1
|
Sharma V, Singh J, Kumar Y, Kumar A, Venkatesan K, Mukherjee M, Sharma AK. Integrated insights into gene expression dynamics and transcription factor roles in diabetic and diabetic-infectious wound healing using rat model. Life Sci 2025; 368:123508. [PMID: 40015667 DOI: 10.1016/j.lfs.2025.123508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/08/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Diabetic or diabetic infectious wounds pose a global challenge, marked by delayed healing and high amputation/mortality rates. This study of participating transcriptomes and their regulators unveils critical alterations. METHODS Transcriptome data from GEO analyzed DEGs in diabetic foot ulcers vs. controls using RNA-Seq, limma, STRINGdb, Cytoscape, and clusterProfiler for PPI networks and functional enrichment. TRRUST database was used to predict transcriptional factors (TFs). Adverse molecular pathology in different models of wounds (non-diabetic, acute diabetic, diabetic infectious wounds) was validated by RT-PCR, Western blotting, oxidative stress markers, cytokines, and histological analysis. RESULTS RNA-Seq dataset 'GSE199939' was analyzed after normalization to identify DEGs (total 47 DEG, 31 upregulated, 16 downregulated) in diabetic wound healing using limma. PPI networks revealed seven hub genes which were further processed for functional enrichment and highlighted oxidative stress, ECM remodeling, AGE-RAGE, and IL-17 signaling in diabetic wound pathology. Additionally, 17 key TFs were identified as hub gene regulators. The healing rate was significantly impaired in diabetic wounds, with delayed contraction, elevated pro-inflammatory cytokines, oxidative stress, reduced anti-inflammatory cytokines, antioxidants, angiogenesis, collagen deposition, and re-epithelialization. Further, RT-PCR and Western blot analysis validated the expression of target genes including the overexpression of HSPA1B, FOS, and down-expression of SOD2, COL1A1, and CCL2, whereas TFs including upregulation of RELA, NFKB1, STAT3, and downregulation of SP1 and JUN in diabetic and diabetic infectious wounds. CONCLUSION Molecular analyses reveal disrupted oxidative stress, ECM remodeling, and inflammatory signaling in diabetic and diabetic infectious, emphasizing impaired healing dynamics and identifying therapeutic targets.
Collapse
Affiliation(s)
- Vikash Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana- 122413, India; Amity Institute of Biotechnology, Amity University, Gurugram, Haryana- 122413, India
| | - Jitender Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana- 122413, India
| | - Yash Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana- 122413, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana- 122413, India
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana- 122413, India.
| |
Collapse
|
2
|
Nueraihemaiti N, Dilimulati D, Baishan A, Hailati S, Maihemuti N, Aikebaier A, Paerhati Y, Zhou W. Shared Genomic Features Between Lung Adenocarcinoma and Type 2 Diabetes: A Bioinformatics Study. BIOLOGY 2025; 14:331. [PMID: 40282196 PMCID: PMC12025072 DOI: 10.3390/biology14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a common histopathological variant of non-small cell lung cancer. Individuals with type 2 diabetes (T2DM) face an elevated risk of developing LUAD. We examined the common genomic characteristics between LUAD and T2DM through bioinformatics analysis. METHODS We acquired the GSE40791, GSE25724, GSE10072, and GSE71416 datasets. Differentially expressed genes (DEGs) were identified through R software, particularly its version 4.1.3 and analyzed via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Subsequently, we analyzed the relationship between immune cell infiltration and DEGs. we constructed a protein-protein interaction network using STRING and visualized it with Cytoscape. Moreover, gene modules were identified utilizing the MCODE plugin, and hub genes were selected through the CytoHubba plugin. Additionally, we evaluated the predictive significance of hub genes using receiver operating characteristic curves and identified the final central hub genes. Finally, we forecasted the regulatory networks of miRNA and transcription factors for the central hub genes. RESULTS A total of 748 DEGs were identified. Analysis of immune infiltration showed a notable accumulation of effector-memory CD8 T cells, T follicular helper cells, type 1 T helper cells, activated B cells, natural killer cells, macrophages, and neutrophils in both LUAD and T2DM. Moreover, these DEGs were predominantly enriched in immune-related pathways, including the positive regulation of I-κB kinase/NF-κB signaling, positive regulation of immunoglobulin production, cellular response to interleukin-7, and cellular response to interleukin-4. The TGF-β signaling pathway was significantly important among them. Additionally, seven hub genes were identified, including ATR, RFC4, MCM2, NUP155, NUP107, NUP85, and NUP37. Among them, ATR, RFC4, and MCM2 were identified as pivotal hub genes. Additionally, hsa-mir147a, hsa-mir16-5p, and hsa-mir-1-3p were associated with LUAD and T2DM. SP1 (specific protein 1) and KDM5A (lysine-specific demethylase 5A) regulated MCM2, ATR, and RFC4. CONCLUSIONS Our study elucidates the common mechanisms of immune response, TGF-β signaling pathway, and natural killer cells in LUAD and T2DM, and identifies ATR, RFC4, and MCM2 as key potential biomarkers and therapeutic targets for the comorbidity of these two conditions.
Collapse
Affiliation(s)
- Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Alhar Baishan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Nulibiya Maihemuti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Alifeiye Aikebaier
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Yipaerguli Paerhati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Wenting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (N.N.); (D.D.); (A.B.); (S.H.); (N.M.); (A.A.); (Y.P.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
3
|
Kim Y, Ghil S. Negative regulation of cannabinoid receptor 2‑induced tumorigenic effect by sphingosine‑1‑phosphate receptor 5 activation. Oncol Rep 2025; 53:41. [PMID: 39918009 DOI: 10.3892/or.2025.8874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 05/08/2025] Open
Abstract
G protein‑coupled receptors (GPCR), also known as seven‑transmembrane proteins, serve a role in transmitting extracellular information into the cellular environment. Type 2 cannabinoid receptors (CB2) and type 5 sphingosine‑1‑phosphate receptor (S1P5) are GPCRs that are activated by biolipids and involved in tumor progression in various cancer types. At present, effects of crosstalk between CB2 and S1P5 receptors on tumor cell proliferation and migration in gliomas are not fully understood. The present study screened S1Ps for potential interactions with CB2 using bioluminescence resonance energy transfer analysis. S1P5 interacted strongly and specifically with CB2. 293T cells were transfected with CB2 tagged with Venus and S1P5 tagged with mCherry to investigate the cellular localization of both receptors. After 24 h, Confocal microscopy analysis revealed that, in the absence of agonists, both receptors were predominantly localized at the plasma membrane. Notably, both receptors were co‑internalized from the membrane to the cytoplasm upon individual and combined activation. The effects of co‑activation of both receptors on tumor progression were investigated using U‑87 MG, the human glioblastoma cell line. Activation of CB2 induced an increase in cell migration and proliferation, which were downregulated following the co‑activation of S1P5. Furthermore, activation of S1P5 significantly attenuated the upregulation of tumor progression‑related genes, including zinc finger protein 91, activating transcription factor 3, Ki67, basic transcription factor 3, and p21, induced by CB2 activation. This suggests that S1P5 exerts a negative regulatory effect on CB2‑mediated tumor progression. The present findings provide evidence of the crosstalk between CB2 and S1P5.
Collapse
MESH Headings
- Humans
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/agonists
- Cell Proliferation
- Cell Movement/drug effects
- Sphingosine-1-Phosphate Receptors/metabolism
- Cell Line, Tumor
- HEK293 Cells
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Glioblastoma/genetics
- Gene Expression Regulation, Neoplastic
- Receptors, Lysosphingolipid/metabolism
- Receptors, Lysosphingolipid/genetics
- Carcinogenesis/genetics
Collapse
Affiliation(s)
- Yuna Kim
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| |
Collapse
|
4
|
Bi R, Pan LN, Dai H, Sun C, Li C, Lin HJ, Xie LP, Ma HX, Li L, Xie H, Guo K, Hou CH, Yao YG, Chen LN, Zheng P. Epigenetic characterization of adult rhesus monkey spermatogonial stem cells identifies key regulators of stem cell homeostasis. Nucleic Acids Res 2024; 52:13644-13664. [PMID: 39535033 DOI: 10.1093/nar/gkae1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play crucial roles in the preservation of male fertility. However, successful ex vivo expansion of authentic human SSCs remains elusive due to the inadequate understanding of SSC homeostasis regulation. Using rhesus monkeys (Macaca mulatta) as a representative model, we characterized SSCs and progenitor subsets through single-cell RNA sequencing using a cell-specific network approach. We also profiled chromatin status and major histone modifications (H3K4me1, H3K4me3, H3K27ac, H3K27me3 and H3K9me3), and subsequently mapped promoters and active enhancers in TSPAN33+ putative SSCs. Comparing the epigenetic changes between fresh TSPAN33+ cells and cultured TSPAN33+ cells (resembling progenitors), we identified the regulatory elements with higher activity in SSCs, and the potential transcription factors and signaling pathways implicated in SSC regulation. Specifically, TGF-β signaling is activated in monkey putative SSCs. We provided evidence supporting its role in promoting self-renewal of monkey SSCs in culture. Overall, this study outlines the epigenetic landscapes of monkey SSCs and provides clues for optimization of the culture condition for primate SSCs expansion.
Collapse
Affiliation(s)
- Rui Bi
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
| | - Lin-Nuo Pan
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, No. 320 Yue Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Hao Dai
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, No. 320 Yue Yang Road, Shanghai 200031, China
| | - Chunli Sun
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Cong Li
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Hui-Juan Lin
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
| | - Lan-Ping Xie
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Huai-Xiao Ma
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
| | - Lin Li
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Heng Xie
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Kun Guo
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Chun-Hui Hou
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Yong-Gang Yao
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Luo-Nan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, No. 320 Yue Yang Road, Shanghai 200031, China
- Key Laboratory of Systems Biology, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 1 Xiangshan Branch Lane, Xihu District, Hangzhou 310024, China
| | - Ping Zheng
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| |
Collapse
|
5
|
Linazi G, Maimaiti A, Abulaiti Z, Shi H, Zhou Z, Aisa MY, Kang Y, Abulimiti A, Dilimulati X, Zhang T, Wusiman P, Wang Z, Abulaiti A. Prognostic value of anoikis-related genes revealed using multi-omics analysis and machine learning based on lower-grade glioma features and tumor immune microenvironment. Heliyon 2024; 10:e36989. [PMID: 39286119 PMCID: PMC11402926 DOI: 10.1016/j.heliyon.2024.e36989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Background The investigation explores the involvement of anoikis-related genes (ARGs) in lower-grade glioma (LGG), seeking to provide fresh insights into the disease's underlying mechanisms and to identify potential targets for therapy. Methods We applied unsupervised clustering techniques to categorize LGG patients into distinct molecular subtypes based on ARGs with prognostic significance. Additionally, various machine learning algorithms were employed to pinpoint genes most strongly correlated with patient outcomes, which were then used to develop and assess risk profiles. Results Our analysis identified two distinct molecular subtypes of LGG, each with significantly different prognoses. Patients in Cluster 2 had a median survival of 2.036 years, markedly shorter than the 7.994 years observed in Cluster 1 (P < 0.001). We also constructed a six-gene ARG signature that efficiently classified patients into two risk categories, showing median survival durations of 4.084 years for the high-risk group and 10.304 years for the low-risk group (P < 0.001). Significantly, the immune profiles, tumor mutation characteristics, and drug sensitivity varied greatly among these risk groups. The high-risk group was characterized by a "cold" tumor microenvironment (TME), a lower IDH1 mutation rate (61.7 % vs. 91.4 %), a higher TP53 mutation rate (53.7 % vs. 38.9 %), and greater sensitivity to targeted therapies such as QS11 and PF-562271. Furthermore, our nomogram, integrating risk scores with clinicopathological features, demonstrated strong predictive accuracy for clinical outcomes in LGG patients, with an AUC of 0.903 for the first year. The robustness of this prognostic model was further validated through internal cross-validation and across three external cohorts. Conclusions The evidence from our research suggests that ARGs could potentially serve as reliable indicators for evaluating immunotherapy effectiveness and forecasting clinical results in patients with LGG.
Collapse
Affiliation(s)
- Gu Linazi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Zulihuma Abulaiti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Hui Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Zexin Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Mizhati Yimiti Aisa
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Yali Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Ayguzaili Abulimiti
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Xierzhati Dilimulati
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Tiecheng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Patiman Wusiman
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| |
Collapse
|
6
|
Prince EW, Apps JR, Jeang J, Chee K, Medlin S, Jackson EM, Dudley R, Limbrick D, Naftel R, Johnston J, Feldstein N, Prolo LM, Ginn K, Niazi T, Smith A, Kilburn L, Chern J, Leonard J, Lam S, Hersh DS, Gonzalez-Meljem JM, Amani V, Donson AM, Mitra SS, Bandopadhayay P, Martinez-Barbera JP, Hankinson TC. Unraveling the complexity of the senescence-associated secretory phenotype in adamantinomatous craniopharyngioma using multimodal machine learning analysis. Neuro Oncol 2024; 26:1109-1123. [PMID: 38334125 PMCID: PMC11145462 DOI: 10.1093/neuonc/noae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Cellular senescence can have positive and negative effects on the body, including aiding in damage repair and facilitating tumor growth. Adamantinomatous craniopharyngioma (ACP), the most common pediatric sellar/suprasellar brain tumor, poses significant treatment challenges. Recent studies suggest that senescent cells in ACP tumors may contribute to tumor growth and invasion by releasing a senesecence-associated secretory phenotype. However, a detailed analysis of these characteristics has yet to be completed. METHODS We analyzed primary tissue samples from ACP patients using single-cell, single-nuclei, and spatial RNA sequencing. We performed various analyses, including gene expression clustering, inferred senescence cells from gene expression, and conducted cytokine signaling inference. We utilized LASSO to select essential gene expression pathways associated with senescence. Finally, we validated our findings through immunostaining. RESULTS We observed significant diversity in gene expression and tissue structure. Key factors such as NFKB, RELA, and SP1 are essential in regulating gene expression, while senescence markers are present throughout the tissue. SPP1 is the most significant cytokine signaling network among ACP cells, while the Wnt signaling pathway predominantly occurs between epithelial and glial cells. Our research has identified links between senescence-associated features and pathways, such as PI3K/Akt/mTOR, MYC, FZD, and Hedgehog, with increased P53 expression associated with senescence in these cells. CONCLUSIONS A complex interplay between cellular senescence, cytokine signaling, and gene expression pathways underlies ACP development. Further research is crucial to understand how these elements interact to create novel therapeutic approaches for patients with ACP.
Collapse
Affiliation(s)
- Eric W Prince
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
- Morgan Adams Foundation for Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - John R Apps
- Oncology Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - John Jeang
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Keanu Chee
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation for Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Stephen Medlin
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation for Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Roy Dudley
- Department of Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - David Limbrick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - James Johnston
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Neil Feldstein
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, USA
| | - Laura M Prolo
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kevin Ginn
- The Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Toba Niazi
- Department of Pediatric Neurosurgery, Nicklaus Children’s Hospital, Miami, Florida, USA
| | - Amy Smith
- Department of Pediatric Hematology‐Oncology, Arnold Palmer Hospital, Orlando, Florida, USA
| | - Lindsay Kilburn
- Children’s National Health System, Center for Cancer and Blood Disorders, Washington, District of Columbia, USA
- Children’s National Health System, Brain Tumor Institute, Washington, District of Columbia, USA
| | - Joshua Chern
- Departments of Pediatrics and Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatric Neurosurgery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jeffrey Leonard
- Division of Pediatric Neurosurgery, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Sandi Lam
- Division of Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - David S Hersh
- Division of Neurosurgery, Connecticut Children’s, Hartford, Connecticut, USA
| | | | - Vladimir Amani
- Morgan Adams Foundation for Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Andrew M Donson
- Morgan Adams Foundation for Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Siddhartha S Mitra
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation for Pediatric Brain Tumor Research Program, Aurora, Colorado, USA
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer, Birth Defects Research Centre, GOS Institute of Child Health, University College London, London, UK
| | - Todd C Hankinson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Jha K, Kumar A, Bhatnagar K, Patra A, Bhavesh NS, Singh B, Chaudhary S. Modulation of Krüppel-like factors (KLFs) interaction with their binding partners in cancers through acetylation and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195003. [PMID: 37992989 DOI: 10.1016/j.bbagrm.2023.195003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Post-translational modifications (PTMs) of transcription factors regulate transcriptional activity and play a key role in essentially all biological processes and generate indispensable insight towards biological function including activity state, subcellular localization, protein solubility, protein folding, substrate trafficking, and protein-protein interactions. Amino acids modified chemically via PTMs, function as molecular switches and affect the protein function and characterization and increase the proteome complexity. Krüppel-like transcription factors (KLFs) control essential cellular processes including proliferation, differentiation, migration, programmed cell death and various cancer-relevant processes. We investigated the interactions of KLF group-2 members with their binding partners to assess the role of acetylation and phosphorylation in KLFs on their binding affinity. It was observed that acetylation and phosphorylation at different positions in KLFs have a variable effect on binding with specific partners. KLF2-EP300, KLF4-SP1, KLF6-ATF3, KLF6-JUN, and KLF7-JUN show stabilization upon acetylation or phosphorylation at variable positions. On the other hand, KLF4-CBP, KLF4-EP300, KLF5-CBP, KLF5-WWP1, KLF6-SP1, and KLF7-ATF3 show stabilization or destabilization due to acetylation or phosphorylation at variable positions in KLFs. This provides a molecular explanation of the experimentally observed dual role of KLF group-2 members as a suppressor or activator of cancers in a PTM-dependent manner.
Collapse
Affiliation(s)
- Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Bipin Singh
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India; Centre for Life Sciences, Mahindra University, Bahadurpally, Jeedimetla, Hyderabad, Telangana 500043, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
8
|
Gu J, Zhou X, Xie L. Significance of Oxidative Stress in the Diagnosis and Subtype Classification of Intervertebral Disc Degeneration. Biochem Genet 2024; 62:193-207. [PMID: 37314550 DOI: 10.1007/s10528-023-10412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a common illness of aging, and its pathophysiological process is mainly manifested by cell aging and apoptosis, an imbalance in the production and catabolism of extracellular matrix, and an inflammatory response. Oxidative stress (OS) is an imbalance that decreases the body's intrinsic antioxidant defense system and/or raises the formation of reactive oxygen species and performs multiple biological functions in the body. However, our current knowledge of the effect of OS on the progression and treatment of IVDD is still extremely limited. In this study, we obtained 35 DEGs by differential expression analysis of 437 OS-related genes (OSRGs) between IVDD patients and healthy individuals from GSE124272 and GSE150408. Then, we identified six hub OSRGs (ATP7A, MELK, NCF1, NOX1, RHOB, and SP1) from 35 DEGs, and the high accuracy of these hub genes was confirmed by constructing ROC curves. In addition, to forecast the risk of IVDD patients, we developed a nomogram. We obtained two OSRG clusters (clusters A and B) by consensus clustering based on the six hub genes. Then, 3147 DEGs were obtained by differential expression analysis in the two clusters, and all samples were further divided into two gene clusters (A and B). We investigated differences in immune cell infiltration levels between different clusters and found that most immune cells had higher infiltration levels in OSRG cluster B or gene cluster B. In conclusion, OS is important in the formation and progression of IVDD, and we believe that our work will help guide future research on OS in IVDD.
Collapse
Affiliation(s)
- Jun Gu
- Department of Spine Surgery, Third Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyang Zhou
- Department of Spine Surgery, Third Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Lin Xie
- Department of Spine Surgery, Third Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
9
|
Wang X, Dong J, Sheng H, Ma X, Baheti L, Xu J. Coding RNA expression profile and transcription factor analysis of H.pylori-associated chronic atrophic gastritis. Adv Med Sci 2023; 68:491-498. [PMID: 37945439 DOI: 10.1016/j.advms.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Atrophic gastritis, one of the processes leading to gastric cancer (GC), is closely related to Helicobacter pylori (HP) infection. This study aimed to understand how HP causes chronic inflammation that leads to ulcers and stomach problems. METHODS Twenty-eight CAG patients were included in the study (9 HP-infected and 19 HP-uninfected). Endoscopy, histopathology, and high-throughput mRNA sequencing were performed. Differentially expressed genes (DEGs) were validated via qRT-PCR. RESULTS Principal component analysis (PCA) results showed that more than 88.9 % of the samples were classified into the HP (+) group. A total of 157 DEGs were identified, of which 38 were up-regulated and 119 were down-regulated. The DEGs were mainly enriched in the biological process (BP) terms associated with immune system process, adaptive immune response, G protein-coupled receptor signaling pathway, as well as point to numerous key pathways, including fat digestion and absorption, retinol metabolism, steroid hormone biosynthesis, ascorbate and aldarate metabolism, and chemical carcinogenesis. APOA1, APOA4, FOXP3, NR1H4, ABCG5, ACTA1, CCL19, CCR7, CYP3A4, and PDCD had the highest degrees in protein-protein interaction network as the hub genes; they were also included into the transcription factor (TF)-target network except for PDCD. APOA1 and CYP3A4 were extremely significantly up-regulated in HP (+) CAG patients compared with the HP (-) CAG patients, while FOXP3, CCR7 and CCL19 were significantly down-regulated. CONCLUSION The expression of APOA1, CYP3A4, FOXP3, CCR7, and CCL19 are the potential indicators for CAG to GC development, being the biomarkers to predict progression of CAG and poor prognosis of GC.
Collapse
Affiliation(s)
- Xinguo Wang
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Juan Dong
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hao Sheng
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xingting Ma
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Lazati Baheti
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jie Xu
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
10
|
Lin M, Liu X, Zhang X, Wang H, Fang Y, Wu X, Yin A, Yang W, Zhang D, Li M, Zhang L, Ying S. Sp1 Controls the Basal Level of Interleukin-34 Transcription. Immunol Invest 2023; 52:224-240. [PMID: 36562687 DOI: 10.1080/08820139.2022.2157283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interleukin-34 (IL-34) is a cytokine that plays important roles at steady state and in diseases. The induced or inhibited expression of IL-34 by stimuli has been deeply investigated. However, the regulation of IL-34 basal expression is largely unknown. The aim of this study is to investigate whether IL-34 expression is regulated by a general transcription factor Specificity Protein 1 (Sp1) at transcription level. By using bioinformatic software, four putative Sp1-binding sites overlapping GC boxes were found in the core promoter region of IL-34. Alignment of the core promoter sequences of mammalian IL-34 showed GC box-C (-62/-57) and D (-11/-6) were conserved in some mammals. Luciferase assay results showed that only deletion of GC box-C (-62/-57) significantly reduced luciferase activities of IL-34 core promoter in SH-SY5Y cells. By using electrophoretic mobility shift assay (EMSA), it was found that Sp1 specifically interacted with GC box-C sequence CCCGCC (-62/-57) in the core promoter of IL-34. By using chromatin immunoprecipitation (ChIP), it was discovered that Sp1 bound to the core promoter of IL-34 in living cells. In addition, silencing of Sp1 expression by its specific siRNA reduced IL-34 mRNA and protein levels significantly in SH-SY5Y cells. Likewise, IL-34 expression was inhibited in a dose-dependent manner by a Sp1 inhibitor Plicamycin. Furthermore, silencing of Sp1 also downregulated mRNA and protein expression of IL-34 in GES-1 and 293T cell lines, suggesting that IL-34 transcription regulated by Sp1 was not cell-type specific. Taken together, these results indicate that Sp1 controls the basal level of IL-34 transcription.
Collapse
Affiliation(s)
- Minggui Lin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xingyun Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xinhui Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Huimin Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yu Fang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xiaoting Wu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Anqi Yin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Wanqing Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Dong Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Miaomiao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| |
Collapse
|