1
|
Slavokhotova AA, Shelenkov AA, Rogozhin EA. Computational Prediction and Structural Analysis of α-Hairpinins, a Ubiquitous Family of Antimicrobial Peptides, Using the Cysmotif Searcher Pipeline. Antibiotics (Basel) 2024; 13:1019. [PMID: 39596714 PMCID: PMC11591084 DOI: 10.3390/antibiotics13111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND α-Hairpinins are a family of antimicrobial peptides, promising antimicrobial agents, which includes only 12 currently revealed members with proven activity, although their real number is supposed to be much higher. α-Hairpinins are short peptides containing four cysteine residues arranged in a specific Cys-motif. These antimicrobial peptides (AMPs) have a characteristic helix-loop-helix structure with two disulfide bonds. Isolation of α-hairpinins by biochemical methods is cost- and labor-consuming, thus requiring reliable preliminary in silico prediction. METHODS In this study, we developed a special algorithm for the prediction of putative α-hairpinins on the basis of characteristic motifs with four (4C) and six (6C) cysteines deduced from translated plant transcriptome sequences. We integrated this algorithm into the Cysmotif searcher pipeline and then analyzed all transcriptomes available from the One Thousand Plant Transcriptomes project. RESULTS We predicted more than 2000 putative α-hairpinins belonging to various plant sources including algae, mosses, ferns, and true flowering plants. These data make α-hairpinins one of the ubiquitous antimicrobial peptides, being widespread among various plants. The largest numbers of α-hairpinins were revealed in the Papaveraceae family and in Papaver somniferum in particular. CONCLUSIONS By analyzing the primary structure of α-hairpinins, we concluded that more predicted peptides with the 6C motif are likely to have potent antimicrobial activity in comparison to the ones possessing 4C motifs. In addition, we found 30 α-hairpinin precursors containing from two to eight Cys-rich modules. A striking similarity between some α-hairpinin modules belonging to diverse plants was revealed. These data allowed us to assume that the evolution of α-hairpinin precursors possibly involved changing the number of Cys-rich modules, leading to some missing middle and C-terminal modules, in particular.
Collapse
Affiliation(s)
- Anna A. Slavokhotova
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, 117437 Moscow, Russia;
| | - Andrey A. Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, 117437 Moscow, Russia;
- All-Russian Institute for Plant Protection, Podbelskogo Str., 196608 Saint-Petersburg-Pushkin, Russia
| |
Collapse
|
2
|
Nawaz MA, Pamirsky IE, Golokhvast KS. Bioinformatics in Russia: history and present-day landscape. Brief Bioinform 2024; 25:bbae513. [PMID: 39402695 PMCID: PMC11473191 DOI: 10.1093/bib/bbae513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bioinformatics has become an interdisciplinary subject due to its universal role in molecular biology research. The current status of Russia's bioinformatics research in Russia is not known. Here, we review the history of bioinformatics in Russia, present the current landscape, and highlight future directions and challenges. Bioinformatics research in Russia is driven by four major industries: information technology, pharmaceuticals, biotechnology, and agriculture. Over the past three decades, despite a delayed start, the field has gained momentum, especially in protein and nucleic acid research. Dedicated and shared centers for genomics, proteomics, and bioinformatics are active in different regions of Russia. Present-day bioinformatics in Russia is characterized by research issues related to genetics, metagenomics, OMICs, medical informatics, computational biology, environmental informatics, and structural bioinformatics. Notable developments are in the fields of software (tools, algorithms, and pipelines), use of high computation power (e.g. by the Siberian Supercomputer Center), and large-scale sequencing projects (the sequencing of 100 000 human genomes). Government funding is increasing, policies are being changed, and a National Genomic Information Database is being established. An increased focus on eukaryotic genome sequencing, the development of a common place for developers and researchers to share tools and data, and the use of biological modeling, machine learning, and biostatistics are key areas for future focus. Universities and research institutes have started to implement bioinformatics modules. A critical mass of bioinformaticians is essential to catch up with the global pace in the discipline.
Collapse
Affiliation(s)
- Muhammad A Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Centre for Research in the Field of Materials and Technologies, National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
| | - Igor E Pamirsky
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| | - Kirill S Golokhvast
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| |
Collapse
|
3
|
Culver KD, Sadecki PW, Jackson JK, Brown ZA, Hnilica ME, Wu J, Shaw LN, Wommack AJ, Hicks LM. Identification and Characterization of CC-AMP1-like and CC-AMP2-like Peptides in Capsicum spp. J Proteome Res 2024; 23:2948-2960. [PMID: 38367000 PMCID: PMC11296913 DOI: 10.1021/acs.jproteome.3c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Antimicrobial peptides (AMPs) are compounds with a variety of bioactive properties. Especially promising are their antibacterial activities, often toward drug-resistant pathogens. Across different AMP sources, AMPs expressed within plants are relatively underexplored with a limited number of plant AMP families identified. Recently, we identified the novel AMPs CC-AMP1 and CC-AMP2 in ghost pepper plants (Capsicum chinense x frutescens), exerting promising antibacterial activity and not classifying into any known plant AMP family. Herein, AMPs related to CC-AMP1 and CC-AMP2 were identified within both Capsicum annuum and Capsicum baccatum. In silico predictions throughout plants were utilized to illustrate that CC-AMP1-like and CC-AMP2-like peptides belong to two broader AMP families, with three-dimensional structural predictions indicating that CC-AMP1-like peptides comprise a novel subfamily of α-hairpinins. The antibacterial activities of several closely related CC-AMP1-like peptides were compared with a truncated version of CC-AMP1 possessing significantly more activity than the full peptide. This truncated peptide was further characterized to possess broad-spectrum antibacterial activity against clinically relevant ESKAPE pathogens. These findings illustrate the value in continued study of plant AMPs toward characterization of novel AMP families, with CC-AMP1-like peptides possessing promising bioactivity.
Collapse
Affiliation(s)
- Kevin D. Culver
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Jessica K. Jackson
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Zoe A. Brown
- Department of Chemistry, High Point University, High Point, NC, 27268, United States
| | - Megan E. Hnilica
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Jingyun Wu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Lindsey N. Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, NC, 27268, United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| |
Collapse
|
4
|
Sadecki PW, Laws GD, Morgan JJ, Wommack AJ, Nawrot R, Hicks LM. The Greater Celandine: Identification and Characterization of an Antimicrobial Peptide from Chelidonium majus. JOURNAL OF NATURAL PRODUCTS 2024; 87:544-553. [PMID: 38366995 PMCID: PMC10959680 DOI: 10.1021/acs.jnatprod.3c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Chelidonium majus, known as Greater Celandine, is a latex-bearing plant that has been leveraged for its anticancer and antimicrobial properties. Herein, C. majus aerial tissue is mined for the presence of antimicrobial peptides. A highly abundant cysteine-rich peptide with a length of 25 amino acids, deemed CM-AMP1, is characterized through multiple mass spectrometric approaches. Electron-activated dissociation is leveraged to differentiate between isoleucine and leucine residues and complement conventional collision-induced dissociation to gain full sequence coverage of the full-length peptide. CM-AMP1 shares little sequence similarity with any proteins in publicly available databases, highlighting the novelty of its cysteine landscape and core motif. The presence of three disulfide bonds in the native peptide confers proteolytic stability, and antimicrobial activity is greatly decreased upon the alkylation of the cysteine residues. Synthetic variants of CM-AMP1 are used to confirm the activity of the full-length sequence and the core motif. To assess the biological impact, E. coli was grown in a sublethal concentration of CM-AMP1 and quantitative proteomics was used to identify proteins produced by the bacteria under stress, ultimately suggesting a membrane lytic antimicrobial mechanism of action. This study integrates multiple analytical methods for molecular and biological characterization of a unique antimicrobial peptide identified from C. majus.
Collapse
Affiliation(s)
- Patric W Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Garrett D Laws
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Johnathon J Morgan
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Robert Nawrot
- Department of Molecular Virology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań 61-712, Poland
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Ma H, Feng Y, Cao Q, Jia J, Ali M, Shah D, Meyers BC, He H, Zhang Y. Evolution of antimicrobial cysteine-rich peptides in plants. PLANT CELL REPORTS 2023; 42:1517-1527. [PMID: 37378705 DOI: 10.1007/s00299-023-03044-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
KEY MESSAGE We analyzed the evolutionary pattern of cysteine-rich peptides (CRPs) to infer the relationship between CRP copy number and plant ecotype, and the origin of bi-domains CRPs. Plants produce cysteine-rich peptides (CRPs) that have long-lasting broad-spectrum antimicrobial activity to protect themselves from various groups of pathogens. We analyzed 240 plant genomes, ranging from algae to eudicots, and discovered that CRPs are widely distributed in plants. Our comparative genomics results revealed that CRP genes have been amplified through both whole genome and local tandem duplication. The copy number of these genes varied significantly across lineages and was associated with the plant ecotype. This may be due to their resistance to changing pathogenic environments. The conserved and lineage-specific CRP families contribute to diverse antimicrobial activities. Furthermore, we investigated the unique bi-domain CRPs that result from unequal crossover events. Our findings provide a unique evolutionary perspective on CRPs and insights into their antimicrobial and symbiosis characteristics.
Collapse
Affiliation(s)
- Huizhen Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Yong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Qianqian Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Jing Jia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Muhammad Ali
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Dilip Shah
- Donald Danforth Plant Science Center, Saint Louis, MI, 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MI, 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Hai He
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yu Zhang
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Amaranthus hypochondriacus seeds as a rich source of cysteine rich bioactive peptides. Food Chem 2022; 377:131959. [PMID: 34995961 DOI: 10.1016/j.foodchem.2021.131959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022]
Abstract
Amaranthus hypochondriacus is a nutritious alternative grain native to Central and South America. Increased interest in the impact of A. hypochondriacus on the human body has driven characterization of bioactive secondary metabolites. The seeds are known to contain bioactive small molecules but little is known regarding endogenous peptides. Cysteine-rich peptides (CRPs) in foodstuffs are particularly relevant because they are stabilized by disulfide bonds enhancing resistance to digestion. Here, in silico predictions, proteomics, and simulated gastrointestinal digestions are leveraged to identify digestion resistant CRPs within A. hypochondriacus seeds. Thirteen in silico predicted CRPs were detected in a seed extract providing evidence for the translation of five CRP families. Mature forms of six CRPs were characterized via top-down proteomics revealing multiple post-translational modifications. All six peptides demonstrated resistance to simulated gastrointestinal digestion, suggesting that A. hypochondriacus CRPs may exhibit bioactivity after consumption and should be prioritized for further characterization.
Collapse
|
7
|
In silico prediction and mass spectrometric characterization of botanical antimicrobial peptides. Methods Enzymol 2022; 663:157-175. [PMID: 35168787 DOI: 10.1016/bs.mie.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides (AMPs) are promising compounds for the treatment of antibiotic-resistant bacteria and are found across all organisms, including plants. Unlike most antibiotics, AMPs tend to act on more generalized and multiple targets, making development of resistance more difficult. Conventional approaches toward AMP identification include bioactivity-guided fractionation and genome mining. Complementary methods leveraging bioactivity-guided fractionation, cysteine motif-guided in silico AMP prediction, and mass spectrometric approaches can be combined to expand botanical AMP discovery. Herein, we present an integrated workflow which serves to streamline implementation toward a robust botanical AMP discovery pipeline.
Collapse
|
8
|
Moyer TB, Brechbill AM, Hicks LM. Mass Spectrometric Identification of Antimicrobial Peptides from Medicinal Seeds. Molecules 2021; 26:molecules26237304. [PMID: 34885884 PMCID: PMC8659199 DOI: 10.3390/molecules26237304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Traditional medicinal plants contain a variety of bioactive natural products including cysteine-rich (Cys-rich) antimicrobial peptides (AMPs). Cys-rich AMPs are often crosslinked by multiple disulfide bonds which increase their resistance to chemical and enzymatic degradation. However, this class of molecules is relatively underexplored. Herein, in silico analysis predicted 80–100 Cys-rich AMPs per species from three edible traditional medicinal plants: Linum usitatissimum (flax), Trifolium pratense (red clover), and Sesamum indicum (sesame). Bottom-up proteomic analysis of seed peptide extracts revealed direct evidence for the translation of 3–10 Cys-rich AMPs per species, including lipid transfer proteins, defensins, α-hairpinins, and snakins. Negative activity revealed by antibacterial screening highlights the importance of employing a multi-pronged approach for AMP discovery. Further, this study demonstrates that flax, red clover, and sesame are promising sources for further AMP discovery and characterization.
Collapse
|
9
|
Jhong JH, Yao L, Pang Y, Li Z, Chung CR, Wang R, Li S, Li W, Luo M, Ma R, Huang Y, Zhu X, Zhang J, Feng H, Cheng Q, Wang C, Xi K, Wu LC, Chang TH, Horng JT, Zhu L, Chiang YC, Wang Z, Lee TY. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res 2021; 50:D460-D470. [PMID: 34850155 PMCID: PMC8690246 DOI: 10.1093/nar/gkab1080] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
The last 18 months, or more, have seen a profound shift in our global experience, with many of us navigating a once-in-100-year pandemic. To date, COVID-19 remains a life-threatening pandemic with little to no targeted therapeutic recourse. The discovery of novel antiviral agents, such as vaccines and drugs, can provide therapeutic solutions to save human beings from severe infections; however, there is no specifically effective antiviral treatment confirmed for now. Thus, great attention has been paid to the use of natural or artificial antimicrobial peptides (AMPs) as these compounds are widely regarded as promising solutions for the treatment of harmful microorganisms. Given the biological significance of AMPs, it was obvious that there was a significant need for a single platform for identifying and engaging with AMP data. This led to the creation of the dbAMP platform that provides comprehensive information about AMPs and facilitates their investigation and analysis. To date, the dbAMP has accumulated 26 447 AMPs and 2262 antimicrobial proteins from 3044 organisms using both database integration and manual curation of >4579 articles. In addition, dbAMP facilitates the evaluation of AMP structures using I-TASSER for automated protein structure prediction and structure-based functional annotation, providing predictive structure information for clinical drug development. Next-generation sequencing (NGS) and third-generation sequencing have been applied to generate large-scale sequencing reads from various environments, enabling greatly improved analysis of genome structure. In this update, we launch an efficient online tool that can effectively identify AMPs from genome/metagenome and proteome data of all species in a short period. In conclusion, these improvements promote the dbAMP as one of the most abundant and comprehensively annotated resources for AMPs. The updated dbAMP is now freely accessible at http://awi.cuhk.edu.cn/dbAMP.
Collapse
Affiliation(s)
- Jhih-Hua Jhong
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuxuan Pang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhongyan Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Rulan Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Shangfu Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wenshuo Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Mengqi Luo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Renfei Ma
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuqi Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaoning Zhu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiahong Zhang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hexiang Feng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qifan Cheng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chunxuan Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kun Xi
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Li-Ching Wu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 10675, Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ying-Chih Chiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
10
|
Transcriptomic Analysis of Genes Involved in Plant Defense Response to the Cucumber Green Mottle Mosaic Virus Infection. Life (Basel) 2021; 11:life11101064. [PMID: 34685435 PMCID: PMC8541684 DOI: 10.3390/life11101064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022] Open
Abstract
Plants have evolved a complex multilayered defense system to counteract various invading pathogens during their life cycle. In addition to silencing, considered to be a major molecular defense response against viruses, different signaling pathways activated by phytohormones trigger the expression of secondary metabolites and proteins preventing virus entry and propagation. In this study, we explored the response of cucumber plants to one of the global pathogens, cucumber green mottle mosaic virus (CGMMV), which causes severe symptoms on leaves and fruits. The inbred line of Cucumis sativus L., which is highly susceptible to CGMMV, was chosen for inoculation. Transcriptomes of infected plants at the early and late stages of infection were analyzed in comparison with the corresponding transcriptomes of healthy plants using RNA-seq. The changes in the signaling pathways of ethylene and salicylic and jasmonic acids, as well as the differences in silencing response and expression of pathogenesis-related proteins and transcription factors, were revealed. The results show that silencing was strongly suppressed in infected plants, while the salicylic acid and ethylene signaling pathways were induced. The genes encoding pathogenesis-related proteins and the genes involved in the jasmonic acid pathway changed their expression insignificantly. It was also found that WRKY and NAC were the most sensitive to CGMMV infection among the transcription factors detected.
Collapse
|
11
|
Culver KD, Allen JL, Shaw LN, Hicks LM. Too Hot to Handle: Antibacterial Peptides Identified in Ghost Pepper. JOURNAL OF NATURAL PRODUCTS 2021; 84:2200-2208. [PMID: 34445876 PMCID: PMC8600445 DOI: 10.1021/acs.jnatprod.1c00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Capsicum spp. (hot peppers) demonstrate a range of interesting bioactive properties spanning anti-inflammatory, antioxidant, and antimicrobial activities. While several species within the genus are known to produce antimicrobial peptides (AMPs), AMP sequence mining of genomic data indicates this space remains largely unexplored. Herein, in silico AMP predictions were paired with peptidomics to identify novel AMPs from the interspecific hybrid ghost pepper (Capsicum chinense × frutescens). AMP prediction algorithms revealed 115 putative AMPs within the Capsicum chinense genome, of which 14 were identified in the aerial tissue peptidome. PepSAVI-MS, de novo sequencing, and complementary approaches were used to fully molecularly characterize two novel AMPs, CC-AMP1 and CC-AMP2, including elucidation of a pyroglutamic acid post-translational modification of CC-AMP1 and disulfide bond connectivity of both. Both CC-AMP1 and CC-AMP2 have little homology with known AMPs and exhibited low μM antimicrobial activity against Gram-negative bacteria, including Escherichia coli. These findings demonstrate the complementary nature of peptidomics, bioactivity-guided discovery, and bioinformatics-based investigations to characterize plant AMP profiles.
Collapse
Affiliation(s)
- Kevin D. Culver
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessie L. Allen
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Moyer TB, Purvis AL, Wommack AJ, Hicks LM. Proteomic response of Escherichia coli to a membrane lytic and iron chelating truncated Amaranthus tricolor defensin. BMC Microbiol 2021; 21:110. [PMID: 33845758 PMCID: PMC8042948 DOI: 10.1186/s12866-021-02176-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. RESULTS Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. CONCLUSIONS This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Rd. CB#3290, Chapel Hill, NC, 27599, USA
| | | | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Rd. CB#3290, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
13
|
Moyer TB, Allen JL, Shaw LN, Hicks LM. Multiple Classes of Antimicrobial Peptides in Amaranthus tricolor Revealed by Prediction, Proteomics, and Mass Spectrometric Characterization. JOURNAL OF NATURAL PRODUCTS 2021; 84:444-452. [PMID: 33576231 PMCID: PMC8601116 DOI: 10.1021/acs.jnatprod.0c01203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Traditional medicinal plants are rich reservoirs of antimicrobial agents, including antimicrobial peptides (AMPs). Advances in genomic sequencing, in silico AMP predictions, and mass spectrometry-based peptidomics facilitate increasingly high-throughput bioactive peptide discovery. Herein, Amaranthus tricolor aerial tissue was profiled via MS-based proteomics/peptidomics, identifying AMPs predicted in silico. Bottom-up proteomics identified seven novel peptides spanning three AMP classes including lipid transfer proteins, snakins, and a defensin. Characterization via top-down peptidomic analysis of Atr-SN1, Atr-DEF1, and Atr-LTP1 revealed unexpected proteolytic processing and enumerated disulfide bonds. Bioactivity screening of isolated Atr-LTP1 showed activity against the high-risk ESKAPE bacterial pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter cloacae). These results highlight the potential for integrating AMP prediction algorithms with complementary -omics approaches to accelerate characterization of biologically relevant AMP peptidoforms.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jessie L Allen
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Istomina EA, Slezina MP, Kovtun AS, Odintsova TI. In Silico Identification of Gene Families Encoding Cysteine-Rich Peptides in Solanum lycopersicum L. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Slavokhotova AA, Rogozhin EA. Defense Peptides From the α-Hairpinin Family Are Components of Plant Innate Immunity. FRONTIERS IN PLANT SCIENCE 2020; 11:465. [PMID: 32391035 PMCID: PMC7191063 DOI: 10.3389/fpls.2020.00465] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/30/2020] [Indexed: 05/28/2023]
Abstract
Plant immunity represents a sophisticated system, including both basal and inducible mechanisms, to prevent pathogen infection. Antimicrobial peptides (AMPs) are among the innate immunity components playing a key role in effective and rapid response against various pathogens. This review is devoted to a small family of defense peptides called α-hairpinins. The general characters of the family, as well as the individual features of each member, including biological activities, structures of precursor proteins, and spatial structures, are described. Possible applications of α-hairpinin peptides in drug design are discussed.
Collapse
Affiliation(s)
- Anna A. Slavokhotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Eugene A. Rogozhin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- All-Russian Institute of Plant Protection, St. Petersburg-Pushkin, Russia
- Gause Institute of New Antibiotics, Moscow, Russia
| |
Collapse
|
16
|
Shelenkov A, Slavokhotova A, Odintsova T. Predicting Antimicrobial and Other Cysteine-Rich Peptides in 1267 Plant Transcriptomes. Antibiotics (Basel) 2020; 9:antibiotics9020060. [PMID: 32032999 PMCID: PMC7168108 DOI: 10.3390/antibiotics9020060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/02/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of innate immunity in various organisms including bacteria, insects, mammals, and plants. Their mode of action decreases the probability of developing resistance in pathogenic organisms, which makes them a promising object of study. However, molecular biology methods for searching for AMPs are laborious and expensive, especially for plants. Earlier, we developed a computational pipeline for identifying potential AMPs based on the cysteine motifs they usually possess. Since most motifs are too species-specific, a wide-scale screening of novel data is required to maintain the accuracy of searching algorithms. We have performed a search for potential AMPs in 1267 plant transcriptomes using our pipeline. On average, 50–150 peptides were revealed in each transcriptome. The data was verified by a BLASTp search in nr database to confirm peptide functions and by using random nucleotide sequences to estimate the fraction of erroneous predictions. The datasets obtained will be useful both for molecular biologists investigating AMPs in various organisms and for bioinformaticians developing novel algorithms of motif searching in transcriptomic and genomic sequences. The results obtained will represent a good reference point for future investigations in the fields mentioned above.
Collapse
Affiliation(s)
- Andrey Shelenkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow 119991, Russia
- Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya str. 3a, Moscow 111123, Russia
- Correspondence:
| | - Anna Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow 119991, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Tatyana Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow 119991, Russia
| |
Collapse
|
17
|
Matkawala F, Nighojkar A, Kumar A. Antimicrobial Peptides in Plants: Classes, Databases, and Importance. CANADIAN JOURNAL OF BIOTECHNOLOGY 2019. [DOI: 10.24870/cjb.2019-000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|