1
|
Liu Y, Yu H, He J, Li J, Peng D. The recombinant spike S1 protein induces injury and inflammation in co-cultures of human alveolar epithelial cells and macrophages. PLoS One 2025; 20:e0318881. [PMID: 39928621 PMCID: PMC11809858 DOI: 10.1371/journal.pone.0318881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/23/2025] [Indexed: 02/12/2025] Open
Abstract
The current lack of a straightforward and convenient modeling approach to simulate the onset of acute lung injury (ALI) has impeded fundamental research and hindered the screening of therapeutic drugs in coronavirus disease 2019 (COVID-19). The co-cultured human pulmonary alveolar epithelial cells (HPAEpics) and alveolar macrophages (AMs) were exposed to the complete medium, three concentrations of recombinant spike S1 protein (0.1, 1, and 10 μg/mL), or lipopolysaccharide (LPS) (10 μg/mL). The cells were harvested at 1, 2, and 3 days post-exposure. Lactate dehydrogenase (LDH) release, and IL-6, TNF-ɑ, and malondialdehyde (MDA) production were quantified and compared. Compared to those exposed to medium, co-cultures of HPAEpics and AMs exposed to a concentration of S1 protein at 10 μg/mL demonstrated significantly increased levels of LDH release (22.9% vs. 9.1%, and 25.7%), IL-6 (129 vs. 74, and 110 pg/mg of protein), and TNF-ɑ (75 vs. 51, and 86 pg/mg of protein) production, and similar to those exposed to LPS. However, no statistically significant differences were observed in MDA production. Compared to those harvested at 1 or 2 days post-exposure, co-cultured cells harvested at 3 days post-exposure exhibited increased levels of LDH release (23.4% vs. 14.9%, or 16.7%), IL-6 (127 vs. 81, or 97 pg/mg of protein) and MDA (5.6 vs. 3.2, or 3.8 nmol/mg of protein) production, but exhibited lower TNF-ɑ (58 vs. 79 pg/mg of protein) production than those harvested at 2 days post-exposure. After 3 days of exposure, co-cultures of HPAEpics and AMs showed significantly increased levels of LDH release (25.3% vs. 18.4%), and MDA production (5.5 vs. 4.3 nmol/mg of protein) compared to HPAEpics monocultures, and increased levels of LDH release (25.3% vs. 13.8%), IL-6 (139 vs. 98 pg/mg of protein) and MDA (5.5 vs. 4.7 nmol/mg of protein) production, and decreased TNF-ɑ (59 vs. 95 pg/mg of protein) production compared to AMs monocultures. Conclusions: The exposure to a concentration of S1 protein at 10 μg/mL in co-cultures of HPAEpics and AMs induced significant injury and inflammation three days post-exposure. This methodology for establishing a COVID-19-associated ALI model may have promising potential applications and value.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Emergency Medicine, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Hong Yu
- Department of Pathology, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jia He
- Department of Emergency Medicine, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jianyin Li
- Department of Internal Medicine, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Denggao Peng
- Department of Emergency Medicine, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Kim E, Khan MS, Shin J, Huang S, Ferrari A, Han D, An E, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. The Long-Term Immunity of a Microneedle Array Patch of a SARS-CoV-2 S1 Protein Subunit Vaccine Irradiated by Gamma Rays in Mice. Vaccines (Basel) 2025; 13:86. [PMID: 39852865 PMCID: PMC11768753 DOI: 10.3390/vaccines13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, stability, and scalability of a dissolved microneedle array patch (MAP) delivering the rS1RS09 subunit vaccine, comprising the SARS-CoV-2 S1 monomer and RS09, a TLR-4 agonist peptide. METHODS The rS1RS09 vaccine was administered via MAP or intramuscular injection in murine models. The immune responses of the MAP with and without gamma irradiation as terminal sterilization were assessed at doses of 5, 15, and 45 µg, alongside neutralizing antibody responses to Wuhan, Delta, and Omicron variants. The long-term storage stability was also evaluated through protein degradation analyses at varying temperatures. RESULTS The rS1RS09 vaccine elicited stronger immune responses and ACE2-binding inhibition than S1 monomer alone or trimer. The MAP delivery induced sgnificantly higher and longer-lasting S1-specific IgG responses for up to 70 weeks compared to intramuscular injections. Robust Th2-prevalent immune responses were generated in all the groups vaccinated via the MAP and significant neutralizing antibodies were elicited at 15 and 45 µg, showing dose-sparing potential. The rS1RS09 in MAP has remained stable with minimal protein degradation for 19 months at room temperature or under refrigeration, regardless of gamma-irradiation. After an additional month of storage at 42 °C, cit showed less than 3% degradation, ompared to over 23% in liquid vaccines Conclusions: Gamma-irradiated MAP-rS1RS09 is a promising platform for stable, scalable vaccine production and distribution, eliminating cold chain logistics. These findings support its potential for mass vaccination efforts, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
3
|
Kim E, Khan MS, Shin J, Huang S, Ferrari A, Han D, An E, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. Long-term Immunity of a Microneedle Array Patch of SARS-CoV-2 S1 Protein Subunit Vaccine Irradiated by Gamma Rays in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620289. [PMID: 39484497 PMCID: PMC11527120 DOI: 10.1101/2024.10.25.620289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
COVID-19 vaccines effectively prevent symptomatic infection and severe disease, including hospitalization and death. However, unequal vaccine distribution during the pandemic, especially in low- and middle-income countries, has led to the emergence of vaccine-resistant strains. This underscores the need for alternative, safe, and thermostable vaccine platforms, such as dissolved microneedle array patches (MAP) delivering a subunit vaccine, which eliminate the need for cold chain and trained healthcare personnel. This study demonstrates that the SARS-CoV-2 S1 monomer with RS09, a TLR-4 agonist peptide, serves as an optimal protein subunit immunogen. This combination stimulates a stronger S1-specific immune response, resulting in binding to the membrane-bound spike on the cell surface and ACE2-binding inhibition, compared to the monomer S1 alone or trimer S1, regardless of RS09. MAP delivery of the rS1RS09 subunit vaccine elicited higher and longer-lasting immunity compared to conventional intramuscular injection. S1-specific IgG levels remained significantly elevated for up to 70 weeks post-administration. Additionally, different doses of 5, 15, and 45 μg of MAP vaccines induced robust and sustained Th2-prevalent immune responses, suggesting a dose-sparing effect and inducing significantly high neutralizing antibodies against the Wuhan, Delta, and Omicron variants at 15 and 45 μ g dose. Moreover, gamma irradiation as a terminal sterilization method did not significantly affect immunogenicity, with irradiated vaccines maintaining comparable efficacy to non-irradiated ones. The stability of MAP vaccines was evaluated after long-term storage at room temperature and refrigeration for 19 months, showing minimal protein degradation. Further, after an additional one-month of storage at elevated temperature (42°C), rS1RS09 in both non-irradiated and irradiated MAP degraded less than 3%, while the liquid subunit vaccine degraded over 23%. Overall, these results indicate that gamma irradiation sterilized MAP-rS1RS09 vaccines maintain stability during extended storage without refrigeration, supporting their potential for mass production and widespread use in global vaccination efforts.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Kim E, Shin J, Ferrari A, Huang S, An E, Han D, Khan MS, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. Fourth dose of microneedle array patch of SARS-CoV-2 S1 protein subunit vaccine elicits robust long-lasting humoral responses in mice. Int Immunopharmacol 2024; 129:111569. [PMID: 38340419 PMCID: PMC11939117 DOI: 10.1016/j.intimp.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic has underscored the pressing need for safe and effective booster vaccines, particularly in considering the emergence of new SARS-CoV-2 variants and addressing vaccine distribution inequalities. Dissolving microneedle array patches (MAP) offer a promising delivery method, enhancing immunogenicity and improving accessibility through the skin's immune potential. In this study, we evaluated a microneedle array patch-based S1 subunit protein COVID-19 vaccine candidate, which comprised a bivalent formulation targeting the Wuhan and Beta variant alongside a monovalent Delta variant spike proteins in a murine model. Notably, the second boost of homologous bivalent MAP-S1(WU + Beta) induced a 15.7-fold increase in IgG endpoint titer, while the third boost of heterologous MAP-S1RS09Delta yielded a more modest 1.6-fold increase. Importantly, this study demonstrated that the administration of four doses of the MAP vaccine induced robust and long-lasting immune responses, persisting for at least 80 weeks. These immune responses encompassed various IgG isotypes and remained statistically significant for one year. Furthermore, neutralizing antibodies against multiple SARS-CoV-2 variants were generated, with comparable responses observed against the Omicron variant. Overall, these findings emphasize the potential of MAP-based vaccines as a promising strategy to combat the evolving landscape of COVID-19 and to deliver a safe and effective booster vaccine worldwide.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Muhammad S Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Thomas W Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Kim E, Khan MS, Ferrari A, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Gambotto A. Second Boost of Omicron SARS-CoV-2 S1 Subunit Vaccine Induced Broad Humoral Immune Responses in Elderly Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578925. [PMID: 38370806 PMCID: PMC10871204 DOI: 10.1101/2024.02.05.578925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Currently approved COVID-19 vaccines prevent symptomatic infection, hospitalization, and death from the disease. However, repeated homologous boosters, while considered a solution for severe forms of the disease caused by new SARS-CoV-2 variants in elderly individuals and immunocompromised patients, cannot provide complete protection against breakthrough infections. This highlights the need for alternative platforms for booster vaccines. In our previous study, we assessed the boost effect of the SARS-CoV-2 Beta S1 recombinant protein subunit vaccine (rS1Beta) in aged mice primed with an adenovirus-based vaccine expressing SARS-CoV-2-S1 (Ad5.S1) via subcutaneous injection or intranasal delivery, which induced robust humoral immune responses (1). In this follow-up study, we demonstrated that a second booster dose of a non-adjuvanted recombinant Omicron (BA.1) S1 subunit vaccine with Toll-like receptor 4 (TLR4) agonist RS09 (rS1RS09OM) was effective in stimulating strong S1-specific immune responses and inducing significantly high neutralizing antibodies against the Wuhan, Delta, and Omicron variants in 100-week-old mice. Importantly, the second booster dose elicits cross-reactive antibody responses, resulting in ACE2 binding inhibition against the spike protein of SARS-CoV-2 variants, including Omicron (BA.1) and its subvariants. Interestingly, the levels of IgG and neutralizing antibodies correlated with the level of ACE2 inhibition in the booster serum samples, although Omicron S1-specific IgG level showed a weaker correlation compared to Wuhan S1-specific IgG level. Furthermore, we compared the immunogenic properties of the rS1 subunit vaccine in young, middle-aged, and elderly mice, resulting in reduced immunogenicity with age, especially an impaired Th1-biased immune response in aged mice. Our findings demonstrate that the new variant of concern (VOC) rS1 subunit vaccine as a second booster has the potential to offer cross-neutralization against a broad range of variants and to improve vaccine effectiveness against newly emerging breakthrough SARS-CoV-2 variants in elderly individuals who were previously primed with the authorized vaccines.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Khan MS, Kim E, Le Hingrat Q, Kleinman A, Ferrari A, Sammartino JC, Percivalle E, Xu C, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Pandrea I, Gambotto A, Apetrei C. Tetravalent SARS-CoV-2 S1 subunit protein vaccination elicits robust humoral and cellular immune responses in SIV-infected rhesus macaque controllers. mBio 2023; 14:e0207023. [PMID: 37830800 PMCID: PMC10653869 DOI: 10.1128/mbio.02070-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The study provides important insights into the immunogenicity and efficacy of a tetravalent protein subunit vaccine candidate against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The vaccine induced both humoral and cellular immune responses in nonhuman primates with controlled SIVagm infection and was able to generate Omicron variant-specific antibodies without specifically vaccinating with Omicron. These findings suggest that the tetravalent composition of the vaccine candidate could provide broad protection against multiple SARS-CoV-2 variants while minimizing the risk of immune escape and the emergence of new variants. Additionally, the use of rhesus macaques with controlled SIVsab infection may better represent vaccine immunogenicity in humans with chronic viral diseases, highlighting the importance of preclinical animal models in vaccine development. Overall, the study provides valuable information for the development and implementation of coronavirus disease 2019 vaccines, particularly for achieving global vaccine equity and addressing emerging variants.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jose C. Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cuiling Xu
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Ivona Pandrea
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|