1
|
Li J, Xu C, He L, Tuo Y, Yang Y, Ma Y, Guo T. Effects of different levels of chili straw supplementation on growth performance, rumen fungal community structure, function and economic benefits in sheep. Front Microbiol 2025; 16:1585992. [PMID: 40365058 PMCID: PMC12069369 DOI: 10.3389/fmicb.2025.1585992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Chili straw is a crop residue that can be used as an unconventional feed additive in animal production, exhibiting potential value in improving animal health. This study investigated the effects of dietary chili straw on growth performance, rumen fungal community composition, and metabolic function in sheep. Thirty finishing sheep (3-4 months old) with similar body weights were randomly divided into three groups (n = 10) and fed diets containing 0, 10, and 20% capsicum straw (CS) for 63 days, including a 7-day adaptation period. At the end of the trial, body weights were recorded, and rumen fluid samples were collected to assess growth performance, fungal diversity, and functional profiles. Dry matter intake (DMI) significantly increased in the 10% CS group (P < 0.01), which was 9.71% higher than that of CON group, while DMI and final body weight of 20% CS group (P < 0.01 or P < 0.05) decreased by 6.81 and 8.81%, respectively, compared with CON group. Final body weight and average daily gain (ADG) showed an upward trend in the 10% CS group (P > 0.05), while ADG displayed a downward trend in the 20% CS group (P > 0.05). The ACE and Chao1 indices were significantly elevated in the 20% CS group (P < 0.05). Principal coordinate analysis (PCoA) and non-metric multidimensional scaling analysis (NMDS) showed that compared with the control (CON) group, the representative points of the 20% CS group gathered more closely. Relative abundances of Ascomycota and Cladosporium increased, whereas Basidiomycota and Kazachstania decreased in CS-supplemented groups (P > 0.05). FUNGuild functional prediction indicated increased relative abundances of symbiotrophic and pathotrophic fungi and decreased saprotrophic fungi in CS groups (P > 0.05). The gross profit and net profit of the CS10% group were significantly higher than those of the other groups, which were 15.16 and 24.44% higher than those of the control group, respectively. Thus, adding 10% CS to sheep feed can improve the composition of rumen fungi and growth performance, thereby increasing profitability in sheep production.
Collapse
Affiliation(s)
- Jinlong Li
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Congbin Xu
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Linjiao He
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yong Tuo
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yuxia Yang
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
| | - Yan Ma
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
| | - Tongjun Guo
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
| |
Collapse
|
2
|
He Y, Hu H, Liang X, Liang J, Li F, Zhou X. Gut microbes-muscle axis in muscle function and meat quality. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2885-4. [PMID: 40220074 DOI: 10.1007/s11427-024-2885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 04/14/2025]
Abstract
The concept of the gut microbes-muscle axis underscores the impact of intestinal microbiota on the muscular system, an area that is increasingly coming to light. However, current interpretations and applications of this concept remain underdeveloped. In this review, we concluded and discussed factors, such as short-chain fatty acids, amino acids, vitamins, bile acids, antibiotics, cytokines, hormones, and extracellular vesicles that mediate gut microbes-muscle crosstalk and influence the gut microbes-muscle axis. Additionally, we examined how the gut microbes-muscle axis affects muscle mass, muscle strength, muscle metabolism, as well as muscle oxidative and immune status. Furthermore, we reviewed the influence of the microbes-muscle axis on muscle fiber type transition, muscle fat deposition, and meat quality. These insights illuminate the potential mechanisms by which the gut microbes-muscle axis operates in humans and animals. Thus, this review provides a theoretical foundation for future research and offers practical guidance for its application in biomedical and livestock industries.
Collapse
Affiliation(s)
- Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hong Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xuqing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
3
|
Han L, Fu R, Jin C, Gao H, Fu B, Li Q, Yu Y, Qi M, Zhang J, Mao S, Leng J. Multi-omics reveals the mechanism of quality discrepancy between Gayal (Bos frontalis) and yellow cattle beef. BMC Genomics 2025; 26:351. [PMID: 40197137 PMCID: PMC11974043 DOI: 10.1186/s12864-025-11519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Producing high-quality beef with enhanced muscle composition and reduced fat content is critical for meeting consumer preferences and supporting a balanced diet. Given the substantial variability in beef quality across cattle breeds, this study aimed to identify key determinants of meat quality by examining Gayal (Bos frontalis) and yellow cattle (Bos taurus) through a multi-disciplinary approach. RESULTS The results demonstrated that Gayal cattle exhibited superior meat quality, characterized by higher levels of protein, flavor-enhancing and essential amino acids, total amino acids, and polyunsaturated fatty acids (PUFAs), alongside reduced fat content, with similar trends observed in serum hormone and amino acid profiles. Distinct differences in gut microbial composition, enzymatic activities, and metabolites were observed between the breeds. Gayal displayed increased abundances of key bacterial taxa such as Akkermansia, Paeniclostridium, Escherichia-Shigella, and Clostridium sensu stricto 1, which were associated with enhanced volatile fatty acids (VFAs), ammoniacal nitrogen, and enzymatic activity in the colon. Transcriptomic analysis of the psoas major (PM) muscle revealed significant changes in genes linked to muscle development, amino acid metabolism, and lipid metabolism. Genes related to intestinal amino acid absorption were upregulated in Gayal, while those connected to short-chain fatty acid absorption were downregulated. Correlation analyses underscored the role of gut microbiota and metabolic profiles in modulating gene expression associated with lipid and amino acid metabolism, ultimately influencing meat flavor and quality. CONCLUSIONS These findings provide actionable insights into the genetic and microbial factors underlying beef quality, offering a foundation for enhancing local cattle resources, optimizing breeding programs, and advancing the production of premium beef to meet both market and dietary needs.
Collapse
Affiliation(s)
- Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiawei Zhang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
4
|
Gao H, Wang Y, Zhao X, Yu Y, Guo Y, Li Z, Zhou Z. Growth Performance and Gut Health of Cold-Stressed Broilers in Response to Supplementation with a Combination of Sodium Butyrate and Vitamin D3. Animals (Basel) 2025; 15:861. [PMID: 40150390 PMCID: PMC11939318 DOI: 10.3390/ani15060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The current experiment aimed to investigate the effects of sodium butyrate (SB) and vitamin D3 (VD3) supplementation on the growth performance, immune status, antioxidant capacity, and gut health of young broilers under cold stress. A total of 144 1-day-old Arbor Acres chicks were randomly allotted to three treatments with 6 replicates of 8 birds: (1) basal diet; (2) basal diet + cold stress; and (3) basal diet with 1 g/kg SB and 2000 IU/kg VD3 + cold stress. Birds were exposed to cold stress at 16 ± 1 °C for 72 h (d 18-21) and 26 ± 1 °C for the control. The results indicated that the SB/VD3 diet could alleviate the reduction in average daily gain (ADG) caused by cold stress (p < 0.05). The SB/VD3 diet decreased the serum endotoxin level and ileal interleukin-1β gene expression and upregulated interleukin-10 and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression compared with cold-stressed birds (p < 0.05). Furthermore, cold stress altered the composition of gut microbiota, including a decrease in Clostridium_sensu_stricto_1, whereas the SB/VD3 diet prevented the reduction. In conclusion, the SB/VD3 diet mitigated the negative effects of cold stress on growth performance and the intestines by strengthening intestinal barrier function and stabilizing gut microbiota balance in broiler chicks, and these results can help to manage cold stress.
Collapse
Affiliation(s)
- Hang Gao
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (H.G.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (H.G.)
| | - Xingkai Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaling Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yizhe Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhendong Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Ndlandla TW, Cheng FY, Huang CW, Yang KT. Effect of Bacillus amyloliquefaciens supplementation on intramuscular fat accumulation and meat quality in finishing pigs. Anim Biosci 2025; 38:551-559. [PMID: 39483026 PMCID: PMC11917450 DOI: 10.5713/ab.24.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE This study evaluated the potential of Bacillus amyloliquefaciens to improve growth performance and meat quality in finishing pigs. METHODS Thirty-two female Landrace×Duroc pigs, 21 weeks old with initial body weight 77.45±3.29 kg, were divided into two groups: a control group (basal diet) and a probiotic group (basal diet with Bacillus amyloliquefaciens at 1×109 CFU/kg). Body weight and average daily gain (ADG) were recorded at the start and at fortnight intervals for a 56-d feeding trial. At the end of the experiment, carcass traits, meat quality and intramuscular fat related gene expression of longissimus dorsi muscle were analyzed. RESULTS The probiotic group showed significantly higher final body weight and D0-D56 ADG (p<0.05). Additionally, the probiotic group had greater carcass weight, back fat thickness and marbling score (p<0.05), while the lean meat percentage remained unchanged. Meat quality analysis revealed that the probiotic group had a higher b* value (5.47) (p<0.05), and a lower shear value (p<0.001), but there was no effect on the a* value and water holding capacity. Moreover, probiotic treatment increased the gene expression of fatty acid uptake and regulators, such as lipoprotein lipase (LPL), cluster of differentiation 36 (CD36), and solute carrier family 27 member 1 (SLC27A1) (p<0.05). CONCLUSION Our findings suggest that the supplementation of Bacillus amyloliquefaciens not only enhanced growth performance and carcass weight in finishing pigs, but also improved marbling and tenderness in the longissimus dorsi muscle through the upregulation of lipogenic-genes related to fat accumulation. This indicates its potential as feed additive to enhance pork quality.
Collapse
Affiliation(s)
- Thami Wiseman Ndlandla
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Fu Yuan Cheng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Chao Wei Huang
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Kuo Tai Yang
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
6
|
Azouggagh L, Ibáñez-Escriche N, Martínez-Álvaro M, Varona L, Casellas J, Negro S, Casto-Rebollo C. Characterization of microbiota signatures in Iberian pig strains using machine learning algorithms. Anim Microbiome 2025; 7:13. [PMID: 39901297 PMCID: PMC11789298 DOI: 10.1186/s42523-025-00378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND There is a growing interest in uncovering the factors that shape microbiome composition due to its association with complex phenotypic traits in livestock. Host genetic variation is increasingly recognized as a major factor influencing the microbiome. The Iberian pig breed, known for its high-quality meat products, includes various strains with recognized genetic and phenotypic variability. However, despite the microbiome's known impact on pigs' productive phenotypes such as meat quality traits, comparative analyses of gut microbial composition across Iberian pig strains are lacking. This study aims to explore the gut microbiota of two Iberian pig strains, Entrepelado (n = 74) and Retinto (n = 63), and their reciprocal crosses (n = 100), using machine learning (ML) models to identify key microbial taxa relevant for distinguishing their genetic backgrounds, which holds potential application in the pig industry. Nine ML algorithms, including tree-based, kernel-based, probabilistic, and linear algorithms, were used. RESULTS Beta diversity analysis on 16 S rRNA microbiome data revealed compositional divergence among genetic, age and batch groups. ML models exploring maternal, paternal and heterosis effects showed varying levels of classification performance, with the paternal effect scenario being the best, achieving a mean Area Under the ROC curve (AUROC) of 0.74 using the Catboost (CB) algorithm. However, the most genetically distant animals, the purebreds, were more easily discriminated using the ML models. The classification of the two Iberian strains reached the highest mean AUROC of 0.83 using Support Vector Machine (SVM) model. The most relevant genera in this classification performance were Acetitomaculum, Butyricicoccus and Limosilactobacillus. All of which exhibited a relevant differential abundance between purebred animals using a Bayesian linear model. CONCLUSIONS The study confirms variations in gut microbiota among Iberian pig strains and their crosses, influenced by genetic and non-genetic factors. ML models, particularly CB and RF, as well as SVM in certain scenarios, combined with a feature selection process, effectively classified genetic groups based on microbiome data and identified key microbial taxa. These taxa were linked to short-chain fatty acids production and lipid metabolism, suggesting microbial composition differences may contribute to variations in fat-related traits among Iberian genetic groups.
Collapse
Affiliation(s)
- Lamiae Azouggagh
- Institute for Animal Science and Technology, Universitat Politècnica de Valencia, Valencia, 46022, Spain
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de Valencia, Valencia, 46022, Spain.
| | - Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de Valencia, Valencia, 46022, Spain
| | - Luis Varona
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Joaquim Casellas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology, Universitat Politècnica de Valencia, Valencia, 46022, Spain
| |
Collapse
|
7
|
Li J, Tuo Y, He L, Ma Y, Zhang Z, Cheng Z, Zang C, Guo T. Effects of chili straw on rumen fermentation, meat quality, amino acid and fatty acid contents, and rumen bacteria diversity in sheep. Front Microbiol 2025; 15:1525612. [PMID: 39877758 PMCID: PMC11773153 DOI: 10.3389/fmicb.2024.1525612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Crop residues have shown promise as non-conventional feed sources to enhance animal health and growth. This study evaluated the effects of chili straw (CS) on rumen fermentation, meat quality, amino and fatty acid composition, and rumen microbial diversity in sheep. Fifty F1 Dorper×Hu lambs (29.58 ± 2.06 kg) were randomly assigned to five groups, fed pelleted feed with 0%, 5%, 10%, 15%, or 20% CS over a 63-day period, including a 7-day pre-test. Post-trial, rumen fluid was sampled to assess fermentation and microbial profiles, and slaughter performance and meat quality were evaluated. Key findings include: (1) No significant differences were observed in rumen pH, NH3-N, or acetic acid-to-propionic acid ratio across groups (P > 0.05). (2) Rumen microbial diversity indices did not vary significantly between groups (P > 0.05), though the relative abundance of Firmicutes and Proteobacteria increased, and Bacteroidota decreased in CS-fed groups, with specific genus-level changes. (3) Carcass weight decreased in the CS20% group (P < 0.01). (4) Cooking loss decreased in CS10%, 15%, and 20% groups (P < 0.05), and meat redness increased in CS15% and 20% groups (P < 0.01). (5) Saturated fatty acids decreased, while the PUFA/SFA ratio and amino acid profiles, including sulfur-containing amino acids (SAA), dibasic amino acids (DAA), essential amino acids (EAA), and total amino acids (TAA), increased with CS, with a significant rise in Gly content in the CS15% group (P < 0.05). In conclusion, incorporating CS into lamb diets can enhance meat quality without adversely affecting rumen fermentation, with recommended levels between 10% and 15%.
Collapse
Affiliation(s)
- Jinlong Li
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
| | - Yong Tuo
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
| | - Linjiao He
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
| | - Yan Ma
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
| | - Zhijun Zhang
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
| | - Zhiqiang Cheng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Changjiang Zang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Tongjun Guo
- Feed Research Institute of Xinjiang Academy of Animal Husbandry Sciences, Urumqi, China
- Xinjiang Key Laboratory of Herbivorous Livestock Feed Biotechnology, Urumqi, China
| |
Collapse
|
8
|
Gan X, Yu Q, Hu X, Qian Y, Mu X, Li H. Metagenomic and metatranscriptomic analysis reveals the enzymatic mechanism of plant polysaccharide degradation through gut microbiome in plateau model animal (Ochotona curzoniae). FEMS Microbiol Lett 2025; 372:fnaf045. [PMID: 40338610 DOI: 10.1093/femsle/fnaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/09/2025] Open
Abstract
Herbivorous animals can obtain energy by decomposing plant polysaccharides through gut microbiota, but the mechanism of gut microbiota decomposing plant polysaccharides in high-altitude model animals is still unclear. Plateau pika (Ochotona curzoniae) is a key model animal native to the Qinghai-Tibet Plateau with a high intake of grass. Thus, Plateau pika is an excellent animal model for studying how herbivorous animals digest and metabolize grass polysaccharides. Here, we used 16S rDNA, 16S rRNA, metagenomic, and metatranscriptomic sequencing to characterize gut microbial composition, gene potential, and expressed function in pikas from different altitudes. Unlike total bacteria, Oscillospira and Ruminococcus were main active bacterial genera in pika's gut. The metabolic pathways of cellulose and hemicellulose were up-regulated in the middle and high-altitude groups; those genes encoding polysaccharide enzymes were enriched. Notably, the proportion of lignin metabolic genes expressed in pika's gut was the highest, followed by cellulase and hemicellulase genes. According to comparative metagenomics of different animals, the number and relative abundance of cellulase and hemicellulase genes in pika's gut were at a higher level compared with steer, etc. These results indicated that plateau pika obtained sufficient energy from grass-based diet by increasing the expression of related metabolic enzymes.
Collapse
Affiliation(s)
- Xueying Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Xueqian Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuan Qian
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xianxian Mu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
9
|
Wang J, Zhu H, Li H, Xia S, Zhang F, Liu C, Zheng W, Yao W. Metabolic and microbial mechanisms related to the effects of dietary wheat levels on intramuscular fat content in finishing pigs. Meat Sci 2024; 216:109574. [PMID: 38909450 DOI: 10.1016/j.meatsci.2024.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
The current study aimed to investigate the metabolic and microbial mechanisms behind the effects of dietary wheat levels on intramuscular fat (IMF) content in the psoas major muscle (PM) of finishing pigs. Thirty-six barrows were arbitrarily assigned to two groups and fed with diets containing 25% or 55% wheat. Enhancing dietary wheat levels led to low energy states, resulting in reduced IMF content. This coincided with reduced serum glucose and low-density lipoprotein cholesterol levels. The AMP-activated protein kinase α2/sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway may be activated by high-wheat diets, causing downregulation of adipogenesis and lipogenesis genes, and upregulation of lipolysis and gluconeogenesis genes. High-wheat diets decreased relative abundance of Lactobacillus and Coprococcus, whereas increased SMB53 proportion, subsequently decreasing colonic propionate content. Microbial glycolysis/gluconeogenesis, d-glutamine and D-glutamate metabolism, flagellar assembly, and caprolactam degradation were linked to IMF content. Metabolomic analysis indicated that enhancing dietary wheat levels promoted the protein digestion and absorption and affected amino acids and lipid metabolism. Enhancing dietary wheat levels reduced serum glucose and colonic propionate content, coupled with strengthened amino acid metabolism, contributing to the low energy states. Furthermore, alterations in microbial composition and propionate resulted from high-wheat diets were associated with primary bile acid biosynthesis, arachidonic acid metabolism, steroid hormone biosynthesis, and biosynthesis of unsaturated fatty acids, as well as IMF content. Colonic microbiota played a role in reducing IMF content through modulating the propionate-mediated peroxisome proliferators-activated receptor signaling pathway. In conclusion, body energy and gut microbiota balance collectively influenced lipid metabolism.
Collapse
Affiliation(s)
- Jiguang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - He Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haojie Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuangshuang Xia
- Anyou Biotechnology Group Co., Ltd, Suzhou, Jiangsu 215400, China
| | - Fang Zhang
- Anyou Biotechnology Group Co., Ltd, Suzhou, Jiangsu 215400, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd, Suzhou, Jiangsu 215400, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
10
|
Montironi ID, Arsaute S, Roma DA, Cecchini ME, Pinotti A, Mañas F, Bessone FA, de Moreno de LeBlanc A, Alustiza FE, Bellingeri RV, Cariddi LN. Evaluation of oral supplementation of free and nanoencapsulated Minthostachys verticillata essential oil on immunological, biochemical and antioxidants parameters and gut microbiota in weaned piglets. Vet Res Commun 2024; 48:1641-1658. [PMID: 38453821 DOI: 10.1007/s11259-024-10347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Early weaning is an important stressor that impairs the piglet´s health, and essential oils appear as promising candidates to improve it instead of antibiotics. The aim of this study was to evaluate the effect of oral supplementation of free and nanoencapsulated Minthostachys verticillata essential oil (EO and NEO, respectively) on immunological, biochemical and antioxidants parameters as well as on gut microbiota in weaned piglets. EO was extracted by hydrodistillation and nanoencapsulation was performed by high-energy method using Tween 80 and Span 60 as surfactants. EO and NEO were chemically analyzed by gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of both EO and NEO was evaluated on Caco-2 cell line. For in vivo assay, male weaned piglets (age: 28 days, mean initial body weight: 11.63 ± 0.37 kg) were randomly distributed in six groups of six animals each (n = 6) and received orally EO (10.0 mg/kg/day) or NEO (2.5, 5.0 and 10.0 mg/kg/day), named hereinafter as EO-10, NEO-2.5, NEO-5 and NEO-10, for 30 consecutive days. Animals not treated or treated with surfactants mixture were evaluated as control and vehicle control. Subsequently, histological, hematological and biochemical parameters, cytokines production, oxidative markers, CD4+/CD8+ T cells and gut microbiota were evaluated. GC-MS analysis was similar in both EO and NEO. The NEO was more toxic on Caco-2 cells than EO. Oral supplementation of EO-10 or NEO-10 improved growth performance compared to control group NEO-2.5 or NEO-5 (p < 0.05) groups. NEO-2.5, NEO-5 and NEO-10 did not alter the morpho-physiology of digestive organs and decreased malondialdehyde (MDA) levels in liver compared to control (p < 0.05) or EO-10 groups (p < 0.05, p < 0.01). In addition, NEO-10 showed an increase in CD4+/CD8+ T cells ratio (p < 0.001), and induced the highest serum levels of IL-10 (p < 0.01). Serum triglycerides levels were significantly lower in animals treated with EO-10 or NEO-2.5, NEO-5 and NEO-10 compared to control group (p < 0.001). Gut microbiota analysis showed that NEO-10 favor the development of beneficial intestinal microorganisms to improve parameters related to early weaning of piglets. In conclusion, EO and NEO improved parameters altered by early weaning in piglets however, NEO was safer and powerful. Therefore, NEO should be further studied to be applied in swine health.
Collapse
Affiliation(s)
- Ivana D Montironi
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, 5800, Argentina
| | - Sofía Arsaute
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, 5800, Argentina
| | - Dardo A Roma
- Facultad de Agronomía y Veterinaria. Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ciencias Veterinarias (INCIVET), Río Cuarto, Córdoba, 5800, Argentina
| | - María E Cecchini
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, 5800, Argentina
| | - Agustina Pinotti
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Marcos Juárez, Marcos Juárez 2580, Córdoba, Argentina
| | - Fernando Mañas
- Facultad de Agronomía y Veterinaria. Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ciencias Veterinarias (INCIVET), Río Cuarto, Córdoba, 5800, Argentina
| | - Fernando A Bessone
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Marcos Juárez, Marcos Juárez 2580, Córdoba, Argentina
| | - Alejandra de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Fabrisio E Alustiza
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Marcos Juárez, Marcos Juárez 2580, Córdoba, Argentina
| | - Romina V Bellingeri
- Facultad de Agronomía y Veterinaria, Departamento de Anatomía Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Río Cuarto, Córdoba, 5800, Argentina
| | - Laura Noelia Cariddi
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, 5800, Argentina.
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, CP: 5800, Argentina.
| |
Collapse
|
11
|
Hou J, Ji X, Chu X, Shi Z, Wang B, Sun K, Wei H, Song Z, Wen F. Comprehensive lipidomic analysis revealed the effects of fermented Morus alba L. intake on lipid profile in backfat and muscle tissue of Yuxi black pigs. J Anim Physiol Anim Nutr (Berl) 2024; 108:764-777. [PMID: 38305489 DOI: 10.1111/jpn.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Mulberry leaf is a widely used protein feed and is often used as a strategy to reduce feed costs and improve meat quality in the livestock industry. However, to date, there is a lack of research on the improvement of meat quality using mulberry leaves, and the exact mechanisms are not yet known. The results showed that fermented mulberry leaves significantly reduced backfat content but had no significant effect on intramuscular fat (IMF). Lipidomic analysis showed that 98 and 303 differential lipid molecules (p < 0.05) were identified in adipose and muscle tissues, respectively, including triglycerides (TG), phosphatidylcholine, phosphatidylethanolamine, sphingolipids, and especially TG; therefore, we analysed the acyl carbon atom number of TG. The statistical results of acyl with different carbon atom numbers of TG in adipose tissue showed that the acyl group containing 13 carbon atoms (C13) in TG was significantly upregulated, whereas C15, C16, C17, and C23 were significantly downregulated, whereas in muscle tissue, the C12, C19, C23, C25, and C26 in TG were significantly downregulated. Acyl changes in TG were different for different numbers of carbon atoms in different tissues. We found that the correlations of C (14-18) in adipose tissue were higher, but in muscle tissue, the correlations of C (18-26) were higher. Through pathway enrichment analysis, we identified six and four metabolic pathways with the highest contributions of differential lipid metabolites in adipose and muscle tissues respectively. These findings suggest that fermented mulberry leaves improve meat quality mainly by inhibiting TG deposition by downregulating medium- and short-chain fatty acids in backfat tissue and long-chain fatty acids in muscle tissue.
Collapse
Affiliation(s)
- Junjie Hou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiang Ji
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaoran Chu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhuoyan Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Binjie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Kangle Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haibo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhen Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, Henan University of Science and Technology, Luoyang, China
| | - Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
12
|
Hou J, Ji X, Chu X, Wang B, Sun K, Wei H, Zhang Y, Song Z, Wen F. Mulberry Leaf Dietary Supplementation Can Improve the Lipo-Nutritional Quality of Pork and Regulate Gut Microbiota in Pigs: A Comprehensive Multi-Omics Analysis. Animals (Basel) 2024; 14:1233. [PMID: 38672381 PMCID: PMC11047539 DOI: 10.3390/ani14081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Mulberry leaves, a common traditional Chinese medicine, represent a potential nutritional strategy to improve the fat profile, also known as the lipo-nutrition, of pork. However, the effects of mulberry leaves on pork lipo-nutrition and the microorganisms and metabolites in the porcine gut remain unclear. In this study, multi-omics analysis was employed in a Yuxi black pig animal model to explore the possible regulatory mechanism of mulberry leaves on pork quality. Sixty Yuxi black pigs were divided into two groups: the control group (n = 15) was fed a standard diet, and the experimental group (n = 45) was fed a diet supplemented with 8% mulberry leaves. Experiments were performed in three replicates (n = 15 per replicate); the two diets were ensured to be nutritionally balanced, and the feeding period was 120 days. The results showed that pigs receiving the diet supplemented with mulberry leaves had significantly reduced backfat thickness (p < 0.05) and increased intramuscular fat (IMF) content (p < 0.05) compared with pigs receiving the standard diet. Lipidomics analysis showed that mulberry leaves improved the lipid profile composition and increased the proportion of triglycerides (TGs). Interestingly, the IMF content was positively correlated with acyl C18:2 and negatively correlated with C18:1 of differential TGs. In addition, the cecal microbiological analysis showed that mulberry leaves could increase the abundance of bacteria such as UCG-005, Muribaculaceae_norank, Prevotellaceae_NK3B31_group, and Limosilactobacillus. Simultaneously, the relative levels of L-tyrosine-ethyl ester, oleic acid methyl ester, 21-deoxycortisol, N-acetyldihydrosphingosine, and mulberrin were increased. Furthermore, we found that mulberry leaf supplementation significantly increased the mRNA expression of lipoprotein lipase, fatty acid-binding protein 4, and peroxisome proliferators-activated receptor γ in muscle (p < 0.01). Mulberry leaf supplementation significantly increased the mRNA expression of diacylglycerol acyltransferase 1 (p < 0.05) while significantly decreasing the expression of acetyl CoA carboxylase in backfat (p < 0.05). Furthermore, mulberry leaf supplementation significantly upregulated the mRNA expression of hormone-sensitive triglyceride lipase and peroxisome proliferator-activated receptor α (p < 0.05) in backfat. In addition, mulberry leaf supplementation led to increased serum leptin and adiponectin (p < 0.01). Collectively, this omic profile is consistent with an increased ratio of IMF to backfat in the pig model.
Collapse
Affiliation(s)
- Junjie Hou
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Xiang Ji
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Xiaoran Chu
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Binjie Wang
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Kangle Sun
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Haibo Wei
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Yu Zhang
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
| | - Zhen Song
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Fengyun Wen
- College of Animal Scienceand Technology, Henan University of Science and Technology, Luoyang 471003, China; (J.H.)
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
13
|
Niu Y, Chen Y, Liu J, Liu Y, Xiao S, Yang C, Yang T, Huan W. Effect of diets supplemented with coated plant essential oil on the growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Front Vet Sci 2024; 11:1346922. [PMID: 38528870 PMCID: PMC10962761 DOI: 10.3389/fvets.2024.1346922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction This trial was conducted to compare the effect of diets supplemented with plant essential oil (PEO) and coated plant essential oil (CEO) on growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Methods A total of 360 21-day-old weaned piglets were randomly allocated into three groups, namely, CON, PEO, and CEO (basal diets supplemented with 0, 500 mg/kg PEO, and 500 mg/kg CEO, respectively) for a 4-week feeding trial. Results and discussion The results showed that dietary supplementation with CEO improved the average final weight and average daily gain, decreased the diarrhea rate, increased antioxidant enzyme activities, enhanced immunoglobulin concentrations, and decreased concentrations of pro-inflammatory cytokines in the serum of weaned piglets (p < 0.05). In addition, CEO addition increased the fecal concentrations of propionic acid and isovaleric acid of piglets (p < 0.05). Spearman correlation analysis showed that fecal microorganisms at the genus level were closely correlated with the volatile fatty acid concentrations. The present study indicated that PEO and CEO could improve growth performance, enhance immunity, and increase antioxidant capacity by modulating the microbial flora in weaned piglets. Moreover, CEO addition seemed to offer more positive results than of PEO addition.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Yiying Chen
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Jinsong Liu
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Yulan Liu
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Shiping Xiao
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Caimei Yang
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou, Zhejiang, China
| | - Ting Yang
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Yan YQ, Liu M, Xu ZJ, Xu ZJ, Huang YX, Li XM, Chen CJ, Zuo G, Yang JC, Lei XG, Sun LH. Optimum Doses and Forms of Selenium Maintaining Reproductive Health via Regulating Homeostasis of Gut Microbiota and Testicular Redox, Inflammation, Cell Proliferation, and Apoptosis in Roosters. J Nutr 2024; 154:369-380. [PMID: 38122845 DOI: 10.1016/j.tjnut.2023.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND There is a U-shaped relationship between dietary selenium (Se) ingestion and optimal sperm quality. OBJECTIVES This study aimed to investigate the optimal dietary dose and forms of Se for sperm quality of breeder roosters and the relevant mechanisms. METHODS In experiment 1, 18-wk-old Jingbai laying breeder roosters were fed a Se-deficient base diet (BD, 0.06 mg Se/kg), or the BD + 0.1, 0.2, 0.3, 0.4, 0.5, or 1.0 mg Se/kg for 9 wk. In experiment 2, the roosters were fed the BD or the BD + sodium selenite (SeNa), seleno-yeast (SeY), or Se-nanoparticles (SeNPs) at 0.2 mg Se/kg for 9 wk. RESULTS In experiment 1, added dietary 0.2 and 0.3 mg Se/kg led to higher sperm motility and lower sperm mortality than the other groups at weeks 5, 7, and/or 9. Furthermore, added dietary 0.2-0.4 mg Se/kg produced better testicular histology and/or lower testicular 8-hydroxy-deoxyguanosine than the other groups. Moreover, integrated testicular transcriptomic and cecal microbiomic analysis revealed that inflammation, cell proliferation, and apoptosis-related genes and bacteria were dysregulated by Se deficiency or excess. In experiment 2, compared with SeNa, SeNPs slightly increased sperm motility throughout the experiment, whereas SeNPs slightly reduced sperm mortality compared with SeY at week 9. Both SeY and SeNPs decreased malondialdehyde in the serum than those of SeNa, and SeNPs led to higher glutathione peroxidase (GPX) and thioredoxin reductase activities and GPX1 and B-cell lymphoma 2 protein concentrations in the testis compared with SeY and SeNa. CONCLUSIONS The optimal dietary Se dose for reproductive health of breeder roosters is 0.25-0.35 mg Se/kg, and SeNPs displayed better effects on reproductive health than SeNa and SeY in laying breeder roosters. The optimal doses and forms of Se maintain reproductive health of roosters associated with regulation intestinal microbiota homeostasis and/or testicular redox balance, inflammation, cell proliferation, and apoptosis.
Collapse
Affiliation(s)
- Yi-Qin Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zi-Jian Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao-Min Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, China
| | - Chao-Jiang Chen
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, China
| | - Gang Zuo
- Beijing Deyuanshun Biotechnology Co., Ltd., Beijing, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin Gen Lei
- Cornell University, Ithaca, NY, United States.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Wen X, Wan F, Wu Y, Liu Y, Zhong R, Chen L, Zhang H. Caffeic acid modulates intestinal microbiota, alleviates inflammatory response, and enhances barrier function in a piglet model challenged with lipopolysaccharide. J Anim Sci 2024; 102:skae233. [PMID: 39158070 PMCID: PMC11401994 DOI: 10.1093/jas/skae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024] Open
Abstract
Young animals are highly susceptible to intestinal damage due to incomplete intestinal development, making them vulnerable to external stimuli. Weaning stress in piglets, for instance, disrupts the balance of intestinal microbiota and metabolism, triggering intestinal inflammation and resulting in gut damage. Caffeic acid (CA), a plant polyphenol, can potentially improve intestinal health. Here, we evaluated the effects of dietary CA on the intestinal barrier and microbiota using a lipopolysaccharide (LPS)-induced intestinal damage model. Eighteen piglets were divided into three groups: control group (CON), LPS group (LPS), and CA + LPS group (CAL). On the 21st and 28th day, six piglets in each group were administered either LPS (80 μg/kg body weight; Escherichia coli O55:B5) or saline. The results showed that dietary CA improved the intestinal morphology and barrier function, and alleviated the inflammatory response. Moreover, dietary CA also improved the diversity and composition of the intestinal microbiota by increasing Lactobacillus and Terrisporobacter while reducing Romboutsia. Furthermore, the LPS challenge resulted in a decreased abundance of 14 different bile acids and acetate, which were restored to normal levels by dietary CA. Lastly, correlation analysis further revealed the potential relationship between intestinal microbiota, metabolites, and barrier function. These findings suggest that dietary CA could enhance intestinal barrier function and positively influence intestinal microbiota and its metabolites to mitigate intestinal damage in piglets. Consuming foods rich in CA may effectively reduce the incidence of intestinal diseases and promote intestinal health in piglets.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - You Wu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yueping Liu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Yosi F, Lerch F, Vötterl JC, Koger S, Verhovsek D, Metzler-Zebeli BU. Lactation-related dynamics of bacterial and fungal microbiomes in feces of sows and gut colonization in suckling and newly weaned piglets. J Anim Sci 2024; 102:skae321. [PMID: 39460650 PMCID: PMC11604110 DOI: 10.1093/jas/skae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024] Open
Abstract
Changes in the gut microbial composition of the sow during lactation may influence the gut microbial colonization in their offspring, for which less information was available in the literature. This study aimed to assess: 1) the changes that occur in the bacterial and fungal communities in sow feces during the 28-d lactation period as well as in gastric and cecal digesta of piglets until one week after weaning, and 2) bacterial and fungal taxa in cecal digesta of the piglets postweaning that associate with fecal consistency. Aside from sow milk, piglets had access to creep feed from day of life (DoL) 3. Fecal samples from sows for microbial analysis were collected (n = 20) on days postpartum (DPP) 1, 6, 13, 20, and 27, as well as from weaned piglets for fecal scoring on DoL 30 and 34. Gastric and cecal digesta of piglets was collected on DoL3, 7, 14, 21, 28, 31, and 35 (n = 5/sex/DoL). Progressing lactation affected bacterial and fungal communities in sow feces, including 10.3- and 3.0-fold increases in the relative abundances of Lactobacillus from DPP1 to 6 and Kazachstania from DPP1 to 13, respectively (P < 0.001). Although time- and gut-site-related differences existed, bacterial and fungal taxa found in sow feces were also present in gastric and cecal digesta of piglets, which supports their role in gut colonization in neonatal piglets. In piglets, bacterial and fungal alpha-diversities showed certain fluctuations during the suckling period, whereby weaning affected the fungal than bacterial diversity at both gut sites (P < 0.05). At both gut sites, Lactobacillus largely increased from DoL3 to 7 and remained a dominating taxon until DoL35 (P < 0.05). Postweaning, plant-glycan fermenters (e.g., Prevotella-9) seemed to replace milk-glycan fermenting Fusobacterium and Bacteroides (P < 0.05). In gastric and cecal digesta, Kazachstania, Tausonia, Candida, and Blumeria were dominating fungi from DoL3 to 35, with Kazachstania becoming even more dominant postweaning (P < 0.001). Fecal consistency was softer on DoL34 than 30 (P < 0.05). Correlation analysis identified that softer feces were linked to the relative abundances of plant-glycan and proteolytic bacterial taxa including pathobionts (e.g., Clostridium sensu stricto) in the cecum on DoL34. However, the potential association between cecal mold and plant-pathogenic fungi Talaromyces, Mrakia, and Blumeria and softer feces are worth investigating in the future in relation to (gut) health of piglets.
Collapse
Affiliation(s)
- Fitra Yosi
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang 30662, Indonesia
| | - Frederike Lerch
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Julia C Vötterl
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Simone Koger
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Doris Verhovsek
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Barbara U Metzler-Zebeli
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| |
Collapse
|
17
|
Huang B, Khan MZ, Chen Y, Liang H, Kou X, Wang X, Ren W, Wang C, Zhang Z. Yeast polysaccharide supplementation: impact on lactation, growth, immunity, and gut microbiota in Dezhou donkeys. Front Microbiol 2023; 14:1289371. [PMID: 38029159 PMCID: PMC10666639 DOI: 10.3389/fmicb.2023.1289371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The Dezhou donkey, a prominent Chinese breed, is known for its remarkable size, rapid growth, and resilience to tough feeding conditions, and disease resistance. These traits are crucial in meeting the growing demand for Ejiao and donkey meat. Yeast polysaccharide (YPS), a functional polysaccharide complex known for its immune-enhancing and growth-promoting properties in livestock and poultry, remains relatively understudied in donkeys. Objectives This study aimed to investigate the impact of YPS supplementation on lactating and growing Dezhou donkey jennies and foals. Materials and methods Twelve 45-day-old Dezhou donkey foals and their jennies, matched for body weight and age, were randomly allocated to two dietary groups: a control group receiving a basal diet and an experimental group receiving the basal diet supplemented with 10 g/pen of YPS. The experiment was conducted over a 23-day period, during which donkey foals and lactating jennies were co-housed. Results and discussion The findings revealed that YPS supplementation had no adverse effects on milk production or composition in Dezhou donkey jennies but significantly increased feed intake. Additionally, YPS was associated with increased plasma glucose and creatinine concentrations in foals, while tending to decrease alkaline phosphatase, white blood cell count, red blood cell count, and hemoglobin levels (p < 0.10). Immune indices demonstrated that YPS supplementation elevated the levels of immunoglobulin A (IgA) and immunoglobulin G (IgG) in jennies (p < 0.05) and increased complement component C4 concentrations in foals (p < 0.05). Moreover, YPS positively influenced the fecal microbiome, promoting the abundance of beneficial microorganisms such as Lactobacillus and Prevotella in donkey foals and Terriporobacter and Cellulosilyticum in jennies, all of which contribute to enhanced feed digestion. Additionally, YPS induced alterations in the plasma metabolome for both jennies and foals, with a predominant presence of lipids and lipid-like molecules. Notably, YPS increased the concentrations of specific lipid metabolites, including 13,14-Dihydro PGF2a, 2-Isopropylmalic acid, 2,3-Dinor-TXB2, Triterpenoids, Taurocholic acid, and 3b-Allotetrahydrocortisol, all of which are associated with improved animal growth. Conclusion In conclusion, this study suggests that dietary supplementation of YPS enhances feed intake, boosts immunity by increasing immunoglobulin levels, stimulates the growth-promoting gut microbiota (Lactobacillus and Prevotella), and exerts no adverse effects on the metabolism of both Dezhou donkey jennies and foals.
Collapse
Affiliation(s)
- Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, University of Agriculture Dera Ismail Khan, Dera Ismail Khan, Pakistan
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wei Ren
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
18
|
Yu S, Chen J, Zhao Y, Liao X, Chen Q, Xie H, Liu J, Sun J, Zhi S. Association analysis of the gut microbiota in predicting outcomes for patients with acute ischemic stroke and H-type hypertension. Front Neurol 2023; 14:1275460. [PMID: 37954644 PMCID: PMC10639143 DOI: 10.3389/fneur.2023.1275460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction H-type hypertension (HHTN) is a subtype of hypertension that tends to worsen the prognosis of acute ischemic stroke (AIS). Recent studies have highlighted the vital role of gut microbiota in both hypertension and AIS, but there is little available data on the relationship between gut microbiota and the progression of AIS patients with HHTN. In this study, we investigated the microbial signature of AIS patients with HHTN and identified characteristic bacteria as biomarkers for predicting prognosis. Methods AIS patients with HHTN (n = 150) and without HHTN (n = 50) were enrolled. All patients received a modified Rankin Scale (mRS) assessment at 3 months after discharge. Fecal samples were collected from the participants upon admission, including 150 AIS patients with HHTN, 50 AIS patients with non-HHTN, and 90 healthy subjects with HHTN. These samples were analyzed using 16S rRNA sequencing to characterize the bacterial taxa, predict functions, and conduct correlation analysis between specific taxa and clinical features. Results Our results showed that the composition of the gut microbiota in HHTN patients differed significantly from that in non-HHTN patients. The abundance of the genera Bacteroides, Escherichia-Shigella, Lactobacillus, Bifidobacterium, and Prevotella in AIS patients with HHTN was significantly increased compared to AIS patients without HHTN, while the genus Streptococcus, Faecalibacterium, and Klebsiella were significantly decreased. Moreover, Bacteroides, Lactobacillus, Bifidobacterium, and Klebsiella in AIS patients with HHTN were more abundant than healthy subjects with HHTN, while Escherichia-Shigella, Blautia, and Faecalibacterium were less abundant. Moreover, the genera Butyricicoccus, Rothia, and Family_XIII_UCG-001 were negatively connected with the NIHSS score, and the genera Butyricicoccus and Rothia were observed to be negatively associated with the mRS score. The genera Butyricicoccus, Romboutsia, and Terrisporobacter were associated with a poor prognosis, whereas the increase in Butyricimonas and Odoribacter was correlated with good outcomes. Generated by eight genera and clinical indexes, the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve achieved 0.739 to effectively predict the prognosis of AIS patients with HHTN. Conclusion These findings revealed the microbial signature of AIS patients with HHTN and further provided potential microbial biomarkers for the clinical diagnosis of AIS patients with HHTN.
Collapse
Affiliation(s)
- Shicheng Yu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaxin Chen
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiting Zhao
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolan Liao
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qionglei Chen
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaoce Zhi
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
19
|
Ma J, Liu H, Liu M, Xu J, Lu J, Cao S, Li S, Ma S, Wang Z, Zhu X, Li D, Sun H, Shi Y, Cui Y. Effects of Diets Combining Peanut Vine and Whole-Plant Corn Silage on Growth Performance, Meat Quality and Rumen Microbiota of Simmental Crossbred Cattle. Foods 2023; 12:3786. [PMID: 37893679 PMCID: PMC10606686 DOI: 10.3390/foods12203786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Peanut vine is a typical peanut by-product and can be used as a quality roughage resource. Whole-plant corn silage is a commonly used roughage. However, few studies have investigated the effects of diets combining peanut vine and whole-plant corn silage on growth performance, antioxidant capacity, meat quality, rumen fermentation and microbiota of beef cattle. To investigate these effects, eighty Simmental crossbred cattle (body weight, 451.27 ± 10.38 kg) approximately 14 months old were randomly divided into four treatments for a 90-day feeding experiment. A one-way design method was used in this experiment. According to the roughage composition, the cattle were divided into a control treatment of 45% wheat straw and 55% whole-plant corn silage (WG), and three treatments of 25% peanut vine and 75% whole-plant corn silage (LPG), 45% peanut vine and 55% whole-plant corn silage (MPG), and 65% peanut vine and 35% whole-plant corn silage (HPG), and the concentrate was the same for all four treatment diets. The results showed that compared to the WG group, the MPG group experienced an increase in their average daily feed intake of 14%, an average daily gain of 32%, and an increase in SOD activity in the spleen of 33%; in the meat, dry matter content increased by 11%, crude protein by 9%, and ether extract content by 40%; in the rumen, the NH3-N content was reduced by 36%, the relative abundance of Firmicutes increased, and the relative abundance of Bacteroidetes decreased (p < 0.05). These results showed the composition of 45% peanut vine and 55% whole-plant corn silage in the roughage improved growth performance, antioxidant capacity, meat quality, rumen fermentation, and microbiota of beef cattle.
Collapse
Affiliation(s)
- Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Hua Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Jiading Lu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
20
|
Wang T, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Genetic- and Fiber-Diet-Mediated Changes in Antibiotic Resistance Genes in Pig Colon Contents and Feces and Their Driving Factors. Microorganisms 2023; 11:2370. [PMID: 37894028 PMCID: PMC10609257 DOI: 10.3390/microorganisms11102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Comprehensive studies on the effects of genetics and fiber diets on antibiotic resistance genes (ARGs) remain scarce. In this study, we analyzed the profiles of ARGs in colonic contents and fecal samples of Taoyuan, Duroc, and Xiangcun pigs (n = 10) fed at different fiber levels. Through macrogenomic analysis, we identified a total of 850 unique types of ARGs and classified them into 111 drug resistance classes. The abundance of partially drug-resistant ARGs was higher in the colonic contents of local pig breeds under a large-scale farming model. ARGs were found to be widely distributed among a variety of bacteria, predominantly in the phyla Firmicutes, Proteobacteria, and Bacteroidetes. Fiber diets reduce the abundance of ARGs in colonic contents and feces, and mobile genetic elements (MGEs) and short-chain fatty acids (SCFAs) are important drivers in mediating the effect of fiber diets on the abundance of ARGs. In vitro fermentation experiments confirmed that butyric acid significantly reduced the abundance of ARGs. In summary, the results of this study enhanced our understanding of the distribution and composition of ARGs in the colon of different breeds of pigs and revealed that a fiber diet can reduce ARGs in feces through its Butyric acid, providing reference data for environmental safety.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| |
Collapse
|
21
|
Xu J, Liu X, Geng H, Liu R, Li F, Ma J, Liu M, Liu B, Sun H, Ma S, Wang Z, Zhu X, Li D, Wang C, Shi Y, Cui Y. Alfalfa Silage Diet Improves Meat Quality by Remodeling the Intestinal Microbes of Fattening Pigs. Foods 2023; 12:3209. [PMID: 37685141 PMCID: PMC10486512 DOI: 10.3390/foods12173209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Because the demand for pork is increasing, it is crucial to devise efficient and green methods to improve the quality and quantity of meat. This study investigated the improvement in pork quality after the inclusion of alfalfa meal or alfalfa silage in pig diet. Our results indicated that alfalfa silage improved meat quality more effectively in terms of water-holding capacity, drip loss, and marbling score. Besides, an alfalfa silage diet can affect the level of fatty acids and amino acids in pork. Further, alfalfa silage was found to improve meat quality by remodeling intestinal microbiota and altering the level of SCFAs, providing a viable option for improving meat quality through forage.
Collapse
Affiliation(s)
- Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Xiao Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Hongmin Geng
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450002, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Fang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Chengzhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (J.X.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
22
|
Zhang Y, Liu L, Wei C, Wang X, Li R, Xu X, Zhang Y, Geng G, Dang K, Ming Z, Tao X, Xu H, Yan X, Zhang J, Hu J, Li Y. Vitamin K2 supplementation improves impaired glycemic homeostasis and insulin sensitivity for type 2 diabetes through gut microbiome and fecal metabolites. BMC Med 2023; 21:174. [PMID: 37147641 PMCID: PMC10163743 DOI: 10.1186/s12916-023-02880-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND There is insufficient evidence for the ability of vitamin K2 to improve type 2 diabetes mellitus symptoms by regulating gut microbial composition. Herein, we aimed to demonstrate the key role of the gut microbiota in the improvement of impaired glycemic homeostasis and insulin sensitivity by vitamin K2 intervention. METHODS We first performed a 6-month RCT on 60 T2DM participants with or without MK-7 (a natural form of vitamin K2) intervention. In addition, we conducted a transplantation of the MK-7-regulated microbiota in diet-induced obesity mice for 4 weeks. 16S rRNA sequencing, fecal metabolomics, and transcriptomics in both study phases were used to clarify the potential mechanism. RESULTS After MK-7 intervention, we observed notable 13.4%, 28.3%, and 7.4% reductions in fasting serum glucose (P = 0.048), insulin (P = 0.005), and HbA1c levels (P = 0.019) in type 2 diabetes participants and significant glucose tolerance improvement in diet-induced obesity mice (P = 0.005). Moreover, increased concentrations of secondary bile acids (lithocholic and taurodeoxycholic acid) and short-chain fatty acids (acetic acid, butyric acid, and valeric acid) were found in human and mouse feces accompanied by an increased abundance of the genera that are responsible for the biosynthesis of these metabolites. Finally, we found that 4 weeks of fecal microbiota transplantation significantly improved glucose tolerance in diet-induced obesity mice by activating colon bile acid receptors, improving host immune-inflammatory responses, and increasing circulating GLP-1 concentrations. CONCLUSIONS Our gut-derived findings provide evidence for a regulatory role of vitamin K2 on glycemic homeostasis, which may further facilitate the clinical implementation of vitamin K2 intervention for diabetes management. TRIAL REGISTRATION The study was registered at https://www.chictr.org.cn (ChiCTR1800019663).
Collapse
Affiliation(s)
- Yuntao Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Lin Liu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Chunbo Wei
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuanyang Wang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ran Li
- Department of Nutrition, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yingfeng Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Guannan Geng
- Department of Endocrinology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Keke Dang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhu Ming
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinmiao Tao
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Huan Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuemin Yan
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jinxia Hu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| |
Collapse
|