1
|
Hong KH, Um MY, Ahn J, Ha TY. 6-Gingerol Ameliorates Adiposity and Inflammation in Adipose Tissue in High Fat Diet-Induced Obese Mice: Association with Regulating of Adipokines. Nutrients 2023; 15:3457. [PMID: 37571394 PMCID: PMC10421254 DOI: 10.3390/nu15153457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
We investigated the effects of 6-gingerol on adiposity and obesity-induced inflammation by focusing on the regulation of adipogenesis and adipokines in white adipose tissue (WAT) of diet-induced obese mice. C57BL/6 mice were fed a high-fat diet (HFD) containing 0.05% 6-gingerol for 8 weeks. 6-Gingerol supplementation significantly reduced body weight, WAT mass, serum triglyceride, leptin and insulin levels, and HOMA-IR in HFD-fed mice. Additionally, the size of adipocytes in epididymal fat pads was reduced in HFD-fed mice by 6-gingerol supplementation. 6-Gingerol reduced the mRNA and protein levels of adipogenesis-related transcription factors, such as SREBP-1, PPARγ, and C/EBPα in WAT. Furthermore, 6-gingerol suppressed the expression of lipogenesis-related genes, such as fatty acid synthase and CD36 in WAT. Adiponectin expression was significantly increased, whereas inflammatory adipokines (leptin, resistin, TNF-α, MCP-1, and PAI-1) and the macrophage marker F4/80 were significantly reduced in the WAT of HFD-fed mice by 6-gingerol supplementation. In conclusion, 6-gingerol effectively contributed to the alleviation of adiposity and inflammation in WAT, which is associated with the regulation of adipokines in diet-induced obese mice.
Collapse
Affiliation(s)
- Kyung Hee Hong
- Department of Food Science and Nutrition, Dongseo University, Busan 47011, Republic of Korea;
| | - Min Young Um
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.Y.U.); (J.A.)
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.Y.U.); (J.A.)
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Tae Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.Y.U.); (J.A.)
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Stafeev I, Michurina S, Agareva M, Zubkova E, Sklyanik I, Shestakova E, Gavrilova A, Sineokaya M, Ratner E, Menshikov M, Parfyonova Y, Shestakova M. Visceral mesenchymal stem cells from type 2 diabetes donors activate triglycerides synthesis in healthy adipocytes via metabolites exchange and cytokines secretion. Int J Obes (Lond) 2023:10.1038/s41366-023-01317-1. [PMID: 37100877 DOI: 10.1038/s41366-023-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND In recent years, there has been an increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM). Development of visceral instead of subcutaneous adipose tissue is pathogenic and increases the risk of metabolic abnormalities. We hypothesize that visceral adipocytes and stromal cells are able to deteriorate other fat depots metabolism via secretory mechanisms. METHODS We study the regulatory role of visceral adipose-derived stem cells (vADSC) from donors with obesity and T2DM or normal glucose tolerance (NGT) on healthy subcutaneous ADSC (sADSC) in the Transwell system. Lipid droplets formation during adipogenesis was assessed by confocal microscopy. Cell metabolism was evaluated by 14C-glucose incorporation analysis and western blotting. vADSC secretome was assessed by Milliplex assay. RESULTS We showed that both NGT and T2DM vADSC had mesenchymal phenotype, but expression of CD29 was enhanced, whereas expressions of CD90, CD140b and IGF1R were suppressed in both NGT and T2DM vADSC. Co-differentiation with T2DM vADSC increased lipid droplet size and stimulated accumulation of fatty acids in adipocytes from healthy sADSC. In mature adipocytes T2DM vADSC stimulated triglyceride formation, whereas NGT vADSC activated oxidative metabolism. Secretome of NGT vADSC was pro-inflammatory and pro-angiogenic in comparison with T2DM vADSC. CONCLUSIONS The present study has demonstrated the critical role of secretory interactions between visceral and subcutaneous fat depots both in the level of progenitor and mature cells. Mechanisms of these interactions are related to direct exchange of metabolites and cytokines secretion.
Collapse
Affiliation(s)
- Iurii Stafeev
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia.
| | - Svetlana Michurina
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Margarita Agareva
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Institute of Fine Chemical Technologies named after M.V. Lomonosov, 119571, Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Igor Sklyanik
- Endocrinology Research Centre, 117292, Moscow, Russia
| | | | | | | | - Elizaveta Ratner
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Lomonosov Moscow State University, 119991, Moscow, Russia
| | | |
Collapse
|
3
|
Zhang W, Jia X, Xu Y, Xie Q, Zhu M, Zhao Z, Hao J, Li H, Du J, Liu Y, Liu WH, Ma X, Hung W, Feng H, Li H. Effects of Coix seed extract, Lactobacillus paracasei K56, and their combination on the glycolipid metabolism in obese mice. J Food Sci 2023; 88:1197-1213. [PMID: 36717373 DOI: 10.1111/1750-3841.16474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
Coix seed extract (CSE) and probiotics have been reported to regulate glycolipid metabolism through different modes of action. We tested the effects of CSE, Lactobacillus paracasei K56, and their combination to determine whether they have synergistic effects on glycolipid metabolism of obese mice. We fed male C57BL/6J mice with high-fat diet for 8 weeks to establish an obesity model. The obesity mice were selected and divided into five groups: the model control group and four intervention groups. After 10 weeks of continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower about 2.31-4.41 g, vs. HFD 42.25 g, p < 0.01), and epididymal (lower about 0.58-0.92 g, vs. HFD 2.50 g, p < 0.01) and perirenal fat content (lower about 0.24-0.42 g, vs. HFD 0.88 g, p < 0.05); decreased fasting blood glucose, total cholesterol, triglycerides, and VLDL; and increased HLDL, respiratory exchange ratio, energy expenditure, and amount of exercise performed. K56 + CSE-combined intervention groups were more effective in lowering blood glucose, IL-1β, and TNF-α levels than the CSE and K56 alone interventions. The content of fatty acid synthase and SREBP-1c protein in liver tissue was lower. The combination has synergistic effects on weight control, fat reduction, and blood glucose regulation by improving the chronic inflammatory state and reducing the content of lipid synthesis-related enzymes of obese mice, which can hinder chronic disease progression. PRACTICAL APPLICATION: Coix seed extract can be used in obese people to regulate abnormal glucose and lipid metabolism and delay the development of chronic diseases.
Collapse
Affiliation(s)
- Wei Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yuhan Xu
- School of Public Health, Xiamen University, Xiamen, China
| | - Qiaoling Xie
- School of Public Health, Xiamen University, Xiamen, China
| | - Meizhen Zhu
- School of Public Health, Xiamen University, Xiamen, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haoqiu Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jinrui Du
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Xia Ma
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Weilian Hung
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Hongwei Li
- School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Dong M, Chen H, Wen S, Yuan Y, Yang L, Li Y, Yuan X, Xu D, Zhou L. The Neuronal and Non-Neuronal Pathways of Sodium-Glucose Cotransporter-2 Inhibitor on Body Weight-Loss and Insulin Resistance. Diabetes Metab Syndr Obes 2023; 16:425-435. [PMID: 36820270 PMCID: PMC9938665 DOI: 10.2147/dmso.s399367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
With the emergence of sodium-glucose cotransporter 2 inhibitors (SGLT2i), the treatment of type 2 diabetes mellitus (T2DM) has achieved a new milestone, of which the insulin-independent mechanism could produce weight loss, improve insulin resistance (IR) and exert other protective effects. Besides the well-acknowledged biochemical processes, the dysregulated balance between sympathetic and parasympathetic activity may play a significant role in IR and obesity. Weight loss caused by SGLT-2i could be achieved via activating the liver-brain-adipose neural axis in adipocytes. We previously demonstrated that SGLT-2 are widely expressed in central nervous system (CNS) tissues, and SGLT-2i could inhibit central areas associated with autonomic control through unidentified pathways, indicating that the role of the central sympathetic inhibition of SGLT-2i on blood pressure and weight loss. However, the exact pathway of SGLT2i related to these effects and to what extent it depends on the neural system are not fully understood. The evidence of how SGLT-2i interacts with the nervous system is worth exploring. Therefore, in this review, we will illustrate the potential neurological processes by which SGLT2i improves IR in skeletal muscle, liver, adipose tissue, and other insulin-target organs via the CNS and sympathetic nervous system/parasympathetic nervous system (SNS/PNS).
Collapse
Affiliation(s)
- Meiyuan Dong
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Liling Yang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongxiang Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China, Tel +8613611927616, Email
| |
Collapse
|
5
|
Zyoud SH, Shakhshir M, Abushanab AS, Koni A, Shahwan M, Jairoun AA, Al-Jabi SW. Global research trends on the links between insulin resistance and obesity: a visualization analysis. TRANSLATIONAL MEDICINE COMMUNICATIONS 2022; 7:18. [DOI: 10.1186/s41231-022-00124-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/16/2022] [Indexed: 12/01/2023]
Abstract
AbstractBackgroundObesity increases the chance of developing insulin resistance. Numerous inflammatory markers have been linked to an increased risk of insulin resistance in obese individuals. Therefore, we performed a bibliometric analysis to determine global research activity and current trends in the field of obesity and insulin resistance.MethodsScopus was used between 2002 and 2021 to retrieve publications related to terms related to obesity and insulin resistance. Data were exported to Microsoft Excel. Additionally, we use VOSviewer software to create visualization maps that describe international collaborations and research hotspots.ResultsWe identified 6626 publications, including 5754 journal articles, 498 review articles, and 109 letters to the editor. The most productive countries were the United States (n = 995, 30.11%), followed by China (n = 650, 9.81%), Italy (n = 412, 6.22%) and Spain (n = 386, 5.83%). Previously to 2012, this field was mainly focused on ‘adipocyte dysfunctions that link obesity with insulin resistance”; and ‘relationship between obesity, insulin resistance, and risk of cardiovascular disease’. ‘Supplements improve insulin sensitivity‘, and ‘obesity-induced inflammation and insulin resistance’ were found more recently (after 2014), indicating that research in this field has acquired significant interest and emphasis in recent years.ConclusionsThis is the first bibliometric study to focus on publications related to insulin resistance and obesity at the global level. Our reporting of quantifiable knowledge in this field may be useful in providing evidence and direction for future research, clinical practice, and educational initiatives.
Collapse
|
6
|
Tikhonova IV, Grinevich AA, Tankanag AV, Safronova VG. Skin Microhemodynamics and Mechanisms of Its Regulation in Type 2 Diabetes Mellitus. Biophysics (Nagoya-shi) 2022; 67:647-659. [PMID: 36281313 PMCID: PMC9581453 DOI: 10.1134/s0006350922040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/07/2022] Open
Abstract
The review presents modern ideas about peripheral microhemodynamics, approaches to the ana-lysis of skin blood flow oscillations and their diagnostic significance. Disorders of skin microhemodynamics in type 2 diabetes mellitus (DM) and the possibility of their interpretation from the standpoint of external and internal interactions between systems of skin blood flow regulation, based on a comparison of couplings in normal and pathological conditions, including models of pathologies on animals, are considered. The factors and mechanisms of vasomotor regulation, among them receptors and signaling events in endothelial and smooth muscle cells considered as models of microvessels are discussed. Attention was drawn to the disturbance of Ca2+-dependent regulation of coupling between vascular cells and NO-dependent regulation of vasodilation in diabetes mellitus. The main mechanisms of insulin resistance in type 2 DM are considered to be a defect in the number of insulin receptors and impaired signal transduction from the receptor to phosphatidylinositol-3-kinase and downstream targets. Reactive oxygen species plays an important role in vascular dysfunction in hyperglycemia. It is assumed that the considered molecular and cellular mechanisms of microhemodynamics regulation are involved in the formation of skin blood flow oscillations. Parameters of skin blood microcirculation can be used as diagnostic and prognostic markers for assessing the state of the body.
Collapse
Affiliation(s)
- I. V. Tikhonova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - A. A. Grinevich
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - A. V. Tankanag
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - V. G. Safronova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| |
Collapse
|
7
|
Vorotnikov AV, Popov DV, Makhnovskii PA. Signaling and Gene Expression in Skeletal Muscles in Type 2 Diabetes: Current Results and OMICS Perspectives. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1021-1034. [PMID: 36180992 DOI: 10.1134/s0006297922090139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Skeletal muscles mainly contribute to the emergence of insulin resistance, impaired glucose tolerance and the development of type 2 diabetes. Molecular mechanisms that regulate glucose uptake are diverse, including the insulin-dependent as most important, and others as also significant. They involve a wide range of proteins that control intracellular traffic and exposure of glucose transporters on the cell surface to create an extensive regulatory network. Here, we highlight advantages of the omics approaches to explore the insulin-regulated proteins and genes in human skeletal muscle with varying degrees of metabolic disorders. We discuss methodological aspects of the assessment of metabolic dysregulation and molecular responses of human skeletal muscle to insulin. The known molecular mechanisms of glucose uptake regulation and the first results of phosphoproteomic and transcriptomic studies are reviewed, which unveiled a large-scale array of insulin targets in muscle cells. They demonstrate that a clear depiction of changes that occur during metabolic dysfunction requires systemic and combined analysis at different levels of regulation, including signaling pathways, transcription factors, and gene expression. Such analysis seems promising to explore yet undescribed regulatory mechanisms of glucose uptake by skeletal muscle and identify the key regulators as potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander V Vorotnikov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
- National Medical Research Center of Cardiology, Ministry of Healthcare of the Russian Federation, Moscow, 121552, Russia
| | - Daniil V Popov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pavel A Makhnovskii
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
8
|
Zhang W, Jia X, Xu Y, Xie Q, Zhu M, Zhang H, Zhao Z, Hao J, Li H, Du J, Liu Y, Liu WH, Ma X, Hung W, Feng H, Li H. Effects of Coix Seed Extract, Bifidobacterium BPL1, and Their Combination on the Glycolipid Metabolism in Obese Mice. Front Nutr 2022; 9:939423. [PMID: 35923203 PMCID: PMC9341295 DOI: 10.3389/fnut.2022.939423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Coix seed extract (CSE) and probiotics have been reported to regulate glycolipid metabolism via different modes of action. We tested the effects of CSE, Bifidobacterium BPL1, and their combination to determine their effects on glycolipid metabolism in obese mice. Male C57BL/6J mice were fed a high-fat diet for 8 weeks to establish an obesity model. Obese mice were selected and divided into four groups: the model control group and three intervention groups. After 10 weeks of continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower about 2.31 g, vs. HFD mice 42.23 g) and epididymal (lower about 0.37 g, vs. HFD mice 2.5 g) and perirenal fat content (lower about 0.47 g, vs. HFD mice 0.884 g); decreased fasting blood glucose, total cholesterol, triglycerides, and VLDL; and increased HLDL, respiratory exchange ratio, energy expenditure, and amount of exercise performed. CSE, BPL1 and their combination can effectively control the weight gain in obese mice, reduce fat content, and regulate blood lipids and abnormal blood sugar. These results may be related to reduce the chronic inflammatory states, improve energy metabolism, exercise, relieve insulin sensitivity, and reduce lipid synthesis via the intervention of CSE, BPL1 and their combination. Compared with the single use of CSE alone, the combination of CSE + BPL1 can better exert the regulation function of intestinal flora, and change in the abundance of bacteria that could improve the level of inflammatory factors, such as increasing Bifidobacterium, reducing Lactococcus. Compared with the use of BPL1 alone, the combination of CSE and BPL1 can better regulate pancreatic islet and improve blood sugar. CSE may act directly on body tissues to exert anti-inflammatory effects. BPL1 and CSE + BPL1 may improve the structure and function of the intestinal flora, and reduce tissue inflammation.
Collapse
Affiliation(s)
- Wei Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yuhan Xu
- School of Public Health, Xiamen University, Xiamen, China
| | - Qiaoling Xie
- School of Public Health, Xiamen University, Xiamen, China
| | - Meizhen Zhu
- School of Public Health, Xiamen University, Xiamen, China
| | - Hesong Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haoqiu Li
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jinrui Du
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Xia Ma
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Weilian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Hongwei Li
- School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Baka P, Escolano-Lozano F, Birklein F. Systemic inflammatory biomarkers in painful diabetic neuropathy. J Diabetes Complications 2021; 35:108017. [PMID: 34389235 DOI: 10.1016/j.jdiacomp.2021.108017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/21/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We conducted a systematic review of the literature with meta-analysis to determine whether painful diabetic neuropathy is associated with a specific inflammatory profile. METHODS The study is based on the PRISMA statement for systematic reviews. We performed a search of published studies up until January 2021 in MEDLINE and Web of Science based on heading and free text terms. The search strategy included the phrases: diabetic peripheral neuropathy, painful peripheral neuropathy individually and in combination with the terms: inflammation and inflammatory biomarkers. We screened titles and abstracts and performed data extraction. We also manually searched the article titles in the reference lists of key studies and reviews published in the last 20 years. DATA EXTRACTION Data extracted from the studies included study design, inclusion and exclusion criteria, sample type including serum and plasma, source of the sample including patients with peripheral diabetic neuropathy or patients with painful and painless neuropathy of any etiology. Blood concentrations of all measured cytokines were recorded. Whenever possible we calculated the effect size and confidence interval. Non-human studies were excluded from the meta-analysis. RESULTS Thirteen studies were included in this meta-analysis. The study design was cross-sectional, case control or cohort type studies. Specific inflammatory mediators are significantly higher in painful than in painless diabetic neuropathy as well as in painful neuropathies of any etiology. Markers of inflammation are also increased in those patients with diabetes mellitus, who suffer from peripheral neuropathy in comparison to patients with diabetes mellitus but no signs of peripheral neuropathy. A proinflammatory state may be the common denominator of pain and peripheral neuropathy in patients with diabetes mellitus but the inflammatory profiles seem to differ.
Collapse
Affiliation(s)
- Panoraia Baka
- University Hospital Mainz, Neurology Department, Mainz, Germany.
| | | | - Frank Birklein
- University Hospital Mainz, Neurology Department, Mainz, Germany
| |
Collapse
|
10
|
Behavior Characteristics and Risk for Metabolic Syndrome Among Women in Rural Communities in China. J Cardiovasc Nurs 2021; 37:490-498. [PMID: 34321435 DOI: 10.1097/jcn.0000000000000836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rapid economic growth and lifestyle changes in China have resulted in increased metabolic syndrome (MetS) rates. Few investigators have examined sex-specific risk factors and the role of menopause, stress, and sleep on MetS among women in China. OBJECTIVE In this study, we aimed to identify the risk factors for MetS among women in rural China. METHODS A cross-sectional study design was used, and participants were recruited from rural areas in China. Female participants older than 18 years were eligible to participate. Participants had their weight, height, waist circumference, blood pressure, and fasting blood measured at study sites. They also completed validated questionnaires regarding sociodemographic information and MetS-related health behaviors. RESULTS A total of 646 women were included in this study. The overall prevalence of MetS was 26.2%. The MetS group had a greater number of overweight/obese women than the non-MetS group did. For premenopausal women, a higher income, being overweight/obese, and eating salty/marinated food increased their risk for MetS (odds ratio [OR], 2.56, 4.55, and 3.1, respectively). For postmenopausal women, a low level of education (OR, 0.44) and being overweight/obese (OR, 4.98) increased their risk of MetS. CONCLUSION Almost half of the women in this study were overweight/obese, and many of them did not meet the national recommendations for a healthy lifestyle, increasing their risk for MetS. Developing cultural and behavioral interventions tailored for overweight/obese women is critical in reducing MetS.
Collapse
|
11
|
Vepkhvadze TF, Vorotnikov AV, Popov DV. Electrical Stimulation of Cultured Myotubes in vitro as a Model of Skeletal Muscle Activity: Current State and Future Prospects. BIOCHEMISTRY (MOSCOW) 2021; 86:597-610. [PMID: 33993862 DOI: 10.1134/s0006297921050084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscles comprise more than a third of human body mass and critically contribute to regulation of body metabolism. Chronic inactivity reduces metabolic activity and functional capacity of muscles, leading to metabolic and other disorders, reduced life quality and duration. Cellular models based on progenitor cells isolated from human muscle biopsies and then differentiated into mature fibers in vitro can be used to solve a wide range of experimental tasks. The review discusses the aspects of myogenesis dynamics and regulation, which might be important in the development of an adequate cell model. The main function of skeletal muscle is contraction; therefore, electrical stimulation is important for both successful completion of myogenesis and in vitro modeling of major processes induced in the skeletal muscle by acute or regular physical exercise. The review analyzes the drawbacks of such cellular model and possibilities for its optimization, as well as the prospects for its further application to address fundamental aspects of muscle physiology and biochemistry and explore cellular and molecular mechanisms of metabolic diseases.
Collapse
Affiliation(s)
- Tatiana F Vepkhvadze
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Alexander V Vorotnikov
- National Medical Research Center of Cardiology, Ministry of Healthcare of the Russian Federation, Moscow, 121552, Russia
| | - Daniil V Popov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia. .,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
12
|
Masnikov D, Stafeev I, Michurina S, Zubkova E, Mamontova E, Ratner E, Menshikov M, Parfyonova Y. hTERT-immortalized adipose-derived stem cell line ASC52Telo demonstrates limited potential for adipose biology research. Anal Biochem 2021; 628:114268. [PMID: 34090857 DOI: 10.1016/j.ab.2021.114268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
In the modern world obesity and insulin resistance contribute to a high impact on the structure of mortality. Basic research and pharmacological screenings for the search of new targets and insulin sensitizers require relevant cell models of adipocytes. Today the 3T3-L1 preadipocytes cell line is a widely used mouse-based model for investigation of adipocyte biology. Nonetheless, animal studies cannot be transferred directly in human research and nowadays the search for relevant and renewable cell models of human adipocyte is of undeniable importance. In the present study, we have compared pooled culture of human adipose-derived stem cells (ADSC) with immortalized ADSC cell line ASC52Telo. Both cell types had mesenchymal stem cell phenotype verified by flow cytometry. However, the efficacy of adipogenic differentiation, stimulation of FABP4 and PPARg protein expressions, and glucose uptake stimulation by insulin were reduced for ASC52Telo-derived adipocytes in comparison with ADSC-derived adipocytes. In addition, the analysis of insulin signaling has shown impaired phosphorylation of IRS1 and AS160 in ASC52Telo-derived cells. In summary, we have shown that immortalized cell line of human ADSC ASC52Telo have mesenchymal stem cell phenotype. Nevertheless, ASC52Telo-derived adipocytes demonstrate impaired adipogenesis and insulin sensitivity that are the main properties of healthy adipocytes.
Collapse
Affiliation(s)
- D Masnikov
- Department of Angiogenesis, National Medical Research Centre for Cardiology, Moscow, Russia; Center of Master's Programs, I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - I Stafeev
- Department of Angiogenesis, National Medical Research Centre for Cardiology, Moscow, Russia.
| | - S Michurina
- Department of Angiogenesis, National Medical Research Centre for Cardiology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - E Zubkova
- Department of Angiogenesis, National Medical Research Centre for Cardiology, Moscow, Russia
| | - E Mamontova
- Department of Angiogenesis, National Medical Research Centre for Cardiology, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - E Ratner
- Department of Angiogenesis, National Medical Research Centre for Cardiology, Moscow, Russia
| | - M Menshikov
- Department of Angiogenesis, National Medical Research Centre for Cardiology, Moscow, Russia
| | - Ye Parfyonova
- Department of Angiogenesis, National Medical Research Centre for Cardiology, Moscow, Russia; Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Mamontova ED, Michurina SS, Stafeev IS, Sorkina EL, Sklyanik IA, Koksharova EO, Menshikov MY, Shestakova MV, Parfyonova YV. Direct Effect of the Synthetic Analogue of Glucagon-Like Peptide Type 1, Liraglutide, on Mature Adipocytes Is Realized through Adenylate-Cyclase-Dependent Enhancing of Insulin Sensitivity. BIOCHEMISTRY (MOSCOW) 2021; 86:350-360. [PMID: 33838634 DOI: 10.1134/s000629792103010x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Incretin hormones analogues, including glucagon-like peptide type 1 (GLP-1), exhibit complex glucose-lowering, anorexigenic, and cardioprotective properties. Mechanisms of action of GLP-1 and its analogues are well known for pancreatic β-cells, hepatocytes, and other tissues. Nevertheless, local effects of GLP-1 and its analogues in adipose tissue remain unclear. In the present work effects of the GLP-1 synthetic analogue, liraglutide, on adipogenesis and insulin sensitivity of the 3T3-L1 adipocytes were examined. Enhancement of insulin sensitivity of mature adipocytes by the GLP-1 synthetic analogue liraglutide mediated by adenylate cyclase was demonstrated. The obtained results imply existence of the positive direct insulin-sensitizing effect of liraglutide on mature adipocytes.
Collapse
Affiliation(s)
- Elizaveta D Mamontova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, Moscow, 121552, Russia.,Diabetes Institute, Endocrinology Research Centre, Moscow, 117036, Russia
| | - Svetlana S Michurina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, Moscow, 121552, Russia
| | - Iurii S Stafeev
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, Moscow, 121552, Russia.
| | | | - Igor A Sklyanik
- Diabetes Institute, Endocrinology Research Centre, Moscow, 117036, Russia
| | | | - Mikhail Y Menshikov
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, Moscow, 121552, Russia
| | | | - Yelena V Parfyonova
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, Moscow, 121552, Russia.,Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
14
|
Abdelhaffez AS, Abd El-Aziz EA, Tohamy MB, Ahmed AM. N-acetyl cysteine can blunt metabolic and cardiovascular effects via down-regulation of cardiotrophin-1 in rat model of fructose-induced metabolic syndrome. Arch Physiol Biochem 2021:1-16. [PMID: 33507837 DOI: 10.1080/13813455.2021.1876735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the ability of N-acetyl cysteine (NAC) to alleviate the metabolic disorders in fructose-induced metabolic syndrome (MS) in male rats and to examine its protective effect on aortic and cardiac tissues via its influence on cardiotrophin-1 (CT-1) expression. NAC (20 mg/kg b.w./day) was administered to fructose induced MS animals for 12 weeks. Chronic fructose consumption (20% w/v) increased body weight gain, relative heart weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), insulin resistance (IR), and associated with metabolic alterations. Histological and immunohistochemical examination revealed aortic stiffness and myocardial degeneration and fibrosis together with increased CT-1 expression. Treatment with NAC improved IR, SBP, DBP, and mitigated dyslipidaemia and oxidative stress. Additionally, NAC down-regulated CT-1 expression in the heart and aorta. These findings demonstrated the protective effect of NAC against aortic and myocardial degeneration and fibrosis through down-regulation of CT-1 in fructose induced MS animal model.
Collapse
Affiliation(s)
- Azza S Abdelhaffez
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Ebtihal A Abd El-Aziz
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Maha B Tohamy
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Faculty of Medicine, Department of Pathology, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Mohammad S, Aziz R, Al Mahri S, Malik SS, Haji E, Khan AH, Khatlani TS, Bouchama A. Obesity and COVID-19: what makes obese host so vulnerable? IMMUNITY & AGEING 2021; 18:1. [PMID: 33390183 PMCID: PMC7779330 DOI: 10.1186/s12979-020-00212-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
The disease (COVID-19) novel coronavirus pandemic has so far infected millions resulting in the death of over a million people as of Oct 2020. More than 90% of those infected with COVID-19 show mild or no symptoms but the rest of the infected cases show severe symptoms resulting in significant mortality. Age has emerged as a major factor to predict the severity of the disease and mortality rates are significantly higher in elderly patients. Besides, patients with underlying conditions like Type 2 diabetes, cardiovascular diseases, hypertension, and cancer have an increased risk of severe disease and death due to COVID-19 infection. Obesity has emerged as a novel risk factor for hospitalization and death due to COVID-19. Several independent studies have observed that people with obesity are at a greater risk of severe disease and death due to COVID-19. Here we review the published data related to obesity and overweight to assess the possible risk and outcome in Covid-19 patients based on their body weight. Besides, we explore how the obese host provides a unique microenvironment for disease pathogenesis, resulting in increased severity of the disease and poor outcome.
Collapse
Affiliation(s)
- Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia.
| | - Rafia Aziz
- Government Medical College Baramulla, Baramulla, Kashmir, India
| | - Saeed Al Mahri
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Esraa Haji
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Altaf Husain Khan
- Biostatistics and Bioinformatics Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Tanvir Saleem Khatlani
- Department of Cellular Therapy, Stem Cells Unit, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences--MNGHA, Riyadh, 11426, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
16
|
Stafeev I, Sklyanik I, Mamontova E, Michurina S, Shestakova E, Yah’yaev K, Yurasov A, Masnikov D, Sineokaya M, Ratner E, Vorotnikov A, Menshikov M, Parfyonova Y, Shestakova M. NDRG1 Activity in Fat Depots Is Associated With Type 2 Diabetes and Impaired Incretin Profile in Patients With Morbid Obesity. Front Endocrinol (Lausanne) 2021; 12:777589. [PMID: 34956089 PMCID: PMC8695674 DOI: 10.3389/fendo.2021.777589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We aimed to investigate insulin-, mTOR- and SGK1-dependent signaling basal states in morbidly obese patients' fat. We analyzed the correlation between the signaling activity, carbohydrate metabolism, and incretin profiles of patients. METHODS The omental and subcutaneous fat was obtained in patients with obesity. The omental study included 16 patients with normal glucose tolerance (NGT) and 17 patients with type 2 diabetes mellitus (T2DM); the subcutaneous study included 9 NGT patients and 12 T2DM patients. Insulin resistance was evaluated using the hyperinsulinemic euglycemic clamp test and HOMA-IR index. The oral glucose tolerance test (OGTT) for NGT patients and mixed meal tolerance test (MMTT) for T2DM patients were performed. The levels of incretins (GLP-1, GIP, oxyntomodulin) and glucagon were measured during the tests. Signaling was analyzed by Western blotting in adipose tissue biopsies. RESULTS We have shown equal levels of basal phosphorylation of insulin- and mTOR-dependent signaling in omental fat depot in NGT and T2DM obese patients. Nevertheless, pNDRG1-T346 was decreased in omental fat of T2DM patients. Correlation analysis has shown an inverse correlation of pNDRG1-T346 in omental fat and diabetic phenotype (HbA1c, impaired incretin profile (AUC GLP-1, glucagon)). Moreover, pNDRG1-T346 in subcutaneous fat correlated with impaired incretin levels among obese patients (inverse correlation with AUC glucagon and AUC GIP). CONCLUSIONS According to results of the present study, we hypothesize that phosphorylation of pNDRG1-T346 can be related to impairment in incretin hormone processing. pNDRG1-T346 in adipose tissue may serve as a marker of diabetes-associated impairments of the systemic incretin profile and insulin sensitivity.
Collapse
Affiliation(s)
- Iurii Stafeev
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- *Correspondence: Iurii Stafeev,
| | - Igor Sklyanik
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Elizaveta Mamontova
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana Michurina
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Kamil Yah’yaev
- Surgery Department, Central Clinical Hospital #1 of Open Join Stock Company (OJSC) Russian Railways, Moscow, Russia
| | - Anatoliy Yurasov
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Surgery Department, Central Clinical Hospital #1 of Open Join Stock Company (OJSC) Russian Railways, Moscow, Russia
| | - Denis Masnikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Center of Master’s Programs, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Maria Sineokaya
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Elizaveta Ratner
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Alexander Vorotnikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
| | - Mikhail Menshikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
| | - Yelena Parfyonova
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|