1
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Garg M, Waldor MK. Inducible transposon mutagenesis identifies bacterial fitness determinants during infection in mice. Nat Microbiol 2025:10.1038/s41564-025-01975-z. [PMID: 40148565 DOI: 10.1038/s41564-025-01975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale forward genetics in bacteria. However, inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks can limit its effectiveness. Here we have developed 'InducTn-seq', where an arabinose-inducible Tn5 transposase enables temporal control of mini-Tn5 transposition. InducTn-seq generated up to 1.2 million transposon mutants from a single colony of enterotoxigenic Escherichia coli, Salmonella typhimurium, Shigella flexneri and Citrobacter rodentium. This mutant diversity enabled more sensitive detection of subtle fitness defects and measurement of quantitative fitness effects for essential and non-essential genes. Applying InducTn-seq to C. rodentium in a mouse model of infectious colitis bypassed a highly restrictive host bottleneck, generating a diverse population of >5 × 105 unique transposon mutants compared to 10-102 recovered by traditional Tn-seq. This in vivo screen revealed that the C. rodentium type I-E CRISPR system is required to suppress a toxin otherwise activated during gut colonization. Our findings highlight the potential of InducTn-seq for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W Basta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J Sullivan
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mehek Garg
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Campbell IW, Dehinwal R, Morano AA, Dailey KG, Zingl FG, Waldor MK. A connection between Vibrio cholerae motility and inter-animal transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637895. [PMID: 39990368 PMCID: PMC11844489 DOI: 10.1101/2025.02.12.637895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Outbreaks of cholera are caused by the highly transmissive pathogen Vibrio cholerae . Here, a transposon screen revealed that inactivation of the V. cholerae motility-linked gene motV increases infant mouse intestinal colonization. Compared to wild-type V. cholerae , a Δ motV mutant, which exhibits heightened motility in the form of constitutive straight swimming, localizes to the crypts earlier in infection and over a larger area of the small intestine. Aberrant localization of the mutant was associated with an increased number of V. cholerae initiating infection, and elevated pathogen burden, diarrhea, and lethality. Moreover, the deletion of motV causes V. cholerae to transmit from infected suckling mice to naïve littermates more efficiently. Even in the absence of cholera toxin, the Δ motV mutant continues to transmit between animals, although less than in the presence of toxin, indicating that phenotypes other than cholera toxin-driven diarrhea contribute to transmission. Collectively, this work provides experimental evidence linking intra-animal bottlenecks, colonization, and disease to inter-animal transmission.
Collapse
|
3
|
Chevée V, Hullahalli K, Dailey KG, Güereca L, Zhang C, Waldor MK, Portnoy DA. Temporal and spatial dynamics of Listeria monocytogenes central nervous system infection in mice. Proc Natl Acad Sci U S A 2024; 121:e2320311121. [PMID: 38635627 PMCID: PMC11046682 DOI: 10.1073/pnas.2320311121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 04/20/2024] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that can cause life-threatening central nervous system (CNS) infections. While mechanisms by which L. monocytogenes and other pathogens traffic to the brain have been studied, a quantitative understanding of the underlying dynamics of colonization and replication within the brain is still lacking. In this study, we used barcoded L. monocytogenes to quantify the bottlenecks and dissemination patterns that lead to cerebral infection. Following intravenous (IV) inoculation, multiple independent invasion events seeded all parts of the CNS from the blood, however, only one clone usually became dominant in the brain. Sequential IV inoculations and intracranial inoculations suggested that clones that had a temporal advantage (i.e., seeded the CNS first), rather than a spatial advantage (i.e., invaded a particular brain region), were the main drivers of clonal dominance. In a foodborne model of cerebral infection with immunocompromised mice, rare invasion events instead led to a highly infected yet monoclonal CNS. This restrictive bottleneck likely arose from pathogen transit into the blood, rather than directly from the blood to the brain. Collectively, our findings provide a detailed quantitative understanding of the L. monocytogenes population dynamics that lead to CNS infection and a framework for studying the dynamics of other cerebral infections.
Collapse
Affiliation(s)
- Victoria Chevée
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Katherine G. Dailey
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Leslie Güereca
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Chenyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| |
Collapse
|
4
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
Hullahalli K, Dailey KG, Waldor MK. Innate immune responses yield tissue-specific bottlenecks that scale with pathogen dose. Proc Natl Acad Sci U S A 2023; 120:e2309151120. [PMID: 37669395 PMCID: PMC10500177 DOI: 10.1073/pnas.2309151120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
To cause infection, pathogens must overcome bottlenecks imposed by the host immune system. These bottlenecks restrict the inoculum and largely determine whether pathogen exposure results in disease. Infection bottlenecks therefore quantify the effectiveness of immune barriers. Here, using a model of Escherichia coli systemic infection, we identify bottlenecks that tighten or widen with higher inoculum sizes, revealing that the efficacy of innate immune responses can increase or decrease with pathogen dose. We term this concept "dose scaling". During E. coli systemic infection, dose scaling is tissue specific, dependent on the lipopolysaccharide (LPS) receptor TLR4, and can be recapitulated by mimicking high doses with killed bacteria. Scaling therefore depends on sensing of pathogen molecules rather than interactions between the host and live bacteria. We propose that dose scaling quantitatively links innate immunity with infection bottlenecks and is a valuable framework for understanding how the inoculum size governs the outcome of pathogen exposure.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Disease, Brigham & Women’s Hospital, Boston, MA02115
| | - Katherine G. Dailey
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Disease, Brigham & Women’s Hospital, Boston, MA02115
| | - Matthew K. Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Division of Infectious Disease, Brigham & Women’s Hospital, Boston, MA02115
- HHMI, Boston, MA02115
| |
Collapse
|
6
|
Phan T, Brozak S, Pell B, Oghuan J, Gitter A, Hu T, Ribeiro RM, Ke R, Mena KD, Perelson AS, Kuang Y, Wu F. Making waves: Integrating wastewater surveillance with dynamic modeling to track and predict viral outbreaks. WATER RESEARCH 2023; 243:120372. [PMID: 37494742 DOI: 10.1016/j.watres.2023.120372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Wastewater surveillance has proved to be a valuable tool to track the COVID-19 pandemic. However, most studies using wastewater surveillance data revolve around establishing correlations and lead time relative to reported case data. In this perspective, we advocate for the integration of wastewater surveillance data with dynamic within-host and between-host models to better understand, monitor, and predict viral disease outbreaks. Dynamic models overcome emblematic difficulties of using wastewater surveillance data such as establishing the temporal viral shedding profile. Complementarily, wastewater surveillance data bypasses the issues of time lag and underreporting in clinical case report data, thus enhancing the utility and applicability of dynamic models. The integration of wastewater surveillance data with dynamic models can enhance real-time tracking and prevalence estimation, forecast viral transmission and intervention effectiveness, and most importantly, provide a mechanistic understanding of infectious disease dynamics and the driving factors. Dynamic modeling of wastewater surveillance data will advance the development of a predictive and responsive monitoring system to improve pandemic preparedness and population health.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Samantha Brozak
- School of Mathematical and Statistical Sciences, Arizona State University, AZ 85281, USA
| | - Bruce Pell
- Department of Mathematics and Computer Science, Lawrence Technological University, MI 48075, USA
| | - Jeremiah Oghuan
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anna Gitter
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tao Hu
- Department of Geography, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Kristina D Mena
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Texas Epidemic Public Health Institute, Houston, TX 77030, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, AZ 85281, USA
| | - Fuqing Wu
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Texas Epidemic Public Health Institute, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Musundi B. An immuno-epidemiological model linking between-host and within-host dynamics of cholera. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:16015-16032. [PMID: 37920000 DOI: 10.3934/mbe.2023714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Cholera, a severe gastrointestinal infection caused by the bacterium Vibrio cholerae, remains a major threat to public health, with a yearly estimated global burden of 2.9 million cases. Although most existing models for the disease focus on its population dynamics, the disease evolves from within-host processes to the population, making it imperative to link the multiple scales of the disease to gain better perspectives on its spread and control. In this study, we propose an immuno-epidemiological model that links the between-host and within-host dynamics of cholera. The immunological (within-host) model depicts the interaction of the cholera pathogen with the adaptive immune response. We distinguish pathogen dynamics from immune response dynamics by assigning different time scales. Through a time-scale analysis, we characterise a single infected person by their immune response. Contrary to other within-host models, this modelling approach allows for recovery through pathogen clearance after a finite time. Then, we scale up the dynamics of the infected person to construct an epidemic model, where the infected population is structured by individual immunological dynamics. We derive the basic reproduction number ($ \mathcal{R}_0 $) and analyse the stability of the equilibrium points. At the disease-free equilibrium, the disease will either be eradicated if $ \mathcal{R}_0 < 1 $ or otherwise persists. A unique endemic equilibrium exists when $ \mathcal{R}_0 > 1 $ and is locally asymptotically stable without a loss of immunity.
Collapse
Affiliation(s)
- Beryl Musundi
- Faculty of Mathematics, Technische Universität München, 85748 Garching, Germany
- Department of Mathematics, Moi University, 3900-30100 Eldoret, Kenya
| |
Collapse
|
8
|
Fu S, Wang R, Xu Z, Zhou H, Qiu Z, Shen L, Yang Q. Metagenomic sequencing combined with flow cytometry facilitated a novel microbial risk assessment framework for bacterial pathogens in municipal wastewater without cultivation. IMETA 2023; 2:e77. [PMID: 38868349 PMCID: PMC10989823 DOI: 10.1002/imt2.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/14/2024]
Abstract
A workflow that combined metagenomic sequencing with flow cytometry was developed. The absolute abundance of pathogens was accurately estimated in mock communities and real samples. Metagenome-assembled genomes binned from metagenomic data set is robust in phylogenetic analysis and virulence profiling.
Collapse
Affiliation(s)
- Songzhe Fu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of EducationDalian Ocean UniversityDalianChina
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of EducationNorthwest UniversityXi'anChina
| | - Rui Wang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of EducationDalian Ocean UniversityDalianChina
| | - Zheng Xu
- Shenzhen Yantian District People's HospitalShenzhenChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Huiwen Zhou
- College of Life Science and HealthNortheastern UniversityShenyangChina
| | - Zhiguang Qiu
- School of Environment and Energy, Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of EducationNorthwest UniversityXi'anChina
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGentBelgium
| |
Collapse
|
9
|
Quantitative dose-response analysis untangles host bottlenecks to enteric infection. Nat Commun 2023; 14:456. [PMID: 36709326 PMCID: PMC9884216 DOI: 10.1038/s41467-023-36162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
Host bottlenecks prevent many infections before the onset of disease by eliminating invading pathogens. By monitoring the diversity of a barcoded population of the diarrhea causing bacterium Citrobacter rodentium during colonization of its natural host, mice, we determine the number of cells that found the infection by establishing a replicative niche. In female mice the size of the pathogen's founding population scales with dose and is controlled by a severe yet slow-acting bottleneck. Reducing stomach acid or changing host genotype modestly relaxes the bottleneck without breaking the fractional relationship between dose and founders. In contrast, disrupting the microbiota causes the founding population to no longer scale with the size of the inoculum and allows the pathogen to infect at almost any dose, indicating that the microbiota creates the dominant bottleneck. Further, in the absence of competition with the microbiota, the diversity of the pathogen population slowly contracts as the population is overtaken by bacteria having lost the critical virulence island, the locus of enterocyte effacement (LEE). Collectively, our findings reveal that the mechanisms of protection by colonization bottlenecks are reflected in and can be generally defined by the impact of dose on the pathogen's founding population.
Collapse
|