1
|
Sheng Y, Hua H, Cui Y, Sun Y. Neutrophil-to-lymphocyte ratio and its correlation with tuberculosis infection: a cross-sectional survey based on the NHANES database. J Thorac Dis 2025; 17:70-81. [PMID: 39975746 PMCID: PMC11833595 DOI: 10.21037/jtd-24-750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025]
Abstract
Background Tuberculosis infection (TBI) is a major challenge to global public health. Early detection and treatment of TBI are crucial in preventing tuberculosis (TB). Although inflammation is closely linked to the pathogenesis of TBI, the neutrophil-to-lymphocyte ratio (NLR), as a new inflammatory marker, has been less studied with TBI risk. This study was based on the National Health and Nutrition Examination Survey (NHANES) database. We utilized a cross-sectional research method to explore the association between NLR and the risk of adult TBI, aiming to fill the blank in the studying relationship between NLR and TBI risk. Our findings may contribute to providing new biomarkers for the diagnosis and treatment of TBI. Methods In this cross-sectional research, data from the NHANES database for the periods 1999-2000 and 2011-2012 were pooled for the study, with TBI as the dependent variable and NLR as the independent variable. A total of 2,433 participants were enrolled, including 391 TBI patients and 2,042 non-TBI patients. The inclusion criteria included information from complete blood testing and TBI status assessment. We evaluated demographic characteristics and clinical factors such as body mass index (BMI), smoking, drinking, NLR, and TBI risk. We employed weighted logistic regression to set up a relationship model between NLR and TBI and dissected the association between them through stratified analysis and subgroup analysis with confounding factors adjusted. We also utilized restricted cubic spline (RCS) and Kaplan-Meier (K-M) survival curves to investigate the nonlinear relationship between NLR and TBI, as well as their relationship with survival rates. Results A total of 2,433 samples were included in this project, with 391 TBI patients and 2,042 non-TBI patients. In the multivariable weighted logistic regression model, an obvious negative association was observed between NLR and TBI risk [odds ratio (OR) <1, P<0.05], and it was substantially influenced by diabetes (P for interaction =0.049). The negative association between NLR and TBI risk was particularly remarkable (P<0.05) in male and hypertensive patients. The RCS curve indicated a potential linear relationship between NLR and TBI risk (P-non-linear =0.9561), with NLR >1.899, OR <1, being a protective factor. The K-M survival curve revealed an obvious linkage between high NLR (>2.328) and increased death risk in TBI patients. Conclusions NLR is remarkably negatively linked with TBI risk. Patients with excessively high NLR have worse outcomes.
Collapse
Affiliation(s)
- Yunfeng Sheng
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Haibo Hua
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Yanfei Cui
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Yaping Sun
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, China
| |
Collapse
|
2
|
Ongarj J, Intapiboon P, Surasombatpattana S, Satti I, Harris SA, Morrison H, Sophonmanee R, McShane H, Tanner R, Pinpathomrat N. Evaluation of immune profiles associated with control of mycobacterial growth in systemic lupus erythematosus (SLE) patients. Tuberculosis (Edinb) 2024; 148:102533. [PMID: 38878478 DOI: 10.1016/j.tube.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 09/09/2024]
Abstract
Tuberculosis (TB) is an infectious disease with the burden concentrated in low- and middle-income countries. Systemic lupus erythematosus (SLE) is an autoimmune disease associated with widespread inflammation that is prevalent in some TB endemic areas including East Africa and parts of Southeast Asia. SLE patients are known to be at higher risk of becoming infected with M. tb, developing TB disease. However, the immune mechanisms underlying this susceptibility are not well understood, particularly in the absence of immunosuppressive drugs. We present a pilot study in which we have evaluated intracellular cytokine responses and ex vivo ability to control mycobacterial growth using peripheral blood mononuclear cells (PBMC) collected from SLE patients before and during SLE treatment. After six months of treatment, SLE patients had the highest frequencies of CD8+ T cells, NK cells and NKT cells producing IFN-γ and/or TNF-α. This group also showed superior control of mycobacterial growth, and proinflammatory cytokine-producing NK and NKT cells correlated with mycobacterial growth inhibition at the individual patient level. These findings contribute to a better understanding of autoimmune profiles associated with control of mycobacterial growth in SLE patients, which may inform intervention strategies to reduce risk of TB disease in this population.
Collapse
Affiliation(s)
- Jomkwan Ongarj
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Porntip Intapiboon
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ratchanon Sophonmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Nawamin Pinpathomrat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
3
|
Pahuja I, Ghoshal A, Okieh AA, Verma A, Negi K, Agarwal M, Chandra NS, Sharma SK, Bhaskar A, Dwivedi VP. Immunoinhibitory effects of anti-tuberculosis therapy induce the host vulnerability to tuberculosis recurrence. Microbiol Spectr 2024; 12:e0041224. [PMID: 38809023 PMCID: PMC11218458 DOI: 10.1128/spectrum.00412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
The host immune responses play a pivotal role in the establishment of long-term memory responses, which effectively aids in infection clearance. However, the prevailing anti-tuberculosis therapy, while aiming to combat tuberculosis (TB), also debilitates innate and adaptive immune components of the host. In this study, we explored how the front-line anti-TB drugs impact the host immune cells by modulating multiple signaling pathways and subsequently leading to disease relapse. Administration of these drugs led to a reduction in innate immune activation and also the cytokines required to trigger protective T cell responses. Moreover, these drugs led to activation-induced cell death in the mycobacterial-specific T cell leading to a reduced killing capacity. Furthermore, these drugs stalled the T cell differentiation into memory subsets by modulating the activation of STAT3, STAT4, FOXO1, and NFκB transcription factors and hampering the Th1 and Th17-mediated long-term host protective memory responses. These findings suggest the urgent need to augment directly observed treatment, short-course (DOTS) therapy with immunomodulatory agents to mitigate the adverse effects linked to the treatment.IMPORTANCEAs a central component of TB eradication initiatives, directly observed treatment, short-course (DOTS) therapy imparts immune-dampening effects during the course of treatment. This approach undermines the host immune system by delaying the activation process and lowering the immune response. In our investigation, we have unveiled the impact of DOTS on specific immune cell populations. Notably, the signaling pathways involving STAT3 and STAT4 critical for memory responses and NFκβ associated with pro-inflammation were substantially declined due to the therapy. Consequently, these drugs exhibit limited effectiveness in preventing recurrence of the disease. These observations highlight the imperative integration of immunomodulators to manage TB infection.
Collapse
Affiliation(s)
- Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Antara Ghoshal
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ahmed Abdallah Okieh
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kriti Negi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Meetu Agarwal
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Nidhi Subhash Chandra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Saurabh Kumar Sharma
- School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Piergallini TJ, Scordo JM, Allué-Guardia A, Pino PA, Zhang H, Cai H, Wang Y, Schlesinger LS, Torrelles JB, Turner J. Acute inflammation alters lung lymphocytes and potentiates innate-like behavior in young mouse lung CD8 T cells, resembling lung CD8 T cells from old mice. J Leukoc Biol 2023; 114:237-249. [PMID: 37196159 PMCID: PMC10473256 DOI: 10.1093/jleuko/qiad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/25/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Inflammation plays a significant role in lung infection including that caused by Mycobacterium tuberculosis, in which both adaptive and innate lymphocytes can affect infection control. How inflammation affects infection is understood in a broad sense, including inflammaging (chronic inflammation) seen in the elderly, but the explicit role that inflammation can play in regulation of lymphocyte function is not known. To fill this knowledge gap, we used an acute lipopolysaccharide (LPS) treatment in young mice and studied lymphocyte responses, focusing on CD8 T cell subsets. LPS treatment decreased the total numbers of T cells in the lungs of LPS mice while also increasing the number of activated T cells. We demonstrate that lung CD8 T cells from LPS mice became capable of an antigen independent innate-like IFN-γ secretion, dependent on IL-12p70 stimulation, paralleling innate-like IFN-γ secretion of lung CD8 T cells from old mice. Overall, this study provides information on how acute inflammation can affect lymphocytes, particularly CD8 T cells, which could potentially affect immune control of various disease states.
Collapse
Affiliation(s)
- Tucker J Piergallini
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
- Biomedical Sciences Graduate Program, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, United States
| | - Julia M Scordo
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
- Barshop Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7755, San Antonio, TX 78229, United States
| | - Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| | - Paula A Pino
- Population Health Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| | - Hao Zhang
- South Texas Center for Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - Hong Cai
- South Texas Center for Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - Yufeng Wang
- South Texas Center for Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| | - Joanne Turner
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| |
Collapse
|
5
|
Poladian N, Orujyan D, Narinyan W, Oganyan AK, Navasardyan I, Velpuri P, Chorbajian A, Venketaraman V. Role of NF-κB during Mycobacterium tuberculosis Infection. Int J Mol Sci 2023; 24:1772. [PMID: 36675296 PMCID: PMC9865913 DOI: 10.3390/ijms24021772] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) causes tuberculosis infection in humans worldwide, especially among immunocompromised populations and areas of the world with insufficient funding for tuberculosis treatment. Specifically, M. tb is predominantly exhibited as a latent infection, which poses a greater risk of reactivation for infected individuals. It has been previously shown that M. tb infection requires pro-inflammatory and anti-inflammatory mediators to manage its associated granuloma formation via tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), interferon-γ (IFN-γ), and caseum formation via IL-10, respectively. Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) has been found to play a unique mediator role in providing a pro-inflammatory response to chronic inflammatory disease processes by promoting the activation of macrophages and the release of various cytokines such as IL-1, IL-6, IL-12, and TNF-α. NF-κB's role is especially interesting in its mechanism of assisting the immune system's defense against M. tb, wherein NF-κB induces IL-2 receptors (IL-2R) to decrease the immune response, but has also been shown to crucially assist in keeping a granuloma and bacterial load contained. In order to understand NF-κB's role in reducing M. tb infection, within this literature review we will discuss the dynamic interaction between M. tb and NF-κB, with a focus on the intracellular signaling pathways and the possible side effects of NF-κB inactivation on M. tb infection. Through a thorough review of these interactions, this review aims to highlight the role of NF-κB in M. tb infection for the purpose of better understanding the complex immune response to M. tb infection and to uncover further potential therapeutic methods.
Collapse
Affiliation(s)
- Nicole Poladian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - William Narinyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Armani K. Oganyan
- College of Osteopathic Medicine, Des Moines University, 3200 Grand Ave, Des Moines, IA 50312, USA
| | - Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Prathosh Velpuri
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
6
|
Olmo-Fontánez AM, Turner J. Tuberculosis in an Aging World. Pathogens 2022; 11:pathogens11101101. [PMID: 36297158 PMCID: PMC9611089 DOI: 10.3390/pathogens11101101] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death due to its being an infectious disease, caused by the airborne pathogen Mycobacterium tuberculosis (M.tb). Approximately one-fourth of the world’s population is infected with latent M.tb, and TB is considered a global threat killing over 4000 people every day. The risk of TB susceptibility and mortality is significantly increased in individuals aged 65 and older, confirming that the elderly represent one of the largest reservoirs for M.tb infection. The elderly population faces many challenges that increase their risk of developing respiratory diseases, including TB. The challenges the elderly face in this regard include the following: decreased lung function, immuno-senescence, inflammaging, adverse drug effects, low tolerance to anti-TB drugs, lack of suitable diagnoses/interventions, and age-associated comorbidities. In order to find new therapeutic strategies to maintain lung homeostasis and resistance to respiratory infections as we age, it is necessary to understand the molecular and cellular mechanisms behind natural lung aging. This review focuses primarily on why the elderly are more susceptible to TB disease and death, with a focus on pulmonary function and comorbidities.
Collapse
Affiliation(s)
- Angélica M. Olmo-Fontánez
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Joanne Turner
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence:
| |
Collapse
|