, California State University Bakersfield, Bakersfield, CA 93311, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Correspondence: ; Tel.: +1-661-654-6836
| | - A. Dan Wilson
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Lisa B. Forse
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Thomas S. Risch
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
35
|
Do gastrointestinal microbiomes play a role in bats' unique viral hosting capacity? Trends Microbiol 2022; 30:632-642. [PMID: 35034797 DOI: 10.1016/j.tim.2021.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
Abstract
Bats are reservoirs for zoonotic viruses, which they tolerate without experiencing disease. Research focused on deciphering mechanisms of virus tolerance in bats has rarely considered the influence of their gastrointestinal tract (GIT) microbiome. In mammals, GIT microbiomes influence infections through their effect on host physiology, immunity, nutrition, and behavior. Bat GIT microbiomes more closely resemble the Proteobacteria-dominated GIT microbiomes of birds than those of other mammals. As an adaptation to flight, bats have rapid GIT transit times which may reduce the stability of their microbiome, constrain nutrient uptake, and affect pathogen exposure and evolution of tolerance mechanisms. Experimental and longitudinal studies are needed to understand the function of bats' GIT microbiomes and their role in modulating viral infection dynamics.
Collapse
|
36
|
Ingala MR, Simmons NB, Dunbar M, Wultsch C, Krampis K, Perkins SL. You are more than what you eat: potentially adaptive enrichment of microbiome functions across bat dietary niches. Anim Microbiome 2021; 3:82. [PMID: 34906258 PMCID: PMC8672517 DOI: 10.1186/s42523-021-00139-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Animals evolved in a microbial world, and their gut microbial symbionts have played a role in their ecological diversification. While many recent studies report patterns of phylosymbiosis between hosts and their gut bacteria, fewer studies examine the potentially adaptive functional contributions of these microbes to the dietary habits of their hosts. In this study, we examined predicted metabolic pathways in the gut bacteria of more than 500 individual bats belonging to 60 species and compare the enrichment of these functions across hosts with distinct dietary ecologies. RESULTS We found that predicted microbiome functions were differentially enriched across hosts with different diets. Using a machine-learning approach, we also found that inferred microbiome functions could be used to predict specialized host diets with reasonable accuracy. We detected a relationship between both host phylogeny and diet with respect to microbiome functional repertoires. Because many predicted functions could potentially fill nutritional gaps for bats with specialized diets, we considered pathways discriminating dietary niches as traits of the host and fit them to comparative phylogenetic models of evolution. Our results suggest that some, but not all, predicted microbiome functions may evolve toward adaptive optima and thus be visible to the forces of natural selection operating on hosts over evolutionary time. CONCLUSIONS Our results suggest that bats with specialized diets may partially rely on their gut microbes to fulfill or augment critical nutritional pathways, including essential amino acid synthesis, fatty acid biosynthesis, and the generation of cofactors and vitamins essential for proper nutrition. Our work adds to a growing body of literature suggesting that animal microbiomes are structured by a combination of ecological and evolutionary processes and sets the stage for future metagenomic and metabolic characterization of the bat microbiome to explore links between bacterial metabolism and host nutrition.
Collapse
Affiliation(s)
- Melissa R. Ingala
- Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC USA
- Department of Mammalogy, The American Museum of Natural History, New York, NY USA
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY USA
| | - Nancy B. Simmons
- Department of Mammalogy, The American Museum of Natural History, New York, NY USA
| | - Miranda Dunbar
- Department of Biological Sciences, Southern Connecticut State University, New Haven, CT USA
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, The American Museum of Natural History, New York, NY USA
- Bioinformatics and Computational Genomics Laboratory, Hunter College, City University of New York, New York, NY USA
| | - Konstantinos Krampis
- Bioinformatics and Computational Genomics Laboratory, Hunter College, City University of New York, New York, NY USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY USA
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY USA
| | - Susan L. Perkins
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY USA
- Sackler Institute for Comparative Genomics, The American Museum of Natural History, New York, NY USA
| |
Collapse
|
37
|
Malacrinò A. Host species identity shapes the diversity and structure of insect microbiota. Mol Ecol 2021; 31:723-735. [PMID: 34837439 DOI: 10.1111/mec.16285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
As for most of the life that inhabits our planet, microorganisms play an essential role in insect nutrition, reproduction, defence, and support their host in many other functions. More recently, we assisted to an exponential growth of studies describing the taxonomical composition of bacterial communities across insects' phylogeny. However, there is still an outstanding question that needs to be answered: Which factors contribute most to shape insects' microbiomes? This study tries to find an answer to this question by taking advantage of publicly available sequencing data and reanalysing over 4000 samples of insect-associated bacterial communities under a common framework. Results suggest that insect taxonomy has a wider impact on the structure and diversity of their associated microbial communities than the other factors considered (diet, sex, life stage, sample origin and treatment). However, when specifically testing for signatures of codiversification of insect species and their microbiota, analyses found weak support for this, suggesting that while insect species strongly drive the structure and diversity of insect microbiota, the diversification of those microbial communities did not follow their host's phylogeny. Furthermore, a parallel survey of the literature highlights several methodological limitations that need to be considered in the future research endeavours.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
38
|
Tang Y, Ma KY, Cheung MK, Yang CH, Wang Y, Hu X, Kwan HS, Chu KH. Gut Microbiota in Decapod Shrimps: Evidence of Phylosymbiosis. MICROBIAL ECOLOGY 2021; 82:994-1007. [PMID: 33629169 DOI: 10.1007/s00248-021-01720-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Gut microbiota have long attracted the interest of scientists due to their profound impact on the well-being of animals. A non-random pattern of microbial assembly that results in a parallelism between host phylogeny and microbial similarity is described as phylosymbiosis. Phylosymbiosis has been consistently observed in different clades of animal hosts, but there have been no studies on crustaceans. In this study, we investigated whether host phylogeny has an impact on the gut microbiota assemblages in decapod shrimps. We examined the gut microbial communities in 20 shrimp species from three families inhabiting distinct environments, using metabarcoding analyses of the V1-V3 hypervariable region of the 16S rRNA gene. Gut microbial communities varied within each shrimp group but were generally dominated by Proteobacteria. A prevalent phylosymbiotic pattern in shrimps was evidenced for the first time by the observations of (1) the distinguishability of microbial communities among species within each group, (2) a significantly lower intraspecific than interspecific gut microbial beta diversity across shrimp groups, (3) topological congruence between host phylogenetic trees and gut microbiota dendrograms, and (4) a correlation between host genetic distances and microbial dissimilarities. Consistent signals of phylosymbiosis were observed across all groups in dendrograms based on the unweighted UniFrac distances at 99% operational taxonomic units (OTUs) level and in Mantel tests based on the weighted UniFrac distances based on 97% OTUs and amplicon sequence variants. Penaeids exhibited phylosymbiosis in most tests, while phylosymbiotic signals in atyids and pandalids were only detected in fewer than half of the tests. A weak phylogenetic signal was detected in the predicted functions of the penaeid gut microbiota. However, the functional diversities of the two caridean groups were not significantly related to host phylogeny. Our observations of a parallelism in the taxonomy of the gut microbiota with host phylogeny for all shrimp groups examined and in the predicted functions for the penaeid shrimps indicate a tight host-microbial relationship during evolution.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka Yan Ma
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Man Kit Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chien-Hui Yang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yaqin Wang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xuelei Hu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, China
| | - Hoi Shan Kwan
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Hong Kong Branch of Southern Marine Science and Technology Guangdong Laboratory (Guangzhou), Hong Kong, SAR, China.
| |
Collapse
|
39
|
Gut microbiota of bats: pro-mutagenic properties and possible frontiers in preventing emerging disease. Sci Rep 2021; 11:21075. [PMID: 34702917 PMCID: PMC8548564 DOI: 10.1038/s41598-021-00604-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
Bats are potential natural reservoirs for emerging viruses, causing deadly human diseases, such as COVID-19, MERS, SARS, Nipah, Hendra, and Ebola infections. The fundamental mechanisms by which bats are considered “living bioreactors” for emerging viruses are not fully understood. Some studies suggest that tolerance to viruses is linked to suppressing antiviral immune and inflammatory responses due to DNA damage by energy generated to fly. Our study reveals that bats' gut bacteria could also be involved in the host and its microbiota's DNA damage. We performed screening of lactic acid bacteria and bacilli isolated from bats' feces for mutagenic and oxidative activity by lux-biosensors. The pro-mutagenic activity was determined when expression of recA increased with the appearance of double-strand breaks in the cell DNA, while an increase of katG expression in the presence of hydroxyl radicals indicated antioxidant activity. We identified that most of the isolated bacteria have pro-mutagenic and antioxidant properties at the same time. This study reveals new insights into bat gut microbiota's potential involvement in antiviral response and opens new frontiers in preventing emerging diseases originating from bats.
Collapse
|
40
|
Abstract
The intestinal microbiome influences host health, and its responsiveness to diet and disease is increasingly well studied. However, our understanding of the factors driving microbiome variation remain limited. Temperature is a core factor that controls microbial growth, but its impact on the microbiome remains to be fully explored. Although commonly assumed to be a constant 37°C, normal body temperatures vary across the animal kingdom, while individual body temperature is affected by multiple factors, including circadian rhythm, age, environmental temperature stress, and immune activation. Changes in body temperature via hypo- and hyperthermia have been shown to influence the gut microbiota in a variety of animals, with consistent effects on community diversity and stability. It is known that temperature directly modulates the growth and virulence of gastrointestinal pathogens; however, the effect of temperature on gut commensals is not well studied. Further, body temperature can influence other host factors, such as appetite and immunity, with indirect effects on the microbiome. In this minireview, we discuss the evidence linking body temperature and the intestinal microbiome and their implications for microbiome function during hypothermia, heat stress, and fever.
Collapse
Affiliation(s)
- Kelsey E. Huus
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Ingala MR, Albert L, Addesso A, Watkins MJ, Knutie SA. Differential effects of elevated nest temperature and parasitism on the gut microbiota of wild avian hosts. Anim Microbiome 2021; 3:67. [PMID: 34600588 PMCID: PMC8487522 DOI: 10.1186/s42523-021-00130-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Changes in wild animal gut microbiotas may influence host health and fitness. While many studies have shown correlations between gut microbiota structure and external factors, few studies demonstrate causal links between environmental variables and microbiota shifts. Here, we use a fully factorial experiment to test the effects of elevated ambient temperature and natural nest parasitism by nest flies (Protocalliphora sialia) on the gut microbiotas of two species of wild birds, the eastern bluebird (Sialia sialis) and the tree swallow (Tachycineta bicolor). RESULTS We find that bacterial communities from the nestlings of each host species show idiosyncratic responses to both heat and parasitism, with gut microbiotas of eastern bluebirds more disrupted by heat and parasitism than those of tree swallows. Thus, we find that eastern bluebirds are unable to maintain stable associations with their gut bacteria in the face of both elevated temperature and parasitism. In contrast, tree swallow gut microbiotas are not significantly impacted by either heat or nest parasitism. CONCLUSIONS Our results suggest that excess heat (e.g., as a result of climate change) may destabilize natural host-parasite-microbiota systems, with the potential to affect host fitness and survival in the Anthropocene.
Collapse
Affiliation(s)
- Melissa R Ingala
- Department of Vertebrate Zoology, National Museum of Natural History, Washington, D.C., USA.
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Alyssa Addesso
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Mackenzie J Watkins
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
42
|
Seasonal Dietary Shifts Alter the Gut Microbiota of Avivorous Bats: Implication for Adaptation to Energy Harvest and Nutritional Utilization. mSphere 2021. [PMID: 34346703 DOI: 10.1128/msphere.0046721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Plasticity in the microbial community composition and function can permit the host to adapt to ecological, environmental, and physiological changes. Much of the information on the gut microbiota-host relationship to date derives from studies of laboratory model organisms, while little is known concerning wild animals and their ecological relevance to gut microbes. It is also unclear how microbial community composition and activity adapt to changes in diet and energy, nutritional requirements, and utilization induced by dietary expansion from invertebrates to vertebrates. The great evening bat (Ia io) is both an insectivore and an avivore (that is, a bird-eater), and thus provides an opportunity to investigate the diet-host-microbiota-physiology relationship. Here, we investigated this relationship by using 16S rRNA amplicon sequencing and functional prediction in adult males of I. io. We found that gut microbial diversity was similar, while microbial community structures were significantly different between insectivorous and avivorous diets. Moreover, increases in the relative abundance of Firmicutes and the Firmicutes-to-Bacteroidetes ratio, changes in carbohydrate and nucleotide metabolism, and a decrease in Pseudomonas were associated with higher energy demands for hunting birds and with fat storage for entering hibernation and migration. These findings demonstrated that seasonal dietary shifts drive a significant change in the composition and function of gut microbiomes, thereby facilitating adaptation to the challenging avian dietary niche in bats. These results suggest that the gut microbial communities can constantly respond to alterations in diets, potentially facilitating the diversity of wild animal dietary niches, and enhance our understanding of the diet-host-microbiota-physiology relationship. IMPORTANCE The coevolution between the host and its gut microbes can promote an animal's adaptation to its specific ecological niche and changes in energy and nutritional requirements. This study focused on an avivorous bat, the great evening bat (Ia io), to investigate how seasonal dietary shifts affect the gut microbial composition and function, thereby facilitating adaptation to an avian diet. We found that seasonal dietary shifts driving a significant change in the composition and function of gut microbiomes in I. io were associated with higher energy demands for hunting birds and fat storage for entering hibernation and migration. Our study provides novel insight into the role of gut bacteria in generating ecological diversity and flexibility in wild mammals. The results are valuable for clarifying the complicated host-microbiota-physiology relationship in a dietary niche expansion context.
Collapse
|
43
|
Seasonal Dietary Shifts Alter the Gut Microbiota of Avivorous Bats: Implication for Adaptation to Energy Harvest and Nutritional Utilization. mSphere 2021; 6:e0046721. [PMID: 34346703 PMCID: PMC8386476 DOI: 10.1128/msphere.00467-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Plasticity in the microbial community composition and function can permit the host to adapt to ecological, environmental, and physiological changes. Much of the information on the gut microbiota-host relationship to date derives from studies of laboratory model organisms, while little is known concerning wild animals and their ecological relevance to gut microbes. It is also unclear how microbial community composition and activity adapt to changes in diet and energy, nutritional requirements, and utilization induced by dietary expansion from invertebrates to vertebrates. The great evening bat (Ia io) is both an insectivore and an avivore (that is, a bird-eater), and thus provides an opportunity to investigate the diet-host-microbiota-physiology relationship. Here, we investigated this relationship by using 16S rRNA amplicon sequencing and functional prediction in adult males of I. io. We found that gut microbial diversity was similar, while microbial community structures were significantly different between insectivorous and avivorous diets. Moreover, increases in the relative abundance of Firmicutes and the Firmicutes-to-Bacteroidetes ratio, changes in carbohydrate and nucleotide metabolism, and a decrease in Pseudomonas were associated with higher energy demands for hunting birds and with fat storage for entering hibernation and migration. These findings demonstrated that seasonal dietary shifts drive a significant change in the composition and function of gut microbiomes, thereby facilitating adaptation to the challenging avian dietary niche in bats. These results suggest that the gut microbial communities can constantly respond to alterations in diets, potentially facilitating the diversity of wild animal dietary niches, and enhance our understanding of the diet-host-microbiota-physiology relationship. IMPORTANCE The coevolution between the host and its gut microbes can promote an animal’s adaptation to its specific ecological niche and changes in energy and nutritional requirements. This study focused on an avivorous bat, the great evening bat (Ia io), to investigate how seasonal dietary shifts affect the gut microbial composition and function, thereby facilitating adaptation to an avian diet. We found that seasonal dietary shifts driving a significant change in the composition and function of gut microbiomes in I. io were associated with higher energy demands for hunting birds and fat storage for entering hibernation and migration. Our study provides novel insight into the role of gut bacteria in generating ecological diversity and flexibility in wild mammals. The results are valuable for clarifying the complicated host-microbiota-physiology relationship in a dietary niche expansion context.
Collapse
|
44
|
Presley SJ, Graf J, Hassan AF, Sjodin AR, Willig MR. Effects of Host Species Identity and Diet on the Biodiversity of the Microbiota in Puerto Rican Bats. Curr Microbiol 2021; 78:3526-3540. [PMID: 34318342 DOI: 10.1007/s00284-021-02607-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Microbiota perform vital functions for their mammalian hosts, making them potential drivers of host evolution. Understanding effects of environmental factors and host characteristics on the composition and biodiversity of the microbiota may provide novel insights into the origin and maintenance of these symbiotic relationships. Our goals were to (1) characterize biodiversity of oral and rectal microbiota in bats from Puerto Rico; and (2) determine the effects of geographic location and host characteristics on that biodiversity. We collected bats and their microbiota from three sites, and used four metrics (species richness, Shannon diversity, Camargo evenness, Berger-Parker dominance) to characterize biodiversity. We quantified the relative importance of site, host sex, host species-identity, and host foraging-guild on biodiversity of the microbiota. Microbe biodiversity was highly variable among conspecifics. Geographical location exhibited consistent effects, whereas host sex did not. Within each host guild, host species exhibited consistent differences in biodiversity of oral microbiota and of rectal microbiota. Oral microbe biodiversity was indistinguishable between guilds, whereas rectal microbe biodiversity was significantly greater in carnivores than in herbivores. The high intraspecific and spatial variation in microbe biodiversity necessitate a relatively large number of samples to statistically isolate the effects of environmental or host characteristics on the microbiota. Species-specific biodiversity of oral microbiota suggests these communities are structured by direct interactions with the host immune system via epithelial receptors. In contrast, the number of microbial taxa that a host gut supports may be driven by host diet-diversity or composition.
Collapse
Affiliation(s)
- Steven J Presley
- Institute of the Environment, Center for Environmental Sciences & Engineering, and Department of Ecology & Evolutionary Biology, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT, 06269-4210, USA.
| | - Joerg Graf
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269-3125, USA
| | - Ahmad F Hassan
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269-3125, USA
| | - Anna R Sjodin
- Institute of the Environment, Center for Environmental Sciences & Engineering, and Department of Ecology & Evolutionary Biology, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT, 06269-4210, USA.,Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Michael R Willig
- Institute of the Environment, Center for Environmental Sciences & Engineering, and Department of Ecology & Evolutionary Biology, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT, 06269-4210, USA
| |
Collapse
|
45
|
Fu H, Zhang L, Fan C, Liu C, Li W, Cheng Q, Zhao X, Jia S, Zhang Y. Environment and host species identity shape gut microbiota diversity in sympatric herbivorous mammals. Microb Biotechnol 2021; 14:1300-1315. [PMID: 33369229 PMCID: PMC8313255 DOI: 10.1111/1751-7915.13687] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/07/2020] [Indexed: 02/01/2023] Open
Abstract
The previous studies have reported that the mammalian gut microbiota is a physiological consequence; nonetheless, the factors influencing its composition and function remain unclear. In this study, to evaluate the contributions of the host and environment to the gut microbiota, we conducted a sequencing analysis of 16S rDNA and shotgun metagenomic DNA from plateau pikas and yaks, two sympatric herbivorous mammals, and further compared the sequences in summer and winter. The results revealed that both pikas and yaks harboured considerably more distinct communities between summer and winter. We detected the over-representation of Verrucomicrobia and Proteobacteria in pikas, and Archaea and Bacteroidetes in yaks. Firmicutes and Actinobacteria, associated with energy-efficient acquisition, significantly enriched in winter. The diversity of the microbial community was determined by the interactive effects between the host and season. Metagenomic analysis revealed that methane-metabolism-related pathway of yaks was significantly enriched in summer, while some pathogenic pathways were more abundant in pikas. Both pikas and yaks had a higher capacity for lipid degradation in winter. Pika and yak shared more OTUs when food shortage occurred in winter, and this caused a convergence in gut microbial composition and function. From winter to summer, the network module number increased from one to five in pikas, which was different in yaks. Our study demonstrates that the host is a dominant factor in shaping the microbial communities and that seasonality promotes divergence or convergence based on dietary quality across host species identity.
Collapse
Affiliation(s)
- Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| | - Shangang Jia
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghai810008China
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghai ProvinceChina
| |
Collapse
|
46
|
Lutz HL, Gilbert JA, Dick CW. Associations between Afrotropical bats, eukaryotic parasites, and microbial symbionts. Mol Ecol 2021; 31:1939-1950. [PMID: 34181795 PMCID: PMC9546020 DOI: 10.1111/mec.16044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Skin is the largest mammalian organ and the first defensive barrier against the external environment. The skin and fur of mammals can host a wide variety of ectoparasites, many of which are phylogenetically diverse, specialized, and specifically adapted to their hosts. Among hematophagous dipteran parasites, volatile organic compounds (VOCs) are known to serve as important attractants, leading parasites to compatible sources of blood meals. VOCs have been hypothesized to be mediated by host‐associated bacteria, which may thereby indirectly influence parasitism. Host‐associated bacteria may also influence parasitism directly, as has been observed in interactions between animal gut microbiota and malarial parasites. Hypotheses relating bacterial symbionts and eukaryotic parasitism have rarely been tested among humans and domestic animals, and to our knowledge have not been tested in wild vertebrates. In this study, we used Afrotropical bats, hematophagous ectoparasitic bat flies, and haemosporidian (malarial) parasites vectored by bat flies as a model to test the hypothesis that the vertebrate host microbiome is linked to parasitism in a wild system. We identified significant correlations between bacterial community composition of the skin and dipteran ectoparasite prevalence across four major bat lineages, as well as striking differences in skin microbial network characteristics between ectoparasitized and nonectoparasitized bats. We also identified links between the oral microbiome and presence of malarial parasites among miniopterid bats. Our results support the hypothesis that microbial symbionts may serve as indirect mediators of parasitism among eukaryotic hosts and parasites. see also the Perspective by Kelly A. Speer
Collapse
Affiliation(s)
- Holly L Lutz
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Carl W Dick
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.,Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
47
|
Luo J, Liang S, Jin F. Gut microbiota in antiviral strategy from bats to humans: a missing link in COVID-19. SCIENCE CHINA. LIFE SCIENCES 2021; 64:942-956. [PMID: 33521857 PMCID: PMC7847806 DOI: 10.1007/s11427-020-1847-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 01/31/2023]
Abstract
Bats are a potential natural reservoir for SARS-CoV-2 virus and other viruses detrimental to humans. Accumulated evidence has shown that, in their adaptation to a flight-based lifestyle, remodeling of the gut microbiota in bats may have contributed to immune tolerance to viruses. This evidence from bats provides profound insights into the potential influence of gut microbiota in COVID-19 disease in humans. Here, we highlight recent advances in our understanding of the mechanisms by which the gut microbiota helps bats tolerate deadly viruses, and summarize the current clinical evidence on the influence of gut microbiota on the susceptibility to SARS-CoV-2 infection and risk of COVID-19 leading to a fatal outcome. In addition, we discuss the implications of gut microbiota-targeted approaches for preventing infection and reducing disease severity in COVID-19 patients.
Collapse
Affiliation(s)
- Jia Luo
- Department of Psychology, Sichuan Normal University, Chengdu, 610068, China
| | - Shan Liang
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
48
|
Mallott EK, Amato KR. Host specificity of the gut microbiome. Nat Rev Microbiol 2021; 19:639-653. [PMID: 34045709 DOI: 10.1038/s41579-021-00562-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Developing general principles of host-microorganism interactions necessitates a robust understanding of the eco-evolutionary processes that structure microbiota. Phylosymbiosis, or patterns of microbiome composition that can be predicted by host phylogeny, is a unique framework for interrogating these processes. Identifying the contexts in which phylosymbiosis does and does not occur facilitates an evaluation of the relative importance of different ecological processes in shaping the microbial community. In this Review, we summarize the prevalence of phylosymbiosis across the animal kingdom on the basis of the current literature and explore the microbial community assembly processes and related host traits that contribute to phylosymbiosis. We find that phylosymbiosis is less prevalent in taxonomically richer microbiomes and hypothesize that this pattern is a result of increased stochasticity in the assembly of complex microbial communities. We also note that despite hosting rich microbiomes, mammals commonly exhibit phylosymbiosis. We hypothesize that this pattern is a result of a unique combination of mammalian traits, including viviparous birth, lactation and the co-evolution of haemochorial placentas and the eutherian immune system, which compound to ensure deterministic microbial community assembly. Examining both the individual and the combined importance of these traits in driving phylosymbiosis provides a new framework for research in this area moving forward.
Collapse
Affiliation(s)
- Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
49
|
Doña J, Virrueta Herrera S, Nyman T, Kunnasranta M, Johnson KP. Patterns of Microbiome Variation Among Infrapopulations of Permanent Bloodsucking Parasites. Front Microbiol 2021; 12:642543. [PMID: 33935998 PMCID: PMC8085356 DOI: 10.3389/fmicb.2021.642543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
While interspecific variation in microbiome composition can often be readily explained by factors such as host species identity, there is still limited knowledge of how microbiomes vary at scales lower than the species level (e.g., between individuals or populations). Here, we evaluated variation in microbiome composition of individual parasites among infrapopulations (i.e., populations of parasites of the same species living on a single host individual). To address this question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations (balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled from individual Saimaa ringed seals Pusa hispida saimensis. Both genome-resolved and read-based metagenomic classification approaches consistently show that parasite infrapopulation identity is a significant factor that explains both qualitative and quantitative patterns of microbiome variation at the intraspecific level. This study contributes to the general understanding of the factors driving patterns of intraspecific variation in microbiome composition, especially of bloodsucking parasites, and has implications for understanding how well-known processes occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems.
Collapse
Affiliation(s)
- Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.,Natural Resources Institute Finland, Joensuu, Finland
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
50
|
Disentangling the Relative Roles of Vertical Transmission, Subsequent Colonizations, and Diet on Cockroach Microbiome Assembly. mSphere 2021; 6:6/1/e01023-20. [PMID: 33408228 PMCID: PMC7845597 DOI: 10.1128/msphere.01023-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A multitude of factors affect the assemblies of complex microbial communities associated with animal hosts, with implications for community flexibility, resilience, and long-term stability; however, their relative effects have rarely been deduced. Here, we use a tractable lab model to quantify the relative and combined effects of parental transmission (egg case microbiome present/reduced), gut inocula (cockroach versus termite gut provisioned), and varying diets (matched or unmatched with gut inoculum source) on gut microbiota structure of hatchlings of the omnivorous cockroach Shelfordella lateralis using 16S rRNA gene (rDNA) amplicon sequencing. We show that the presence of a preexisting bacterial community via vertical transmission of microbes on egg cases reduces subsequent microbial invasion, suggesting priority effects that allow initial colonizers to take a strong hold and which stabilize the microbiome. However, subsequent inoculation sources more strongly affect ultimate community composition and their ecological networks, with distinct host-taxon-of-origin effects on which bacteria establish. While this is so, communities respond flexibly to specific diets in ways that consequently impact predicted community functions. In conclusion, our findings suggest that inoculations drive communities toward different stable states depending on colonization and extinction events, through ecological host-microbe relations and interactions with other gut bacteria, while diet in parallel shapes the functional capabilities of these microbiomes. These effects may lead to consistent microbial communities that maximize the extended phenotype that the microbiota provides the host, particularly if microbes spend most of their lives in host-associated environments.IMPORTANCE When host fitness is dependent on gut microbiota, microbial community flexibility and reproducibility enhance host fitness by allowing fine-tuned environmental tracking and sufficient stability for host traits to evolve. Our findings lend support to the importance of vertically transmitted early-life microbiota as stabilizers, through interactions with potential colonizers, which may contribute to ensuring that the microbiota aligns within host fitness-enhancing parameters. Subsequent colonizations are driven by microbial composition of the sources available, and we confirm that host-taxon-of-origin affects stable subsequent communities, while communities at the same time retain sufficient flexibility to shift in response to available diets. Microbiome structure is thus the result of the relative impact and combined effects of inocula and fluctuations driven by environment-specific microbial sources and digestive needs. These affect short-term community structure on an ecological time scale but could ultimately shape host species specificities in microbiomes across evolutionary time, if environmental conditions prevail.
Collapse
|