1
|
Jagadeesan R, Dash S, Palma CSD, Baptista ISC, Chauhan V, Mäkelä J, Ribeiro AS. Dynamics of bacterial operons during genome-wide stresses is influenced by premature terminations and internal promoters. SCIENCE ADVANCES 2025; 11:eadl3570. [PMID: 40378216 DOI: 10.1126/sciadv.adl3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/11/2025] [Indexed: 05/18/2025]
Abstract
Bacterial gene networks have operons, each coordinating several genes under a primary promoter. Half of the operons in Escherichia coli have been reported to also contain internal promoters. We studied their role during genome-wide stresses targeting key transcription regulators, RNA polymerase (RNAP) and gyrase. Our results suggest that operons' responses are influenced by stress-related changes in premature elongation terminations and internal promoters' activity. Globally, this causes the responses of genes in the same operon to differ with the distance between them in a wave-like pattern. Meanwhile, premature terminations are affected by positive supercoiling buildup, collisions between elongating and promoter-bound RNAPs, and local regulatory elements. We report similar findings in E. coli under other stresses and in evolutionarily distant bacteria Bacillus subtilis, Corynebacterium glutamicum, and Helicobacter pylori. Our results suggest that the strength, number, and positioning of operons' internal promoters might have evolved to compensate for premature terminations, providing distal genes similar response strengths.
Collapse
Affiliation(s)
- Rahul Jagadeesan
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suchintak Dash
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Cristina S D Palma
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ines S C Baptista
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vatsala Chauhan
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jarno Mäkelä
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Andre S Ribeiro
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Jebeli L, McDaniels TA, Ho DTT, Tahir H, Kai-Ming NL, Mcgaw M, Karlic KI, Lewis JM, Scott NE. The Late-Stage Steps of Burkholderia cenocepacia Protein O-Linked Glycan Biosynthesis Are Conditionally Essential. J Biol Chem 2025:108515. [PMID: 40286851 DOI: 10.1016/j.jbc.2025.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Periplasmic O-linked protein glycosylation is a highly conserved process observed across the Burkholderia genus. Within Burkholderia, protein glycosylation requires the five gene cluster known as the O-glycosylation cluster (OGC, ogcXABEI) which facilitates the construction of the O-linked trisaccharide attached to periplasmic proteins. Previous studies have reported conflicting results regarding the essentiality of ogcA, predicted to be responsible for the addition of the final carbohydrate of the O-linked trisaccharide and ogcX, the putative O-linked glycan flippase. Within this work, we aimed to dissect the impact of the loss of ogcA and ogcX on Burkholderia cenocepacia viability. We demonstrate that the loss of either ogcA or ogcX are detrimental if glycosylation is initiated leading to marked phenotypic effects. Proteomic analysis supports that the loss of ogcA/ogcX both blocks glycosylation and drives pleotropic effects in the membrane proteome, resulting in the loss of membrane integrity. Consistent with this, strains lacking ogcA and ogcX exhibit increased sensitivity to membrane stressors including antibiotics and demonstrate marked changes in membrane permeability. These effects are consistent with fouling of the undecaprenyl pool due to dead-end O-linked glycan intermediates, and consistent with this, we show that modulation of the undecaprenyl pool through the overexpression of undecaprenyl pyrophosphate synthase (UppS) or the OGC flippase (OgcX) restores viability while expression of early-stage OGC biosynthesis genes (ogcI and ogcB) reduce B. cenocepacia viability. These findings demonstrate disrupting O-linked glycan biosynthesis or transport appears to dramatically impact B. cenocepacia viability, supporting the assignment of ogcA and ogcX as conditionally essential.
Collapse
Affiliation(s)
- Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Taylor A McDaniels
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Duncan T T Ho
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Hamza Tahir
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Nicholas L Kai-Ming
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Molli Mcgaw
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Kristian I Karlic
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Jessica M Lewis
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.
| |
Collapse
|
3
|
Athukoralage JS, McMahon SA, Zhang C, Grüschow S, Graham S, Krupovic M, Whitaker RJ, Gloster TM, White MF. Reply to: Natively expressed AcrIII-1 does not function as an anti-CRISPR protein. Nature 2025; 640:E15-E17. [PMID: 40240850 DOI: 10.1038/s41586-025-08650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Affiliation(s)
| | - Stephen A McMahon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| | - Changyi Zhang
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK.
| |
Collapse
|
4
|
Sen O, Liu X, Kjelleberg S, Rice SA, Seviour T. Potential confounding mutations in Keio knockout strains: implications for research accuracy. Microbiol Spectr 2025; 13:e0203624. [PMID: 40162750 PMCID: PMC12054083 DOI: 10.1128/spectrum.02036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
The Keio library of single-gene knock-out mutants of Escherichia coli is useful for the research community. It has been used to analyze the role of various E. coli genes in alcohol tolerance, multi-drug resistance, and biofilm formation. The current study provides a general overview of potential single nucleotide polymorphisms (SNPs), insertion-deletion of bases (≤50 nucleotides, INDELs) in the genome of a set of 21 knock-out mutants of the Keio collection in comparison to the parent strain. A small number of SNPs and INDELs were predicted in the coding and intergenic regions of the knock-out mutants in comparison to the parental strain through sequencing and bioinformatic analysis. Mutations in the coding regions of genes (different from the actual gene knocked out in the mutants) led to different types of mutations in the affected genes, ranging from nonsense mutations to frameshift mutations, which could affect the functionality of the resulting gene products. These mutations in the intergenic and coding regions could lead to phenotypic differences in the single-gene knock-out mutant strains in comparison to the parent strain, independent of the desired gene deletion. This, in turn, could be misinterpreted by researchers using these strains as differences caused by the missing gene. While this is a preliminary study based on only 21 strains of the Keio collection, the deleted genes in the mutants used in this study were approximately evenly distributed across the entire genome. This study likely indicates the possibility of such mutations in other Keio strains, although a larger sample size of knock-out mutants would be required to understand the likelihood of such mutations across the library.IMPORTANCEThe Keio library of single-gene knock-out mutants of Escherichia coli has been widely used for a variety of studies. However, mutations might appear in the genome of these strains over time, leading to differences in the characteristics of the mutant and parent strains that are independent of the gene deletions of interest. This study predicts the presence of a few SNPs and INDELs in some of the knock-out mutants from the Keio collection, which could potentially alter the phenotypic attributes of the knock-out mutants with no role of the deleted gene towards this change. Therefore, this study highlights the possibility of the presence of such mutations in other strains of the library and the importance of conducting additional steps, such as complementation assays, to confirm the outcomes of studies comparing specific attributes of the knock-out mutants with the parental strain.
Collapse
Affiliation(s)
- Oishi Sen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
- CSIRO, Agriculture and Food, Westmead and Microbiomes for One Systems Health, Canberra, Australia
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- WATEC Aarhus University Centre for Water Technology, Universitetsbyen, Aarhus, Denmark
| |
Collapse
|
5
|
Sharifian Gh M, Norouzi F, Sorci M, Zaidi TS, Pier GB, Achimovich A, Ongwae GM, Liang B, Ryan M, Lemke M, Belfort G, Gadjeva M, Gahlmann A, Pires MM, Venter H, Harris TE, Laurie GW. Lacritin cleavage-potentiated targeting of iron - respiratory reciprocity promotes bacterial death. J Biol Chem 2025; 301:108455. [PMID: 40154612 DOI: 10.1016/j.jbc.2025.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Discovering new bacterial signaling pathways offers unique antibiotic strategies. With current antibiotic classes targeting cell wall synthesis, depolarizing the inner membrane, altering the bacterial metabolome or inhibiting replication or transcription pathways, manipulation of transporters to limit bacterial respiration and thereby pathogenesis has been a decades-long quest. Here we report an inhibitor of multiple bacterial transporters. The inhibitor is the bactericidal N-104 endogenous cleavage fragment of the prosecretory mitogen lacritin. Lacritin is now known to be widely distributed in plasma, cerebral spinal fluid, tears, and saliva. With the bactericidal mechanism determined to be nonlytic by surface plasmon resonance as confirmed by lack of SYTOX Orange entry, we performed an unbiased resistance screen of 3884 Escherichia coli gene knockout strains revealing a complex N-104 polypharmacology. Validation in the virulent Pseudomonas aeruginosa strain PA14-one of three WHO Priority 1: Critical list species-focused on an approach that sequentially couples three transporters and downstream transcription to lethally suppress respiration. By targeting the outer membrane YaiW, cationic N-104 translocates into the periplasm where it ligates inner membrane transporters FeoB and PotH, respectively, to suppress both ferrous iron and polyamine uptake. With FeoB favoring an anaerobic environment, N-104 promotes the expression of genes regulating anaerobic respiration while largely suppressing those involved in aerobic respiration-a strategy counterproductive under aerobic conditions. This mechanism is innate to the surface of the eye and is enhanced by synergistic coupling with tear thrombin fragment GKY20 as tested on antibiotic-resistant clinical isolates.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Tanweer S Zaidi
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald B Pier
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alecia Achimovich
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - George M Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Binyong Liang
- Department of Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret Ryan
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael Lemke
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Henrietta Venter
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Gordon W Laurie
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Department of Ophthalmology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
6
|
Xu X, Lv X, Liu Y, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. CRISPR/Cas13X-assisted programmable and multiplexed translation regulation for controlled biosynthesis. Nucleic Acids Res 2025; 53:gkae1293. [PMID: 39777467 PMCID: PMC11705078 DOI: 10.1093/nar/gkae1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Developing efficient gene regulation tools is essential for optimizing microbial cell factories, but most existing tools only modulate gene expression at the transcriptional level. Regulation at the translational level provides a faster dynamic response, whereas developing a programmable, efficient and multiplexed translational regulation tool remains a challenge. Here, we have developed CRISPRi and CRISPRa systems based on hfCas13X that can regulate gene translation in Bacillus subtilis. First, we constructed a CRISPRi system to regulate gene translation based on catalytically deactivated hfCas13X (dhfCas13X). Second, we designed unique mRNA-crRNA pairs to construct DiCRISPRa (degradation-inhibited CRISPRa) and TsCRISPRa (translation-started CRISPRa) systems, which can activate downstream gene translation by enhancing mRNA stability or initiating mRNA translation. In addition, we found that fusing dhfCas13X with the RNA-binding chaperone BHfq significantly improved the activation efficiency of the DiCRISPRa and TsCRISPRa systems (43.2-fold). Finally, we demonstrated that the constructed CRISPR systems could be used to optimize the metabolic networks of two biotechnologically relevant compounds, riboflavin and 2'-fucosyllactose, increasing their titers by 3- and 1.2-fold, respectively. The CRISPRa and CRISPRi systems developed here provide new tools for the regulation of gene expression at the translation level and offer new ideas for the construction of CRISPRa systems.
Collapse
Affiliation(s)
- Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| |
Collapse
|
7
|
Mattick JSA, Bromley RE, Watson KJ, Adkins RS, Holt CI, Lebov JF, Sparklin BC, Tyson TS, Rasko DA, Dunning Hotopp JC. Deciphering transcript architectural complexity in bacteria and archaea. mBio 2024; 15:e0235924. [PMID: 39287442 PMCID: PMC11481537 DOI: 10.1128/mbio.02359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict transcripts (mRNA and other RNAs) in Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-Proteobacteria), Listeria monocytogenes strains Scott A and RO15 (Bacteria:Firmicute), Pseudomonas aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), and Haloferax volcanii (Archaea:Halobacteria). From >5 million E. coli K12 and >3 million E. coli E2348/69 newly generated Oxford Nanopore Technologies direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844 E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predicted E. coli K12 proteins. While the number of predicted transcripts varied by strain based on the amount of sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6-1.7 kbp, while the median size of the 5'- and 3'-untranslated regions (UTRs) were 30-90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions were of novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in the E. coli E2348/69 LEE pathogenicity islands. We predicted small transcripts in the 100-200 bp range as well as >10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being the nuo operon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the presentation of transcripts, and UTR predictions alongside coding sequences and protein predictions in bacterial genome annotation as important resources for the research community.IMPORTANCEOur understanding of bacterial and archaeal genes and genomes is largely focused on proteins since there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with studies on the human genome, where transcripts were sequenced prior to the release of the human genome over two decades ago. We developed software for the quick, easy, and reproducible prediction of bacterial and archaeal transcripts from Oxford Nanopore Technologies direct RNA sequencing data. These predictions are urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance.
Collapse
Affiliation(s)
- John S. A. Mattick
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin E. Bromley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaylee J. Watson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ricky S. Adkins
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher I. Holt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jarrett F. Lebov
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin C. Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tyonna S. Tyson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Wencker FDR, Lyon SE, Breaker RR. Improved methods for genetic manipulation of the alkaliphile Halalkalibacterium halodurans. Front Microbiol 2024; 15:1465811. [PMID: 39360312 PMCID: PMC11445130 DOI: 10.3389/fmicb.2024.1465811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
An improved approach was developed for the genetic manipulation of the Gram-positive extremophile Halalkalibacterium halodurans (formerly called Bacillus halodurans). We describe an allelic replacement method originally developed for Staphylococcus aureus that allows the deletion, mutation, or insertion of genes without leaving markers or other genetic scars. In addition, a protocol for rapid in vitro plasmid methylation and transformation is presented. The combined methods allow the routine genetic manipulation of H. halodurans from initial transformation to the desired strain in 8 days. These methods improve H. halodurans as a model organism for the study of extremophiles.
Collapse
Affiliation(s)
- Freya D. R. Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, CT, United States
| | - Seth E. Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Ronald R. Breaker
- Howard Hughes Medical Institute, Yale University, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
9
|
Cardiff RL, Faulkner I, Beall J, Carothers JM, Zalatan J. CRISPR-Cas tools for simultaneous transcription & translation control in bacteria. Nucleic Acids Res 2024; 52:5406-5419. [PMID: 38613390 PMCID: PMC11109947 DOI: 10.1093/nar/gkae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Robust control over gene translation at arbitrary mRNA targets is an outstanding challenge in microbial synthetic biology. The development of tools that can regulate translation will greatly expand our ability to precisely control genes across the genome. In Escherichia coli, most genes are contained in multi-gene operons, which are subject to polar effects where targeting one gene for repression leads to silencing of other genes in the same operon. These effects pose a challenge for independently regulating individual genes in multi-gene operons. Here, we use CRISPR-dCas13 to address this challenge. We find dCas13-mediated repression exhibits up to 6-fold lower polar effects compared to dCas9. We then show that we can selectively activate single genes in a synthetic multi-gene operon by coupling dCas9 transcriptional activation of an operon with dCas13 translational repression of individual genes within the operon. We also show that dCas13 and dCas9 can be multiplexed for improved biosynthesis of a medically-relevant human milk oligosaccharide. Taken together, our findings suggest that combining transcriptional and translational control can access effects that are difficult to achieve with either mode independently. These combined tools for gene regulation will expand our abilities to precisely engineer bacteria for biotechnology and perform systematic genetic screens.
Collapse
Affiliation(s)
- Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
| | - Ian D Faulkner
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
| | - Juliana G Beall
- Department of Chemistry University of Washington Seattle, WA 98195 USA
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
- Department of Chemistry University of Washington Seattle, WA 98195 USA
| |
Collapse
|
10
|
Le LHM, Elgamoudi B, Colon N, Cramond A, Poly F, Ying L, Korolik V, Ferrero RL. Campylobacter jejuni extracellular vesicles harboring cytolethal distending toxin bind host cell glycans and induce cell cycle arrest in host cells. Microbiol Spectr 2024; 12:e0323223. [PMID: 38319111 PMCID: PMC10913475 DOI: 10.1128/spectrum.03232-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
Cytolethal distending toxins (CDTs) are released by Gram-negative pathogens into the extracellular medium as free toxin or associated with extracellular vesicles (EVs), commonly known as outer membrane vesicles (OMVs). CDT production by the gastrointestinal pathogen Campylobacter jejuni has been implicated in colorectal tumorigenesis. Despite CDT being a major virulence factor for C. jejuni, little is known about the EV-associated form of this toxin. To address this point, C. jejuni mutants lacking each of the three CDT subunits (A, B, and C) were generated. C. jejuni cdtA, cdtB, and cdtC bacteria released EVs in similar numbers and sizes to wild-type bacteria, ranging from 5 to 530 nm (mean ± SEM = 118 ±6.9 nm). As the CdtAC subunits mediate toxin binding to host cells, we performed "surface shearing" experiments, in which EVs were treated with proteinase K and incubated with host cells. These experiments indicated that CDT subunits are internal to EVs and that surface proteins are probably not involved in EV-host cell interactions. Furthermore, glycan array studies demonstrated that EVs bind complex host cell glycans and share receptor binding specificities with C. jejuni bacteria for fucosyl GM1 ganglioside, P1 blood group antigen, sialyl, and sulfated Lewisx. Finally, we show that EVs from C. jejuni WT but not mutant bacteria induce cell cycle arrest in epithelial cells. In conclusion, we propose that EVs are an important mechanism for CDT release by C. jejuni and are likely to play a significant role in toxin delivery to host cells. IMPORTANCE Campylobacter jejuni is the leading cause of foodborne gastroenteritis in humans worldwide and a significant cause of childhood mortality due to diarrheal disease in developing countries. A major factor by which C. jejuni causes disease is a toxin, called cytolethal distending toxin (CDT). The biology of this toxin, however, is poorly understood. In this study, we report that C. jejuni CDT is protected within membrane blebs, known as extracellular vesicles (EVs), released by the bacterium. We showed that proteins on the surfaces of EVs are not required for EV uptake by host cells. Furthermore, we identified several sugar receptors that may be required for EV binding to host cells. By studying the EV-associated form of C. jejuni CDT, we will gain a greater understanding of how C. jejuni intoxicates host cells and how EV-associated CDT may be used in various therapeutic applications, including as anti-tumor therapies.
Collapse
Affiliation(s)
- Lena Hoang My Le
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Bassam Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Nina Colon
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Angus Cramond
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Frederic Poly
- Enteric Diseases Department, Naval Medical Research Centre, Silver Spring, Maryland, USA
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Victoria, Australia
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Victoria, Australia
| |
Collapse
|
11
|
Sharifian Gh. M, Norouzi F, Sorci M, Zaid TS, Pier GB, Achimovich A, Ongwae GM, Liang B, Ryan M, Lemke M, Belfort G, Gadjeva M, Gahlmann A, Pires MM, Venter H, Harris TE, Laurie GW. Targeting Iron - Respiratory Reciprocity Promotes Bacterial Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582947. [PMID: 38464199 PMCID: PMC10925246 DOI: 10.1101/2024.03.01.582947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Discovering new bacterial signaling pathways offers unique antibiotic strategies. Here, through an unbiased resistance screen of 3,884 gene knockout strains, we uncovered a previously unknown non-lytic bactericidal mechanism that sequentially couples three transporters and downstream transcription to lethally suppress respiration of the highly virulent P. aeruginosa strain PA14 - one of three species on the WHO's 'Priority 1: Critical' list. By targeting outer membrane YaiW, cationic lacritin peptide 'N-104' translocates into the periplasm where it ligates outer loops 4 and 2 of the inner membrane transporters FeoB and PotH, respectively, to suppress both ferrous iron and polyamine uptake. This broadly shuts down transcription of many biofilm-associated genes, including ferrous iron-dependent TauD and ExbB1. The mechanism is innate to the surface of the eye and is enhanced by synergistic coupling with thrombin peptide GKY20. This is the first example of an inhibitor of multiple bacterial transporters.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Tanweer S Zaid
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Gerald B. Pier
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Alecia Achimovich
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - George M. Ongwae
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA, USA
| | - Margaret Ryan
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Michael Lemke
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Henrietta Venter
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Gordon W. Laurie
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville VA, USA
- Contact author: Gordon Laurie
| |
Collapse
|
12
|
Hoshino S, Ijichi S, Asamizu S, Onaka H. Insights into Arsenic Secondary Metabolism in Actinomycetes from the Structure and Biosynthesis of Bisenarsan. J Am Chem Soc 2023; 145:17863-17871. [PMID: 37534495 DOI: 10.1021/jacs.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The unique bioactivities of arsenic-containing secondary metabolites have been revealed recently, but studies on arsenic secondary metabolism in microorganisms have been extremely limited. Here, we focused on the organoarsenic metabolite with an unknown chemical structure, named bisenarsan, produced by well-studied model actinomycetes and elucidated its structure by combining feeding of the putative biosynthetic precursor (2-hydroxyethyl)arsonic acid to Streptomyces lividans 1326 and detailed NMR analyses. Bisenarsan is the first characterized actinomycete-derived arsenic secondary metabolite and may function as a prototoxin form of an antibacterial agent or be a detoxification product of inorganic arsenic species. We also verified the previously proposed genes responsible for bisenarsan biosynthesis, especially the (2-hydroxyethyl)arsonic acid moiety. Notably, we suggest that a C-As bond in bisenarsan is formed by the intramolecular rearrangement of a pentavalent arsenic species (arsenoenolpyruvate) by the cofactor-independent phosphoglycerate mutase homologue BsnN, that is entirely distinct from the conventional biological C-As bond formation through As-alkylation of trivalent arsenic species by S-adenosylmethionine-dependent enzymes. Our findings will speed up the development of arsenic natural product biosynthesis.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shinta Ijichi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shumpei Asamizu
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Morra R, Pratama F, Butterfield T, Tomazetto G, Young K, Lopez R, Dixon N. arfA antisense RNA regulates MscL excretory activity. Life Sci Alliance 2023; 6:e202301954. [PMID: 37012050 PMCID: PMC10070815 DOI: 10.26508/lsa.202301954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Excretion of cytoplasmic protein (ECP) is a commonly observed phenomenon in bacteria, and this partial extracellular localisation of the intracellular proteome has been implicated in a variety of stress response mechanisms. In response to hypoosmotic shock and ribosome stalling in Escherichia coli, ECP is dependent upon the presence of the large-conductance mechanosensitive channel and the alternative ribosome-rescue factor A gene products. However, it is not known if a mechanistic link exists between the corresponding genes and the respective stress response pathways. Here, we report that the corresponding mscL and arfA genes are commonly co-located on the genomes of Gammaproteobacteria and display overlap in their respective 3' UTR and 3' CDS. We show this unusual genomic arrangement permits an antisense RNA-mediated regulatory control between mscL and arfA, and this modulates MscL excretory activity in E. coli These findings highlight a mechanistic link between osmotic, translational stress responses and ECP in E. coli, further elucidating the previously unknown regulatory function of arfA sRNA.
Collapse
Affiliation(s)
- Rosa Morra
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Fenryco Pratama
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Institut Teknologi Bandung, Bandung, Indonesia
| | - Thomas Butterfield
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Geizecler Tomazetto
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Kate Young
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Ruth Lopez
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Neil Dixon
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| |
Collapse
|
14
|
CRISPR-Cas-Guided Mutagenesis of Chromosome and Virulence Plasmid in Shigella flexneri by Cytosine Base Editing. mSystems 2023; 8:e0104522. [PMID: 36541764 PMCID: PMC9948704 DOI: 10.1128/msystems.01045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Shigella is a Gram-negative bacterium that invades the human gut epithelium. The resulting infection, shigellosis, is the deadliest bacterial diarrheal disease. Much of the information about the genes dictating the pathophysiology of Shigella, both on the chromosome and the virulence plasmid, was obtained by classical reverse genetics. However, technical limitations of the prevalent mutagenesis techniques restrict the generation of mutants in a single reaction to a small number, preventing large-scale targeted mutagenesis of Shigella and the subsequent assessment of phenotype. We adopted a CRISPR-Cas-dependent approach, where a nickase Cas9 and cytidine deaminase fusion is guided by single guide RNA (sgRNA) to introduce targeted C→T transitions, resulting in internal stop codons and premature termination of translation. In proof-of-principle experiments using an mCherry fluorescent reporter, we were able to generate loss-of-function mutants in both Escherichia coli and Shigella flexneri with up to 100% efficacy. Using a modified fluctuation assay, we determined that under optimized conditions, the frequency of untargeted mutations introduced by the Cas9-deaminase fusion was in the same range as spontaneous mutations, making our method a safe choice for bacterial mutagenesis. Furthermore, we programmed the method to mutate well-characterized chromosomal and plasmid-borne Shigella flexneri genes and found the mutant phenotype to be similar to those of the reported gene deletion mutants, with no apparent polar effects at the phenotype level. This method can be used in a 96-well-plate format to increase the throughput and generate an array of targeted loss-of-function mutants in a few days. IMPORTANCE Loss-of-function mutagenesis is critical in understanding the physiological role of genes. Therefore, high-throughput techniques to generate such mutants are important for facilitating the assessment of gene function at a pace that matches systems biology approaches. However, to our knowledge, no such method was available for generating an array of single gene mutants in an important enteropathogen-Shigella. This pathogen causes high morbidity and mortality in children, and antibiotic-resistant strains are quickly emerging. Therefore, determination of the function of unknown Shigella genes is of the utmost importance to develop effective strategies to control infections. Our present work will bridge this gap by providing a rapid method for generating loss-of-function mutants. The highly effective and specific method has the potential to be programmed to generate multiple mutants in a single, massively parallel reaction. By virtue of plasmid compatibility, this method can be extended to other members of Enterobacteriaceae.
Collapse
|
15
|
Adaikpoh BI, Fernandez HN, Eustáquio AS. Biotechnology approaches for natural product discovery, engineering, and production based on Burkholderia bacteria. Curr Opin Biotechnol 2022; 77:102782. [PMID: 36049254 DOI: 10.1016/j.copbio.2022.102782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Bacterial natural products (NPs) retain high value in discovery efforts for applications in medicine and agriculture. Burkholderia β-Proteobacteria are a promising source of NPs. In this review, we summarize the recently developed genetic manipulation techniques used to access silent/cryptic biosynthetic gene clusters from Burkholderia native producers. We also discuss the development of Burkholderia bacteria as heterologous hosts and the application of Burkholderia in industrial-scale production of NPs. Genetic engineering and fermentation media optimization have enabled the industrial-scale production of at least two Burkholderia NPs. The biotechnology approaches discussed here will continue to facilitate the discovery and development of NPs from Burkholderia.
Collapse
Affiliation(s)
- Barbara I Adaikpoh
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hannah N Fernandez
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S Eustáquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
16
|
Duarte-Velázquez I, de la Mora J, Ramírez-Prado JH, Aguillón-Bárcenas A, Tornero-Gutiérrez F, Cordero-Loreto E, Anaya-Velázquez F, Páramo-Pérez I, Rangel-Serrano Á, Muñoz-Carranza SR, Romero-González OE, Cardoso-Reyes LR, Rodríguez-Ojeda RA, Mora-Montes HM, Vargas-Maya NI, Padilla-Vaca F, Franco B. Escherichia coli transcription factors of unknown function: sequence features and possible evolutionary relationships. PeerJ 2022; 10:e13772. [PMID: 35880217 PMCID: PMC9308461 DOI: 10.7717/peerj.13772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Organisms need mechanisms to perceive the environment and respond accordingly to environmental changes or the presence of hazards. Transcription factors (TFs) are required for cells to respond to the environment by controlling the expression of genes needed. Escherichia coli has been the model bacterium for many decades, and still, there are features embedded in its genome that remain unstudied. To date, 58 TFs remain poorly characterized, although their binding sites have been experimentally determined. This study showed that these TFs have sequence variation at the third codon position G+C content but maintain the same Codon Adaptation Index (CAI) trend as annotated functional transcription factors. Most of these transcription factors are in areas of the genome where abundant repetitive and mobile elements are present. Sequence divergence points to groups with distinctive sequence signatures but maintaining the same type of DNA binding domain. Finally, the analysis of the promoter sequences of the 58 TFs showed A+T rich regions that agree with the features of horizontally transferred genes. The findings reported here pave the way for future research of these TFs that may uncover their role as spare factors in case of lose-of-function mutations in core TFs and trace back their evolutionary history.
Collapse
Affiliation(s)
- Isabel Duarte-Velázquez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Javier de la Mora
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City, México
| | | | - Alondra Aguillón-Bárcenas
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Fátima Tornero-Gutiérrez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Eugenia Cordero-Loreto
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Fernando Anaya-Velázquez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Itzel Páramo-Pérez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Ángeles Rangel-Serrano
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | | | | | - Luis Rafael Cardoso-Reyes
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | | | - Héctor Manuel Mora-Montes
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Naurú Idalia Vargas-Maya
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Felipe Padilla-Vaca
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Bernardo Franco
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| |
Collapse
|
17
|
Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli. Microorganisms 2022; 10:microorganisms10030608. [PMID: 35336183 PMCID: PMC8954029 DOI: 10.3390/microorganisms10030608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence and dissemination of antibiotic resistance threaten the treatment of common bacterial infections. Resistance genes are often encoded on conjugative elements, which can be horizontally transferred to diverse bacteria. In order to delay conjugative transfer of resistance genes, more information is needed on the genetic determinants promoting conjugation. Here, we focus on which bacterial host factors in the donor assist transfer of conjugative plasmids. We introduced the broad-host-range plasmid pKJK10 into a diverse collection of 113 Escherichia coli strains and measured by flow cytometry how effectively each strain transfers its plasmid to a fixed E. coli recipient. Differences in conjugation efficiency of up to 2.7 and 3.8 orders of magnitude were observed after mating for 24 h and 48 h, respectively. These differences were linked to the underlying donor strain genetic variants in genome-wide association studies, thereby identifying candidate genes involved in conjugation. We confirmed the role of fliF, fliK, kefB and ucpA in the donor ability of conjugative elements by validating defects in the conjugation efficiency of the corresponding lab strain single-gene deletion mutants. Based on the known cellular functions of these genes, we suggest that the motility and the energy supply, the intracellular pH or salinity of the donor affect the efficiency of plasmid transfer. Overall, this work advances the search for targets for the development of conjugation inhibitors, which can be administered alongside antibiotics to more effectively treat bacterial infections.
Collapse
|