1
|
Russell AC, Dainis J, Alexander J, Ali IKM, Kyle DE. Secreted small RNAs of Naegleria fowleri are biomarkers for diagnosis of primary amoebic meningoencephalitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632551. [PMID: 39868105 PMCID: PMC11761746 DOI: 10.1101/2025.01.11.632551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Rapid and accurate diagnostics are needed to effectively detect and treat primary amoebic meningoencephalitis (PAM) caused by Naegleria fowleri (Nf). Delayed diagnosis and similarities to other causes of meningitis contribute to a case mortality rate of >97%. Thus, there is an unmet medical need for a non-invasive liquid biopsy diagnostic method. We sequenced Nf extracellular vesicles (EVs) and identified microRNAs, tRNAs and other small RNAs in Nf-EVs. From these data we selected two prevalent small RNAs as biomarker candidates. We developed an RT-qPCR assay and both small RNAs were detected in Nf-EVs and amoeba-conditioned media. In the mouse model of PAM both small RNA biomarkers were detected in 100% of mouse plasma samples at the end-stage of infection. Notably, smallRNA-1 was detected in the urine of infected mice at timepoints as early as 24h post infection (18/23 mice) and in the plasma as early as 60h post infection (8/8 mice). Additionally, smallRNA-1 was detected in 100% (n=6) of CSF samples from human PAM cases, and in whole blood samples, but not in human plasma from PAM cases. In this study, we discovered small RNAs as biomarkers of Nf infection, one which can be detected reliably in CSF, urine, and whole blood. The RT-qPCR assay is a highly sensitive diagnostic assay that can be conducted in ~3h after receipt of liquid biopsy. The data suggest detection of smallRNA-1 biomarker could provide earlier diagnosis of PAM and be used to monitor biomass of amoebae during treatment.
Collapse
Affiliation(s)
- A Cassiopeia Russell
- University of Georgia, Department of Infectious Diseases, Athens, GA, USA, 30602
- University of Georgia, Center for Tropical and Emerging Global Diseases, Athens, GA, USA, 30602
| | - Joseph Dainis
- University of Georgia, Department of Infectious Diseases, Athens, GA, USA, 30602
- University of Georgia, Center for Tropical and Emerging Global Diseases, Athens, GA, USA, 30602
| | - Jose Alexander
- AdventHealth Central Florida, Microbiology Department, Orlando, FL, USA, 32803
| | - Ibne Karim M Ali
- Centers for Disease Control and Prevention, Waterborne Disease Prevention Branch, DFWED/NCEZID, Atlanta, GA, USA, 30333
| | - Dennis E Kyle
- University of Georgia, Department of Infectious Diseases, Athens, GA, USA, 30602
- University of Georgia, Center for Tropical and Emerging Global Diseases, Athens, GA, USA, 30602
- University of Georgia, Department of Cellular Biology, Athens, GA, USA, 30602
| |
Collapse
|
2
|
Guerlais V, Allouch N, Moseman EA, Wojciechowska AW, Wojciechowski JW, Marcelino I. Transcriptomic profiling of "brain-eating amoeba" Naegleria fowleri infection in mice: the host and the protozoa perspectives. Front Cell Infect Microbiol 2024; 14:1490280. [PMID: 39735262 PMCID: PMC11682717 DOI: 10.3389/fcimb.2024.1490280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 12/31/2024] Open
Abstract
The free-living amoeba Naegleria fowleri (NF) causes a rare but lethal parasitic meningoencephalitis (PAM) in humans. Currently, this disease lacks effective treatments and the specific molecular mechanisms that govern NF pathogenesis and host brain response remain unknown. To address some of these issues, we sought to explore naturally existing virulence diversity within environmental NF isolates. Herein, we purified two new NF environmental isolates (NF45 and NF1) and tested their in vivo virulence using experimental infection in mice. We found that NF45 was highly virulent (NF45_HV) compared with NF1 (low virulence, NF1_LV), based on in vivo amoeba growth kinetics and mouse survival. To identify underlying differences, we conducted RNA-seq and bioinformatics analyses from the infected mouse brains. Our results showed that NF1_LV and NF45_HV modulated the expression of their genes during mouse brain infection. Differentially expressed genes (DEGs) in NF1_LV were mostly involved in Translational protein, Protein-binding activity modulator, Protein modifying enzyme, while DEGs in NF45_HV were related to DNA metabolism, Cytoskeletal protein, Protein-binding activity modulator. Proteases (namely the virulence factor Cathepsin B) were upregulated in NF1_LV, while downregulated in NF45_HV. When analyzing the host response against infection by these two NF strains, enrichment analyses uncovered genes and mechanisms related to the host immune responses and nervous systems. We detected more DEGs in NF1_LV infected mice compared to NF45_HV, related to blood brain barrier leakage, immune cell recruitment, cytokine production (including IL-6, IFN-Ɣ and TNFα), inflammation of astrocytes and microglia, and oligodendrocyte and neurons degeneration. Increased expression of neuromotor-related genes such as Adam22, Cacnb4 and Zic1 (activated by NF1_LV infection) and ChAt (activated by NF45_LV infection) could explain PAM symptoms such as muscle weakness and seizures. Globally, our results showed that NF isolated from the environment can have different levels of virulence and differentially modulate their gene expression during brain infection. We also provided, for the first time, a comprehensive information for the molecular mechanisms of neuro-immune and host-pathogen interactions during PAM disease. As the host and the protozoa are strongly implicated in PAM lethality, new therapies targeting both the parasite, and the host should be considered to treat PAM infection.
Collapse
Affiliation(s)
- Vincent Guerlais
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Nina Allouch
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Alicja W. Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław, Poland
| | | | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| |
Collapse
|
3
|
Moseman AP, Chen CW, Liang X, Liao D, Kuraoka M, Moseman EA. Therapeutic glycan-specific antibody binding mediates protection during primary amoebic meningoencephalitis. Infect Immun 2024; 92:e0018324. [PMID: 39235225 PMCID: PMC11475618 DOI: 10.1128/iai.00183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Naegleria fowleri (N. fowleri) infection via the upper respiratory tract causes a fatal CNS disease known as primary amoebic meningoencephalitis (PAM). The robust in vivo immune response to N. fowleri infection underlies the immunopathology that characterizes the disease. However, little is known about why this pathogen evades immune control. Infections occur in seemingly healthy individuals and effective clinical options are lacking, thus a nearly 98% fatality rate. It is unclear how or if host factors may contribute to susceptibility or disease exacerbation, yet mechanistic studies of the in vivo immune response and disease progression are hampered by a lack of tools. In this study, we have generated monoclonal antibodies to N. fowleri surface antigens and shown them to be excellent tools for studying the in vivo immune response. We also identified one monoclonal, 2B6, with potent inherent anti-amoebastatic activity in vitro. This antibody is also able to therapeutically prolong host survival in vivo and furthermore, recombinant antibodies with an isotype more capable of directing immune effector activity further improved survival when given therapeutically. Thus, we report the generation of a novel monoclonal antibody to N. fowleri that can enhance beneficial immune functions, even when given therapeutically during disease. We believe this provides evidence for the potential of therapeutic antibody treatments in PAM.IMPORTANCENaegleria fowleri (N. fowleri) is a free-living amoeba that is found ubiquitously in warm freshwater. While human exposure is common, it rarely results in pathogenesis. However, when N. fowleri gains access to the upper airway, specifically the olfactory mucosa, infection leads to a lethal disease known as primary amoebic meningoencephalitis (PAM). As a free-living amoeba, N. fowleri does not need a mammalian host; indeed, it can be accurately described as an accidental opportunistic pathogen. While most opportunistic infections occur in humans who are immunocompromised, there are no reported immune dysfunctions associated with N. fowleri infection. Therefore, the basis for N. fowleri opportunism is not known, and the reasons why some humans develop PAM while others do not are simply not well understood. It is reasonable to speculate that local or acute immune failures, potentially even a lack of prior adaptive immunity, are related to disease susceptibility. Careful immune profiling and characterization of the in vivo immune response to N. fowleri in a mammalian host are desperately needed to understand which host factors are critical to defense, and how these responses might be compromised in a way that results in lethal infection. To identify genes and pathways that provide resistance against in vivo N. fowleri infection, we generated surface reactive monoclonal antibodies (Abs) that provide rapid amoeba detection and quantification in vivo. Interestingly, N. fowleri binding Abs have been readily detected in the serum and saliva of humans and animals suggesting that non-lethal exposure drives a humoral immune response against the amoeba. Yet, how Abs might interact with Naegleria in vivo or contribute to preventing lethal infection is not well understood. In this study, we have generated and characterized a monoclonal antibody (Ab), Clone 2B6, that recognizes a glycosylated surface antigen present in cultured in vitro N. fowleri as well as mouse passaged N. fowleri. When clone 2B6 binds to N. fowleri, it inhibits amoeba motility and feeding behavior, leading to strong growth inhibition. Mice treated systemically and intracerebrally with Ab displayed a delayed disease onset and prolonged survival. In addition, we found that enhancing immune-directed effector activity via antibody isotype could further enhance survival without obvious immunopathogenic side effects. These findings show the potential for antibody treatment as an additional therapeutic to those used currently in PAM.
Collapse
Affiliation(s)
- Annie Park Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ching-wen Chen
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoe Liang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dongmei Liao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Masayuki Kuraoka
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Borkens Y. The Pathology of the Brain Eating Amoeba Naegleria fowleri. Indian J Microbiol 2024; 64:1384-1394. [PMID: 39282207 PMCID: PMC11399382 DOI: 10.1007/s12088-024-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/02/2024] [Indexed: 09/18/2024] Open
Abstract
The genus Naegleria is a taxonomic subfamily consisting of 47 free-living amoebae. The genus can be found in warm aqueous or soil habitats worldwide. The species Naegleria fowleri is probably the best-known species of this genus. As a facultative parasite, the protist is not dependent on hosts to complete its life cycle. However, it can infect humans by entering the nose during water contact, such as swimming, and travel along the olfactory nerve to the brain. There it causes a purulent meningitis (primary amoebic meningoencephalitis or PAME). Symptoms are severe and death usually occurs within the first week. PAME is a frightening infectious disease for which there is neither a proven cure nor a vaccine. In order to contain the disease and give patients any chance to survival, action must be taken quickly. A rapid diagnosis is therefore crucial. PAME is diagnosed by the detection of amoebae in the liquor and later in the cerebrospinal fluid. For this purpose, CSF samples are cultured and stained and finally examined microscopically. Molecular techniques such as PCR or ELISA support the microscopic analysis and secure the diagnosis.
Collapse
Affiliation(s)
- Yannick Borkens
- Institut für Pathologie, Charité Campus Mitte, Virchowweg 15, Charité, 10117 Berlin, Germany
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
| |
Collapse
|
5
|
Lê HG, Võ TC, Kang JM, Nguyễn TH, Hwang BS, Oh YT, Na BK. Antiamoebic activities of flavonoids against pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba species. PARASITES, HOSTS AND DISEASES 2023; 61:449-454. [PMID: 38043540 PMCID: PMC10693969 DOI: 10.3347/phd.23078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 12/05/2023]
Abstract
Free-living amoebae (FLA) rarely cause human infections but can invoke fatal infections in the central nervous system (CNS). No consensus treatment has been established for FLA infections of the CNS, emphasizing the urgent need to discover or develop safe and effective drugs. Flavonoids, natural compounds from plants and plant-derived products, are known to have antiprotozoan activities against several pathogenic protozoa parasites. The anti-FLA activity of flavonoids has also been proposed, while their antiamoebic activity for FLA needs to be emperically determined. We herein evaluated the antiamoebic activities of 18 flavonoids against Naegleria fowleri and Acanthamoeba species which included A. castellanii and A. polyphaga. These flavonoids showed different profiles of antiamoebic activity against N. fowleri and Acanthamoeba species. Demethoxycurcumin, kaempferol, resveratrol, and silybin (A+B) showed in vitro antiamoebic activity against both N. fowleri and Acanthamoeba species. Apigenin, costunolide, (‒)-epicatechin, (‒)-epigallocatechin, rosmarinic acid, and (‒)-trans-caryophyllene showed selective antiamoebic activity for Acanthamoeba species. Luteolin was more effective for N. fowleri. However, afzelin, berberine, (±)-catechin, chelerythrine, genistein, (+)-pinostrobin, and quercetin did not exhibit antiamoebic activity against the amoeba species. They neither showed selective antiamoebic activity with significant cytotoxicity to C6 glial cells. Our results provide a basis for the anti-FLA activity of flavonoids, which can be applied to develope alternative or supplemental therapeutic agents for FLA infections of the CNS.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727,
Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727,
Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Thu Hằng Nguyễn
- Department of Parasitology and Tropical Medicine, and Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727,
Korea
| | - Buyng-Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju 37242,
Korea
| | - Young-Taek Oh
- Nakdonggang National Institute of Biological Resources, Sangju 37242,
Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727,
Korea
| |
Collapse
|
6
|
Russell AC, Bush P, Grigorean G, Kyle DE. Characterization of the extracellular vesicles, ultrastructural morphology, and intercellular interactions of multiple clinical isolates of the brain-eating amoeba, Naegleria fowleri. Front Microbiol 2023; 14:1264348. [PMID: 37808283 PMCID: PMC10558758 DOI: 10.3389/fmicb.2023.1264348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction As global temperatures rise to unprecedented historic levels, so too do the latitudes of habitable niches for the pathogenic free-living amoeba, Naegleria fowleri. This opportunistic parasite causes a rare, but >97% fatal, neurological infection called primary amoebic meningoencephalitis. Despite its lethality, this parasite remains one of the most neglected and understudied parasitic protozoans. Methods To better understand amoeboid intercellular communication, we elucidate the structure, proteome, and potential secretion mechanisms of amoeba-derived extracellular vesicles (EVs), which are membrane-bound communication apparatuses that relay messages and can be used as biomarkers for diagnostics in various diseases. Results and Discussion Herein we propose that N. fowleri secretes EVs in clusters from the plasma membrane, from multivesicular bodies, and via beading of thin filaments extruding from the membrane. Uptake assays demonstrate that EVs are taken up by other amoebae and mammalian cells, and we observed a real-time increase in metabolic activity for mammalian cells exposed to EVs from amoebae. Proteomic analysis revealed >2,000 proteins within the N. fowleri-secreted EVs, providing targets for the development of diagnostics or therapeutics. Our work expands the knowledge of intercellular interactions among these amoebae and subsequently deepens the understanding of the mechanistic basis of PAM.
Collapse
Affiliation(s)
- A. Cassiopeia Russell
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Peter Bush
- School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Gabriela Grigorean
- Proteomics Core Facility, University of California, Davis, Davis, CA, United States
| | - Dennis E. Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Stahl LM, Olson JB. Investigating the interactive effects of temperature, pH, and salinity on Naegleria fowleri persistence. J Eukaryot Microbiol 2023; 70:e12964. [PMID: 36709487 DOI: 10.1111/jeu.12964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Naegleria fowleri causes primary amoebic meningoencephalitis, a deadly infection that occurs when free-living amoebae enter the nose via freshwater and travel to the brain. N. fowleri naturally thrives in freshwater and soil and is thought to be associated with elevated water temperatures. While environmental and laboratory studies have sought to identify what environmental factors influence its presence, many questions remain. This study investigated the interactive effects of temperature, pH, and salinity on N. fowleri in deionized and environmental waters. Three temperatures (15, 25, 35°C), pH values (6.5, 7.5, 8.5), and salinity concentrations (0.5%, 1.5%, 2.5% NaCl) were used to evaluate the growth of N. fowleri via ATP luminescent assays. Results indicated N. fowleri grew best at 25°C, and multiple interactive effects occurred between abiotic factors. Interactions varied slightly by water type but were largely driven by temperature and salinity. Lower temperature increased N. fowleri persistence at higher salinity levels, while low salinity (0.5% NaCl) supported N. fowleri growth at all temperatures. This research provided an experimental approach to assess interactive effects influencing the persistence of N. fowleri. As climate change impacts water temperatures and conditions, understanding the microbial ecology of N. fowleri will be needed minimize pathogen exposure.
Collapse
Affiliation(s)
- Leigha M Stahl
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Julie B Olson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|