1
|
Imaikina E, Fedorov II, Emekeeva DD, Kazakova EM, Garibova LA, Ivanov MV, Shutkov IA, Nazarov AA, Gorshkov MV, Tarasova IA. Study on the Mechanism of Action of the Pt(IV) Complex with Lonidamine Ligands by Ultrafast Chemical Proteomics. ACS Pharmacol Transl Sci 2025; 8:1106-1115. [PMID: 40242578 PMCID: PMC11997879 DOI: 10.1021/acsptsci.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/26/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Platinum(II) complexes such as cisplatin, among a few others, are well-known anticancer metal-based drugs approved for clinical use. In spite of their wide acceptance, the respective chemotherapy is associated with severe side effects and the ability of tumors to quickly develop resistance. To overcome these drawbacks, the novel strategy is considered, which is based on the use of platinum complexes with bioactive ligands attached to act in synergy with platinum and to further improve its pharmacological properties. Among the recently introduced multiaction prodrugs is the Pt(IV) complex with two lonidamine ligands, the latter selectively inhibiting hexokinase and, thus, glycolysis in cancer cells. While platinum-based multiaction prodrugs exhibit increased levels of activity toward cancer cells and, thus, are considered potent to overcome the resistance to cisplatin, there is a crucial need to uncover their mechanism of action by revealing all possibly affected processes and targets across the whole cellular proteome. These are challenging tasks in proteomics requiring high-throughput analysis of hundreds of samples for just a single drug-to-proteome system. In this work, we performed these analyses for 8-azaguanine and the experimental Pt(IV)-lonidamine complex applied to ovarian cancer cell line A2780 employing both mechanism- and compound-centric ultrafast chemical proteomics approaches. These approaches were based on protein expression analysis and thermal proteome profiling, respectively. Data obtained for the Pt(IV)-lonidamine complex revealed regulation of proteins involved in the glucose metabolic process associated with lonidamine, further supporting the multiaction mechanism of this prodrug action.
Collapse
Affiliation(s)
- Ekaterina
A. Imaikina
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov
Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38 Bld. 2, 119334 Moscow, Russia
| | - Ivan I. Fedorov
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov
Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38 Bld. 2, 119334 Moscow, Russia
| | - Daria D. Emekeeva
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov
Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38 Bld. 2, 119334 Moscow, Russia
| | - Elizaveta M. Kazakova
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov
Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38 Bld. 2, 119334 Moscow, Russia
| | - Leyla A. Garibova
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov
Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38 Bld. 2, 119334 Moscow, Russia
| | - Mark V. Ivanov
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov
Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38 Bld. 2, 119334 Moscow, Russia
| | - Ilya A. Shutkov
- Department
of Chemistry, M.V. Lomonosov State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexey A. Nazarov
- Department
of Chemistry, M.V. Lomonosov State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- National
Research University Higher School of Economics (HSE University), Miasnitskaya Street 20, 101000 Moscow, Russian Federation
| | - Mikhail V. Gorshkov
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov
Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38 Bld. 2, 119334 Moscow, Russia
| | - Irina A. Tarasova
- V.L.
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov
Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38 Bld. 2, 119334 Moscow, Russia
| |
Collapse
|
2
|
Fedorov II, Ivanov MV, Gorshkov MV. Effect of Drug-to-Protein Reaction Kinetics on the Results of Thermal Proteome Profiling. Anal Chem 2025; 97:22-26. [PMID: 39720990 DOI: 10.1021/acs.analchem.4c04313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
In this Letter, a two-term formalism for constructing protein solubility curves in thermal proteome profiling (TPP) is considered, which takes into account the efficiency of the drug-protein binding reaction. When the reaction is incomplete, this results in distortion of the otherwise sigmoidal shape of the curve after drug treatment, which is often observed in experiments. This distortion may be significant enough to disqualify the corresponding protein from the list of drug target candidates, thus negatively affecting the results of TPP data analysis. To further assist this analysis, we also developed the solubility curve simulation software to visualize the discussed effect. Several experimental data sets from recent TPP studies have been reprocessed, and we demonstrate in a few examples that the proposed two-term equation fits correctly the observed protein solubility curves with distorted shapes, also highlighting the previously unrecognized targets.
Collapse
Affiliation(s)
- Ivan I Fedorov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mark V Ivanov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
3
|
Wang S, Zhang Y, Yu R, Chai Y, Liu R, Yu J, Qu Z, Zhang W, Zhuang C. Labeled and Label-Free Target Identifications of Natural Products. J Med Chem 2024; 67:17980-17996. [PMID: 39360958 DOI: 10.1021/acs.jmedchem.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Target identification, employing chemical proteomics, constitutes a continuous challenging endeavor in the drug development of natural products (NPs). Understanding their targets is crucial for deciphering their mechanisms and developing potential probes or drugs. Identifications fall into two main categories: labeled and label-free techniques. Labeled methods use the molecules tagged with markers such as biotin or fluorescent labels to easily detect interactions with target proteins. Thorough structure-activity relationships are essential before labeling to avoid changes in the biological activity or binding specificity. In contrast, label-free technologies identify target proteins without modifying natural products, relying on changes in the stability, thermal properties, or precipitation in the presence or absence of these products. Each approach has its advantages and disadvantages, offering a comprehensive understanding of the mechanisms and therapeutic potential of the NPs. Here, we summarize target identification techniques for natural molecules, highlight case studies of notable NPs, and explore future applications and directions.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruizhi Yu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yue Chai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruyun Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
4
|
Wiest A, Kielkowski P. Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers. Beilstein J Org Chem 2024; 20:2323-2341. [PMID: 39290210 PMCID: PMC11406061 DOI: 10.3762/bjoc.20.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Identification of interactions between proteins and natural products or similar active small molecules is crucial for understanding of their mechanism of action on a molecular level. To search elusive, often labile, and low-abundant conjugates between proteins and active compounds, chemical proteomics introduces a feasible strategy that allows to enrich and detect these conjugates. Recent advances in mass spectrometry techniques and search algorithms provide unprecedented depth of proteome coverage and the possibility to detect desired modified peptides with high sensitivity. The chemical 'linker' connecting an active compound-protein conjugate with a detection tag is the critical component of all chemical proteomic workflows. In this review, we discuss the properties and applications of different chemical proteomics linkers with special focus on their fragmentation releasing diagnostic ions and how these may improve the confidence in identified active compound-peptide conjugates. The application of advanced search options improves the identification rates and may help to identify otherwise difficult to find interactions between active compounds and proteins, which may result from unperturbed conditions, and thus are of high physiological relevance.
Collapse
Affiliation(s)
- Andreas Wiest
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Pavel Kielkowski
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
5
|
Guo D, Dong Y, Li H, Li H, Yang B. Proteomics and digital subtraction angiography approaches reveal CDH18 as a potential target for therapy of moyamoya disease. Biol Direct 2024; 19:76. [PMID: 39238003 PMCID: PMC11378584 DOI: 10.1186/s13062-024-00522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Moyamoya disease, characterized by basal cerebral artery obstruction, was studied for differential protein expression to elucidate its pathogenesis. Proteomic analysis of cerebrospinal fluid from 10 patients, categorized by postoperative angiography into good and poor prognosis groups, revealed 46 differentially expressed proteins. Notably, cadherin 18 (CDH18) was the most significantly upregulated in the good prognosis group. In addition, the expression of cadherin 18 (CDH18) and phenotypic transformation-related proteins were measured by qRT-PCR and western blot. The effects of CDH18 in vascular smooth muscle cells were detected by CCK-8, EdU, transwell and wound healing assays. The overexpression of CDH18 in vascular smooth muscle cells (VSMCs) was found to inhibit proliferation, migration, and phenotypic transformation. These findings suggest CDH18 as a potential therapeutic target in moyamoya disease.
Collapse
Affiliation(s)
- Dong Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Dong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hongbin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX, Wu J. The Art of Finding the Right Drug Target: Emerging Methods and Strategies. Pharmacol Rev 2024; 76:896-914. [PMID: 38866560 PMCID: PMC11334170 DOI: 10.1124/pharmrev.123.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labor-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time, and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and nonsense-mediated mRNA degradation, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the aforementioned contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. SIGNIFICANCE STATEMENT: Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.
Collapse
Affiliation(s)
- Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Yi-Kun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Min Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Debatosh Das
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| |
Collapse
|
7
|
Su J, Yang L, Sun Z, Zhan X. Personalized Drug Therapy: Innovative Concept Guided With Proteoformics. Mol Cell Proteomics 2024; 23:100737. [PMID: 38354979 PMCID: PMC10950891 DOI: 10.1016/j.mcpro.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Personalized medicine can reduce adverse effects, enhance drug efficacy, and optimize treatment outcomes, which represents the essence of personalized medicine in the pharmacy field. Protein drugs are crucial in the field of personalized drug therapy and are currently the mainstay, which possess higher target specificity and biological activity than small-molecule chemical drugs, making them efficient in regulating disease-related biological processes, and have significant potential in the development of personalized drugs. Currently, protein drugs are designed and developed for specific protein targets based on patient-specific protein data. However, due to the rapid development of two-dimensional gel electrophoresis and mass spectrometry, it is now widely recognized that a canonical protein actually includes multiple proteoforms, and the differences between these proteoforms will result in varying responses to drugs. The variation in the effects of different proteoforms can be significant and the impact can even alter the intended benefit of a drug, potentially making it harmful instead of lifesaving. As a result, we propose that protein drugs should shift from being targeted through the lens of protein (proteomics) to being targeted through the lens of proteoform (proteoformics). This will enable the development of personalized protein drugs that are better equipped to meet patients' specific needs and disease characteristics. With further development in the field of proteoformics, individualized drug therapy, especially personalized protein drugs aimed at proteoforms as a drug target, will improve the understanding of disease mechanisms, discovery of new drug targets and signaling pathways, provide a theoretical basis for the development of new drugs, aid doctors in conducting health risk assessments and making more cost-effective targeted prevention strategies conducted by artificial intelligence/machine learning, promote technological innovation, and provide more convenient treatment tailored to individualized patient profile, which will benefit the affected individuals and society at large.
Collapse
Affiliation(s)
- Junwen Su
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lamei Yang
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziran Sun
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
8
|
Cao F, Chu C, Qin JJ, Guan X. Research progress on antitumor mechanisms and molecular targets of Inula sesquiterpene lactones. Chin Med 2023; 18:164. [PMID: 38111074 PMCID: PMC10726648 DOI: 10.1186/s13020-023-00870-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The pharmacological effects of natural product therapy have received sigificant attention, among which terpenoids such as sesquiterpene lactones stand out due to their biological activity and pharmacological potential as anti-tumor drugs. Inula sesquiterpene lactones are a kind of sesquiterpene lactones extracted from Inula species. They have many pharmacological activities such as anti-inflammation, anti-asthma, anti-tumor, neuroprotective and anti-allergic. In recent years, more and more studies have proved that they are important candidate drugs for the treatment of a variety of cancers because of its good anti-tumor activity. In this paper, the structure, structure-activity relationship, antitumor activities, mechanisms and targets of Inula sesquiterpene lactones reported in recent years were reviewed in order to provide clues for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Fei Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chu Chu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Wallin S, Singh S, Borgstahl GEO, Natarajan A. Design, synthesis, and evaluation of a mitoxantrone probe (MXP) for biological studies. Bioorg Med Chem Lett 2023; 94:129465. [PMID: 37669721 PMCID: PMC10528225 DOI: 10.1016/j.bmcl.2023.129465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leukemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG-binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX's ability to modulate protein expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the differential expression across the proteome does not address the direct interaction with potential binding partners. Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the alternate mechanisms that influence MX's cytotoxicity. Here, we describe the design and synthesis of a MX-biotin probe (MXP) and negative control (MXP-NC) that can be used to define MX's cellular targets and expand our understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin beads and western blotting.
Collapse
Affiliation(s)
- Savanna Wallin
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sarbjit Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| | - Amarnath Natarajan
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
10
|
Wallin S, Singh S, Borgstahl GEO, Natarajan A. Design, synthesis, and evaluation of a mitoxantrone probe (MXP) for biological studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536471. [PMID: 37090570 PMCID: PMC10120692 DOI: 10.1101/2023.04.11.536471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leukemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG-binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX's ability to modulate protein expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the differential expression across the proteome does not address the direct interaction with potential binding partners. Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the alternate mechanisms that influence MX's cytotoxicity. Here, we describe the design and synthesis of a MX-biotin probe (MXP) and negative control (MXP-NC) that can be used to define MX's cellular targets and expand our understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin beads and western blotting. Graphical abstract Draft Highlights An 8-step synthesis was used to generate a biotinylated-mitoxantrone probe (MXP).A pulldown of MXP demonstrated selectivity for RAD52, but not Replication Protein A.Western blot confirmed the identity of the isolated protein, RAD52.
Collapse
|