1
|
Barr JJ. The T-series bacteriophages are reductionist models that continue to shape the field. Nat Microbiol 2025; 10:1028-1029. [PMID: 40229434 DOI: 10.1038/s41564-025-01990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Affiliation(s)
- Jeremy J Barr
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Dharmaraj T, Kratochvil MJ, Pourtois JD, Chen Q, Hajfathalian M, Hargil A, Lin YH, Evans Z, Oromí-Bosch A, Berry JD, McBride R, Haddock NL, Holman DR, van Belleghem JD, Chang TH, Barr JJ, Lavigne R, Heilshorn SC, Blankenberg FG, Bollyky PL. Rapid assessment of changes in phage bioactivity using dynamic light scattering. PNAS NEXUS 2023; 2:pgad406. [PMID: 38111822 PMCID: PMC10726995 DOI: 10.1093/pnasnexus/pgad406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Extensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. In this study, we use dynamic light scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity. We then use DLS to optimize phage storage conditions for phages from human clinical trials, predict bioactivity in 50-y-old archival stocks, and evaluate phage samples for use in a phage therapy/wound infection model. We also provide a web application (Phage-Estimator of Lytic Function) to facilitate DLS studies of phages. We conclude that DLS provides a rapid, convenient, and nondestructive tool for quality control of phage preparations in academic and commercial settings.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Julie D Pourtois
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zoe Evans
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | | | - Joel D Berry
- Felix Biotechnology, South SanFrancisco, CA 94080, USA
| | | | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Derek R Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonas D van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Tony H Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven 3001, Belgium
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Francis G Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children's Hospital, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Bichet MC, Adderley J, Avellaneda-Franco L, Magnin-Bougma I, Torriero-Smith N, Gearing LJ, Deffrasnes C, David C, Pepin G, Gantier MP, Lin RCY, Patwa R, Moseley GW, Doerig C, Barr JJ. Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival. PLoS Biol 2023; 21:e3002341. [PMID: 37883333 PMCID: PMC10602308 DOI: 10.1371/journal.pbio.3002341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism.
Collapse
Affiliation(s)
- Marion C. Bichet
- School of Biological Sciences, Monash University, Clayton, Australia
- ACTALIA, Food Safety Department, Saint-Lô, France
- University of Lorraine, CNRS, LCPME, Vandœuvre-lès-Nancy, France
| | - Jack Adderley
- School of Health and Biomedical Science, RMIT University, Bundoora, Australia
| | | | | | | | - Linden J. Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Celine Deffrasnes
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Cassandra David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Genevieve Pepin
- Medical Biology Department, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Ruby CY Lin
- Centre for Infectious Diseases and Microbiology; The Westmead Institute for Medical Research, Westmead, Australia
| | - Ruzeen Patwa
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Christian Doerig
- School of Health and Biomedical Science, RMIT University, Bundoora, Australia
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Dharmaraj T, Kratochvil MJ, Pourtois JD, Chen Q, Hajfathalian M, Hargil A, Lin YH, Evans Z, Oromí-Bosch A, Berry JD, McBride R, Haddock NL, Holman DR, van Belleghem JD, Chang TH, Barr JJ, Lavigne R, Heilshorn SC, Blankenberg FG, Bollyky PL. Rapid assessment of changes in phage bioactivity using dynamic light scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547396. [PMID: 37425882 PMCID: PMC10327207 DOI: 10.1101/2023.07.02.547396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Extensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. Here, we use Dynamic Light Scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity. We then use DLS to optimize phage storage conditions for phages from human clinical trials, predict bioactivity in 50-year-old archival stocks, and evaluate phage samples for use in a phage therapy/wound infection model. We also provide a web-application (Phage-ELF) to facilitate DLS studies of phages. We conclude that DLS provides a rapid, convenient, and non-destructive tool for quality control of phage preparations in academic and commercial settings.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Julie D. Pourtois
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zoe Evans
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derek R. Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonas D. van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tony H. Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton, 3800, VIC, Australia
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Francis G. Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children’s Hospital, Stanford, CA 94305, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Nikulin N, Nikulina A, Zimin A, Aminov R. Phages for treatment of Escherichia coli infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:171-206. [PMID: 37739555 DOI: 10.1016/bs.pmbts.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Diseases due to infections by pathogenic Escherichia coli strains are on the rise and with the growing antimicrobial resistance among bacterial pathogens, including this group. Thus, alternative therapeutic options are actively investigated. Among these alternatives is phage therapy. In the case of E. coli, the combination of the well understood biology of this species and its bacteriophages represents a good guiding example for the establishment of phage therapy principles against this and other pathogenic bacteria. In this chapter, the procedures toward the development of phage therapy against pathogenic E. coli with the use of T-even group of phages are discussed. These steps involve the isolation, purification, characterisation and large-scale production of these phages, with formulation of phage cocktails for in vitro and in vivo studies. The main emphasis is made on phage therapy of enteropathogenic E. coli O157:H, which is one of the prominent human pathogens but persists as a commensal bacterium in many food animals. The implementation of phage therapy against E. coli O157:H within the One Health framework in carrier animals and for treatment of meat, vegetables, fruits and other agricultural produce thus would allow controlling and interrupting the transmission routes of this pathogen to the human food chain and preventing human disease. Examples of successful control and elimination of E. coli O157:H are given, while the problems encountered in phage treatment of this pathogen are also discussed.
Collapse
Affiliation(s)
- Nikita Nikulin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Alexandra Nikulina
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Andrei Zimin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
6
|
Jia HJ, Jia PP, Yin S, Bu LK, Yang G, Pei DS. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions. Front Microbiol 2023; 14:1172635. [PMID: 37323893 PMCID: PMC10264812 DOI: 10.3389/fmicb.2023.1172635] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Bacteriophages, the most abundant organisms on earth, have the potential to address the rise of multidrug-resistant bacteria resulting from the overuse of antibiotics. However, their high specificity and limited host range can hinder their effectiveness. Phage engineering, through the use of gene editing techniques, offers a means to enhance the host range of bacteria, improve phage efficacy, and facilitate efficient cell-free production of phage drugs. To engineer phages effectively, it is necessary to understand the interaction between phages and host bacteria. Understanding the interaction between the receptor recognition protein of bacteriophages and host receptors can serve as a valuable guide for modifying or replacing these proteins, thereby altering the receptor range of the bacteriophage. Research and development focused on the CRISPR-Cas bacterial immune system against bacteriophage nucleic acids can provide the necessary tools to promote recombination and counter-selection in engineered bacteriophage programs. Additionally, studying the transcription and assembly functions of bacteriophages in host bacteria can facilitate the engineered assembly of bacteriophage genomes in non-host environments. This review highlights a comprehensive summary of phage engineering methods, including in-host and out-of-host engineering, and the use of high-throughput methods to understand their role. The main aim of these techniques is to harness the intricate interactions between bacteriophages and hosts to inform and guide the engineering of bacteriophages, particularly in the context of studying and manipulating the host range of bacteriophages. By employing advanced high-throughput methods to identify specific bacteriophage receptor recognition genes, and subsequently introducing modifications or performing gene swapping through in-host recombination or out-of-host synthesis, it becomes possible to strategically alter the host range of bacteriophages. This capability holds immense significance for leveraging bacteriophages as a promising therapeutic approach against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Huang-Jie Jia
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Supei Yin
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Kang Bu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guan Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Abstract
The majority of viruses within the gut are obligate bacterial viruses known as bacteriophages (phages). Their bacteriotropism underscores the study of phage ecology in the gut, where they modulate and coevolve with gut bacterial communities. Traditionally, these ecological and evolutionary questions were investigated empirically via in vitro experimental evolution and, more recently, in vivo models were adopted to account for physiologically relevant conditions of the gut. Here, we probed beyond conventional phage-bacteria coevolution to investigate potential tripartite evolutionary interactions between phages, their bacterial hosts, and the mammalian gut mucosa. To capture the role of the mammalian gut, we recapitulated a life-like gut mucosal layer using in vitro lab-on-a-chip devices (to wit, the gut-on-a-chip) and showed that the mucosal environment supports stable phage-bacteria coexistence. Next, we experimentally coevolved lytic phage populations within the gut-on-a-chip devices alongside their bacterial hosts. We found that while phages adapt to the mucosal environment via de novo mutations, genetic recombination was the key evolutionary force in driving mutational fitness. A single mutation in the phage capsid protein Hoc-known to facilitate phage adherence to mucus-caused altered phage binding to fucosylated mucin glycans. We demonstrated that the altered glycan-binding phenotype provided the evolved mutant phage a competitive fitness advantage over its ancestral wild-type phage in the gut-on-a-chip mucosal environment. Collectively, our findings revealed that phages-in addition to their evolutionary relationship with bacteria-are able to evolve in response to a mammalian-derived mucosal environment.
Collapse
|
8
|
Bacteriophage Technology and Modern Medicine. Antibiotics (Basel) 2021; 10:antibiotics10080999. [PMID: 34439049 PMCID: PMC8388951 DOI: 10.3390/antibiotics10080999] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The bacteriophage (or phage for short) has been used as an antibacterial agent for over a century but was abandoned in most countries after the discovery and broad use of antibiotics. The worldwide emergence and high prevalence of antimicrobial-resistant (AMR) bacteria have led to a revival of interest in the long-forgotten antibacterial therapy with phages (phage therapy) as an alternative approach to combatting AMR bacteria. The rapid progress recently made in molecular biology and genetic engineering has accelerated the generation of phage-related products with superior therapeutic potentials against bacterial infection. Nowadays, phage-based technology has been developed for many purposes, including those beyond the framework of antibacterial treatment, such as to suppress viruses by phages, gene therapy, vaccine development, etc. Here, we highlighted the current progress in phage engineering technology and its application in modern medicine.
Collapse
|