1
|
McCarty TY, Kearney CJ. Human dermal fibroblast senescence in response to single and recurring oxidative stress. FRONTIERS IN AGING 2025; 6:1504977. [PMID: 40225319 PMCID: PMC11985536 DOI: 10.3389/fragi.2025.1504977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Introduction: Aging results in an accumulation of damaged cells, which reduces the health of tissues and their regenerative capabilities. In the skin, there are both internal and external drivers of oxidative stress that result in aging phenotypes. Oxidative stress has been used to model senescence in vitro; however, there has been a lack of research determining whether the severity of oxidative stress correlates with senescent phenotypes. Methods: In this work, we compare cellular and secretory responses to a single (500 μM hydrogen peroxide, 2 hours) or recurring dose of hydrogen peroxide (500 μM hydrogen peroxide, 2 hours + 4 × 300 μM hydrogen peroxide each 48 hours). Senescence induction was studied using markers including cell morphology, senescence-associated-beta-galactosidase, absence of apoptosis, and cell cycle inhibition genes. Next, functional studies of the effects of the signaling of these cells were completed, such as vascular potential, keratinocyte proliferation, and macrophage polarization. Results: Fibroblasts exposed to both single and recurring oxidative stress had increased total cell and nucleic area, increased senescence-associated-beta-galactosidase (SABGAL) expression, and they were able to escape apoptosis - all characteristics of senescent cells. Additionally, cells exposed to recurring oxidative stress expressed increased levels of cell cycle inhibitor genes and decreased expression of collagen-I, -III, and -IV. Cytokine profiling showed that the single stressed cells had a more inflammatory secretory profile. However, in functional assays, the recurring stressed cells had reduced vascular potential, reduced keratinocyte proliferation, and increased IL-1β gene expression in unpolarized and polarized macrophages. Discussion: The described protocol allows for the investigation of the direct effects of single and recurring oxidative stress in fibroblasts and their secretory effects on surrounding healthy cells. These results show that recurringly stressed fibroblasts represent a more intense senescent phenotype, which can be used in in vitro aging studies to understand the severity of senescent responses.
Collapse
Affiliation(s)
| | - Cathal J. Kearney
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
2
|
Poulsen A, Alexdóttir MS, Riis LB, Pehrsson M, Sørensen LT, Krarup PM, Bay-Jensen AC, Karsdal MA, Stidham RW, Burisch J, Mortensen JH, Seidelin JB. Circulating Extracellular Matrix Products as Indicators of Disease Burden and Predictors of Disease Course in Ulcerative Colitis. Inflamm Bowel Dis 2025; 31:751-762. [PMID: 39437199 DOI: 10.1093/ibd/izae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is characterized by recurrent inflammation and challenging disease monitoring, with invasive endoscopy as the primary diagnostic tool despite the inadequacy of standard noninvasive biomarkers. This study evaluates serum extracellular matrix (ECM) fragments, which reflect the remodeling of mucosa and submucosa, as potential indicators of disease burden and treatment efficacy. We aim to determine whether serum ECM levels correlate with the extent and severity and predict treatment response. METHODS We conducted a prospective study comparing serum ECM formation (PRO-C3, PRO-C7, PRO-C11, PRO-C22), turnover (PRO-C4), and degradation markers (C1M, C3M, C4M, C7M) at Weeks 0, 12, and 24 in 49 UC patients and 50 healthy controls measured by enzyme-linked immunosorbent assay. RESULTS ECM biomarkers, notably PRO-C11, differentiated UC patients from controls (area under the curve [AUC] 0.77), and PRO-C3 predicted endoscopic treatment response vs nonresponse (AUC 0.74). C7M separated moderate from severe disease in endoscopy (AUC 0.74) as well as mild from severe disease (AUC 0.84), as did the ratio C7M/PRO-C7 (AUC 0.82). Combining new and conventional markers, including hemoglobin, C-reactive protein, PRO-C3, and PRO-C22, achieved a combined AUC of 0.84 for predicting 24-week endoscopic response, adding index endoscopic activity increased the AUC to 0.92 compared to an AUC of 0.84 for endoscopy alone. CONCLUSIONS Soluble ECM fragments reflect endoscopic disease severity and extent and are also predictive of therapeutic efficacy. They may as well reflect degenerative aspects of UC and may as such be future therapeutic targets aimed at prevention of intestinal damage.
Collapse
Affiliation(s)
- Anja Poulsen
- Digestive Disease Center, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Digestive Diseases, Transplantation and General Surgery, Section for IBD, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | - Lene Buhl Riis
- Department of Pathology, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Tue Sørensen
- Digestive Disease Center, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Peter-Martin Krarup
- Digestive Disease Center, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | | | - Ryan W Stidham
- Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Johan Burisch
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Gastrounit - Medical Section, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | | | - Jakob Benedict Seidelin
- Department of Digestive Diseases, Transplantation and General Surgery, Section for IBD, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
3
|
Kean EA, Adeleke OA. Geriatric drug delivery - barriers, current technologies and the road ahead. J Drug Target 2024; 32:1186-1206. [PMID: 39076049 DOI: 10.1080/1061186x.2024.2386626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The geriatric population encompasses the largest part of the health care system worldwide. Chronic medical conditions are highly prevalent in the elderly, consequently, due to their complex health needs, there is a significant rate of multi-drug therapy. Despite the high numbers of medications prescribed, geriatric patients face several barriers when it comes to successful drug delivery including alterations in cognitive and physical function. The current review highlights the impact of chronic diseases on the ageing population along with how changes in drug pharmacokinetics could impact drug efficacy and safety. Also discussed are applications of administration routes in the geriatric population and complications that could arise. A focus is placed on the traditional and upcoming drug delivery advancements being employed in seniors with a focus addressing obstacles faced by this patient category. Nanomedicines, three-dimensional printing, long-acting formulations, transdermal systems, orally disintegrating tablets, and shape/taste modification technologies are discussed. Several barriers to drug delivery in the elderly have been identified in literature and directions for future studies should focus on addressing these gaps for geriatric drug formulation development including personalised medicine, insights into novel drug delivery systems like nanomedicines, methods for decreasing pill burden and shape/size modifications.ARTICLE HIGHLIGHTSTypically, senior citizens take more medications than any other patient population, yet most drug delivery technologies are not tailored to address the specific cognitive and physical barriers that these individuals encounter.The safety of drug delivery systems in the elderly patients should be prioritised with considerations on changes in pharmacokinetics with age, use of non-toxic excipients, and selecting drugs with minimal off-target side effects.Several commercialised and upcoming drug delivery technologies have begun to address the current limitations that the ageing population faces.Future research should focus on applying novel strategies like 3D printing, personalised medicine, and long-acting formulations to improve drug delivery to elderly patients.
Collapse
Affiliation(s)
- Emma A Kean
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Oluwatoyin A Adeleke
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Yang Q, Yan C, Sun Y, Xie Z, Yang L, Jiang M, Ni J, Chen B, Xu S, Yuan Z, Wu Y, Liu X, Yuan Z, Bai Z. Extracellular Matrix Remodeling Alleviates Memory Deficits in Alzheimer's Disease by Enhancing the Astrocytic Autophagy-Lysosome Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400480. [PMID: 38881515 PMCID: PMC11336928 DOI: 10.1002/advs.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Extracellular matrix (ECM) remodeling is strongly linked to Alzheimer's disease (AD) risk; however, the underlying mechanisms are not fully understood. Here, it is found that the injection of chondroitinase ABC (ChABC), mimicking ECM remodeling, into the medial prefrontal cortex (mPFC) reversed short-term memory loss and reduced amyloid-beta (Aβ) deposition in 5xFAD mice. ECM remodeling also reactivated astrocytes, reduced the levels of aggrecan in Aβ plaques, and enhanced astrocyte recruitment to surrounding plaques. Importantly, ECM remodeling enhanced the autophagy-lysosome pathway in astrocytes, thereby mediating Aβ clearance and alleviating AD pathology. ECM remodeling also promoted Aβ plaque phagocytosis by astrocytes by activating the astrocytic phagocytosis receptor MERTK and promoting astrocytic vesicle circulation. The study identified a cellular mechanism in which ECM remodeling activates the astrocytic autophagy-lysosomal pathway and alleviates AD pathology. Targeting ECM remodeling may represent a potential therapeutic strategy for AD and serve as a reference for the treatment of this disease.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Chengxiang Yan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yahan Sun
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Liang Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Ming Jiang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Beining Chen
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Neurobiology, Interdisciplinary InnoCenter for Organoids, School of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Sen Xu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhaoyue Yuan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yanyan Wu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Xia Liu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zengqiang Yuan
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Zhantao Bai
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| |
Collapse
|
5
|
Calo CJ, Patil T, Palizzi M, Wheeler N, Hind LE. Collagen concentration regulates neutrophil extravasation and migration in response to infection in an endothelium dependent manner. Front Immunol 2024; 15:1405364. [PMID: 39021568 PMCID: PMC11251947 DOI: 10.3389/fimmu.2024.1405364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction As the body's first line of defense against disease and infection, neutrophils must efficiently navigate to sites of inflammation; however, neutrophil dysregulation contributes to the pathogenesis of numerous diseases that leave people susceptible to infections. Many of these diseases are also associated with changes to the protein composition of the extracellular matrix. While it is known that neutrophils and endothelial cells, which play a key role in neutrophil activation, are sensitive to the mechanical and structural properties of the extracellular matrix, our understanding of how protein composition in the matrix affects the neutrophil response to infection is incomplete. Methods To investigate the effects of extracellular matrix composition on the neutrophil response to infection, we used an infection-on-a-chip microfluidic device that replicates a portion of a blood vessel endothelium surrounded by a model extracellular matrix. Model blood vessels were fabricated by seeding human umbilical vein endothelial cells on 2, 4, or 6 mg/mL type I collagen hydrogels. Primary human neutrophils were loaded into the endothelial lumens and stimulated by adding the bacterial pathogen Pseudomonas aeruginosa to the surrounding matrix. Results Collagen concentration did not affect the cell density or barrier function of the endothelial lumens. Upon infectious challenge, we found greater neutrophil extravasation into the 4 mg/mL collagen gels compared to the 6 mg/mL collagen gels. We further found that extravasated neutrophils had the highest migration speed and distance in 2mg/mL gels and that these values decreased with increasing collagen concentration. However, these phenomena were not observed in the absence of an endothelial lumen. Lastly, no differences in the percent of extravasated neutrophils producing reactive oxygen species were observed across the various collagen concentrations. Discussion Our study suggests that neutrophil extravasation and migration in response to an infectious challenge are regulated by collagen concentration in an endothelial cell-dependent manner. The results demonstrate how the mechanical and structural aspects of the tissue microenvironment affect the neutrophil response to infection. Additionally, these findings underscore the importance of developing and using microphysiological systems for studying the regulatory factors that govern the neutrophil response.
Collapse
Affiliation(s)
| | | | | | | | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
6
|
Seifi Z, Khazaei M, Cheraghali D, Rezakhani L. Decellularized tissues as platforms for digestive system cancer models. Heliyon 2024; 10:e31589. [PMID: 38845895 PMCID: PMC11153114 DOI: 10.1016/j.heliyon.2024.e31589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
The extracellular matrix (ECM) is a multifunctional network of macromolecules that regulate various cellular functions and physically support the tissues. Besides physiological conditions, the ECM also changes during pathological conditions such as cancer. As tumor cells proliferate, notable changes occur in the quantity and makeup of the surrounding ECM. Therefore, the role of this noncellular component of tissues in studies of tumor microenvironments should be considered. So far, many attempts have been made to create 2-dimensional (2D) or 3-dimensional (3D) models that can replicate the intricate connections within the tumor microenvironment. Decellularized tissues are proper scaffolds that imitate the complex nature of native ECM. This review aims to summarize 3D models of digestive system cancers based on decellularized ECMs. These ECM-based scaffolds will enable us to study the interactive communication between cells and their surrounding environment which brings new potential for a better understanding of the pathophysiology of cancer.
Collapse
Affiliation(s)
- Zahra Seifi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Danial Cheraghali
- Department of Mechanical Engineering, New Jersey Institute of Technology, NJ, USA
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Cao H, Wang J, Hao Z, Zhao D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front Pharmacol 2024; 15:1398939. [PMID: 38751781 PMCID: PMC11094280 DOI: 10.3389/fphar.2024.1398939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbing or disrupting the regular healing process of a skin wound may result in its progression to a chronic state. Chronic wounds often lead to increased infection because of their long healing time, malnutrition, and insufficient oxygen flow, subsequently affecting wound progression. Gelatin-the main structure of natural collagen-is widely used in biomedical fields because of its low cost, wide availability, biocompatibility, and degradability. However, gelatin may exhibit diverse tailored physical properties and poor antibacterial activity. Research on gelatin-based biomaterials has identified the challenges of improving gelatin's poor antibacterial properties and low mechanical properties. In chronic wounds, gelatin-based biomaterials can promote wound hemostasis, enhance peri-wound antibacterial and anti-inflammatory properties, and promote vascular and epithelial cell regeneration. In this article, we first introduce the natural process of wound healing. Second, we present the role of gelatin-based biomaterials and gelatin as an additive in wound healing. Finally, we present the future implications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Hongwei Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingren Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Danyang Zhao
- Department of emergency Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Manskikh VN. Organ Frame Elements or Free Intercellular Gel-Like Matrix as Necessary Conditions for Building Organ Structures during Regeneration. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:269-278. [PMID: 38622095 DOI: 10.1134/s000629792402007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 04/17/2024]
Abstract
Over the past decades, an unimaginably large number of attempts have been made to restore the structure of mammalian organs after injury by introducing stem cells into them. However, this procedure does not lead to full recovery. At the same time, it is known that complete regeneration (restitution without fibrosis) is possible in organs with proliferating parenchymal cells. An analysis of such models allows to conclude that the most important condition for the repair of histological structures of an organ (in the presence of stem cells) is preservation of the collagen frame structures in it, which serve as "guide rails" for proliferating and differentiating cells. An alternative condition for complete reconstruction of organ structures is the presence of a free "morphogenetic space" containing a gel-like matrix of the embryonic-type connective tissue, which exists during embryonal development of organs in mammals or during complete regeneration in amphibians. Approaches aimed at preserving frame structures or creating a "morphogenetic space" could radically improve the results of organ regeneration using both local and exogenous stem cells.
Collapse
Affiliation(s)
- Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Moreno I, Verma S, Gesteira TF, Coulson-Thomas VJ. Recent advances in age-related meibomian gland dysfunction (ARMGD). Ocul Surf 2023; 30:298-306. [PMID: 37979775 PMCID: PMC11092925 DOI: 10.1016/j.jtos.2023.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Meibomian glands (MGs), located within the tarsal plate of the eyelid, secrete meibum which is the lipid-rich secretion necessary for stabilizing the tear film and preventing tear evaporation. Changes in the quality and quantity of meibum produced causes MG dysfunction (MGD), the leading cause of evaporative dry eye disease (EDED). MGD is an underdiagnosed disease and it is estimated that, in the US, approximately 70 % of the population over 60 have MGD. Three forms of MGD occur based on their meibum secretion: hyposecretory, obstructive, and hypersecretory MGD. The pathophysiology of MGD remains poorly understood, however aging is the primary risk factor. With age, MGs undergo various age-related changes, including decreased acinar basal cell proliferation, hyperkeratinization, MG atrophy, and eventual MG drop-out, leading to age-related MGD (ARMGD). Additionally, studies have suggested that MGs can suffer inflammatory cell infiltration and changes innervation patterns with aging, which could also contribute towards ARMGD. This review focuses on how the aging process affects the MG, and more importantly, how age-related changes to the MG can lead to MG atrophy and MG drop-out, ultimately leading to ARMGD. This review also highlights the most recent developments in potential therapeutic interventions for ARMGD.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India.
| | | | | |
Collapse
|
10
|
Palanissami G, Paul SF. AGEs and RAGE: metabolic and molecular signatures of the glycation-inflammation axis in malignant or metastatic cancers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:812-849. [PMID: 37970208 PMCID: PMC10645465 DOI: 10.37349/etat.2023.00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 11/17/2023] Open
Abstract
From attributing mutations to cancers with the advent of cutting-edge genetic technology in recent decades, to re-searching the age-old theory of intrinsic metabolic shift of cancers (Warburg's glycolysis), the quest for a precise panacea for mainly the metastatic cancers, remains incessant. This review delineates the advanced glycation end product (AGE)-receptor for AGE (RAGE) pathway driven intricate oncogenic cues, budding from the metabolic (glycolytic) reliance of tumour cells, branching into metastatic emergence of malignancies. Strong AGE-RAGE concomitance in metastasis, chemo-resistance and cancer resurgence adversely incite disease progression and patient mortality. At the conjunction of metabolic and metastatic shift of cancers, are the "glycolytically" generated AGEs and AGE-activated RAGE, instigating aberrant molecular pathways, culminating in aggressive malignancies. AGEs as by-products of metabolic insurgence, modify the metabolome, epigenome and microbiome, besides coercing the inter-, intra- and extra-cellular micro-milieu conducive for oncogenic events like epithelial-mesenchymal transition (EMT). AGE-RAGE synergistically elicit ATP surge for surplus energy, autophagy for apoptotic evasion and chemo-resistance, insulin-like growth factor 1 (IGF-1) for meta-inflammation and angiogenesis, high mobility group box-1 (HMGB1) for immune tolerance, S100 proteins for metastasis, and p53 protein attenuation for tumour suppression. AGEs are pronouncedly reported in invasive forms of breast, prostate, colon and pancreatic cancers, higher in patients with cancer than healthy counterparts, and higher in advanced stage than localized phase. Hence, the investigation of person-specific presence of AGEs, soluble RAGE and AGE-activated RAGE can be advocated as impending bio-markers for diagnostic, prognostic and therapeutic purposes, to predict cancer risk in patients with diabetes, obesity, metabolic syndrome as well as general population, to monitor prognosis and metastasis in patients with cancer, and to reckon complications in cancer survivors. Furthermore, clinical reports of exogenous (dietary) and endogenous (internally formed) AGEs in cancer patients, and contemporary clinical trials involving AGE-RAGE axis in cancer are underlined with theranostic implications.
Collapse
Affiliation(s)
- Gowri Palanissami
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| |
Collapse
|