1
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
2
|
Mahmoud LM, Killiny N, Dutt M. Identification of CAP genes in finger lime (Citrus australasica) and their role in plant responses to abiotic and biotic stress. Sci Rep 2024; 14:29557. [PMID: 39632943 PMCID: PMC11618332 DOI: 10.1038/s41598-024-80868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The study focuses on the in silico analysis of cysteine-rich secretory proteins and PR1-like (CAP) genes in finger lime (Citrus australasica), a citrus species known for its tolerance to Huanglongbing (HLB). We identified several PR1-like genes, all belonging to the CRISP family within the CAP superfamily. Of them, CaCAP2 transcript levels increased by over 300-fold in the finger lime compared to 'Valencia' sweet orange upon infection with 'Candidatus Liberibacter asiaticus' (CaLas). Localization studies using an EGFP fusion showed that the CAP2 protein is predominantly located in the nucleus, extracellular and plasma membrane. The study also examined CAP2 transcript levels in response to cold, drought stress, and salicylic acid application. Despite environmental stress causing apparent damage, CAP genes seem to play a significant role in managing both biotic and abiotic stresses. Analysis of CAP2 gene promoters from finger lime and sweet orange revealed 95.33% sequence identity, with variations in transcription factor-binding sites and cis-acting elements such as Stress Response Element (STRE: AGGGG), which might influence the differential expression of CAP2 between the two species. Additionally, expressing the finger lime-derived CaCAP2 gene in transgenic Nicotiana tabacum induced a strong defense response against Pseudomonas syringae pv. Tabaci., underscoring the CAP gene's crucial role in plant defense mechanisms against bacterial pathogens.
Collapse
Affiliation(s)
- Lamiaa M Mahmoud
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, USA
| | - Manjul Dutt
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Barashkova AS, Smirnov AN, Rogozhin EA. Complex of Defense Polypeptides of Wheatgrass ( Elytrigia elongata) Associated with Plant Immunity to Biotic and Abiotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2024; 13:2459. [PMID: 39273943 PMCID: PMC11396971 DOI: 10.3390/plants13172459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Plant defense polypeptides play a crucial role in providing plants with constitutive immunity against various biotic and abiotic stressors. In this study, we explored a complex of proteins from wheatgrass (Elytrigia elongata) spikelets to estimate their role in the plant's tolerance to various environmental factors. The current research shows that in vitro protein extracts from E. elongata spikelets possess antifungal activity against certain Fusarium species, which are specific cereal pathogens, at concentrations of 1-2 mg/mL. In this study, we reproduced these antifungal activities using a 4 mg/mL extract in artificial fungal infection experiments on wheat grain (Triticum aestivum) under controlled laboratory conditions. Furthermore, the tested extract demonstrated a protective effect on Saccharomyces cerevisiae exposed to hyper-salinity stress at a concentration of 2 mg/mL. A combined scheme of fractionation and structural identification was applied for the estimation of the diversity of defense polypeptides. Defensins, lipid-transfer proteins, hydrolase inhibitors (cereal bifunctional trypsin/alpha-amylase inhibitors from a Bowman-Birk trypsin inhibitor), and high-molecular-weight disease resistance proteins were isolated from the extract. Thus, wheatgrass spikelets appear to be a reservoir of defense polypeptides. Our findings contribute to a deeper understanding of plant defense proteins and peptides and their involvement in the adaptation to various stress factors, and they reveal the regulatory effect at the ecosystem level.
Collapse
Affiliation(s)
- Anna S Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
| | - Alexey N Smirnov
- Department of Plant Protection, Institute of Agrobiotechnology, Timiryazev Russian State Agrarian University, 127550 Moscow, Russia
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| |
Collapse
|
4
|
Slezina MP, Odintsova TI. Plant Antimicrobial Peptides: Insights into Structure-Function Relationships for Practical Applications. Curr Issues Mol Biol 2023; 45:3674-3704. [PMID: 37185763 PMCID: PMC10136942 DOI: 10.3390/cimb45040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short polypeptide molecules produced by multicellular organisms that are involved in host defense and microbiome preservation. In recent years, AMPs have attracted attention as novel drug candidates. However, their successful use requires detailed knowledge of the mode of action and identification of the determinants of biological activity. In this review, we focused on structure-function relationships in the thionins, α-hairpinins, hevein-like peptides, and the unique Ib-AMP peptides isolated from Impatiens balsamina. We summarized the available data on the amino acid sequences and 3D structure of peptides, their biosynthesis, and their biological activity. Special attention was paid to the determination of residues that play a key role in the activity and the identification of the minimal active cores. We have shown that even subtle changes in amino acid sequences can affect the biological activity of AMPs, which opens up the possibility of creating molecules with improved properties, better therapeutic efficacy, and cheaper large-scale production.
Collapse
Affiliation(s)
- Marina P Slezina
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia
| | | |
Collapse
|
5
|
Shcherbakova L, Odintsova T, Pasechnik T, Arslanova L, Smetanina T, Kartashov M, Slezina M, Dzhavakhiya V. Fragments of a Wheat Hevein-Like Antimicrobial Peptide Augment the Inhibitory Effect of a Triazole Fungicide on Spore Germination of Fusarium oxysporum and Alternaria solani. Antibiotics (Basel) 2020; 9:E870. [PMID: 33291849 PMCID: PMC7762046 DOI: 10.3390/antibiotics9120870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
There are increasing environmental risks associated with extensive use of fungicides for crop protection. Hence, the use of new approaches using natural plant defense mechanisms, including application of plant antimicrobial peptides (AMPs), is of great interest. Recently, we studied the structural-function relationships between antifungal activity and five hevein-like AMPs from the WAMP (wheat AMP) family of Triticum kiharae Dorof. et Migush. We first discovered that short peptides derived from the central, N-, and C-terminal regions of one of the WAMPs (WAMP-2) were able to augment the inhibitory effect of Folicur® EC 250, a triazole fungicide, on spore germination of the wheat pathogenic fungi, including Fusarium spp. and Alternaria alternata. In this research, we explored the ability of chemically synthesized WAMP-2-derived peptides for enhancing the sensitivity of two other Fusarium and Alternaria species, F. oxysporum and A. solani, causing wilt and early blight of tomato, respectively, to Folicur®. The synthesized WAMP-2-derived peptides synergistically interacted with the fungicide and significantly increased its efficacy, inhibiting conidial germination at much lower Folicur® concentrations than required for the same efficiency using the fungicide alone. The experiments on co-applications of some of WAMP-2-fragments and the fungicide on tomato leaves and seedlings, which confirmed the results obtained in vitro, are described.
Collapse
Affiliation(s)
- Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Tatyana Odintsova
- Vavilov Institute of General Genetics RAS, Gubkina Str. 3, 119333 Moscow, Russia;
| | - Tatyana Pasechnik
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Lenara Arslanova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Tatyana Smetanina
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Maxim Kartashov
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| | - Marina Slezina
- Vavilov Institute of General Genetics RAS, Gubkina Str. 3, 119333 Moscow, Russia;
| | - Vitaly Dzhavakhiya
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow reg., Russia; (T.P.); (L.A.); (T.S.); (M.K.); (V.D.)
| |
Collapse
|
6
|
Odintsova T, Shcherbakova L, Slezina M, Pasechnik T, Kartabaeva B, Istomina E, Dzhavakhiya V. Hevein-Like Antimicrobial Peptides Wamps: Structure-Function Relationship in Antifungal Activity and Sensitization of Plant Pathogenic Fungi to Tebuconazole by WAMP-2-Derived Peptides. Int J Mol Sci 2020; 21:E7912. [PMID: 33114433 PMCID: PMC7662308 DOI: 10.3390/ijms21217912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Keywords: hevein-like antimicrobial peptides; antifungal activity; antifungal determinants; synergy; chemosensitization; tebuconazole; plant pathogenic fungi.
Collapse
Affiliation(s)
- Tatyana Odintsova
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.S.); (E.I.)
| | - Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (T.P.); (B.K.)
| | - Marina Slezina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.S.); (E.I.)
| | - Tatyana Pasechnik
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (T.P.); (B.K.)
| | - Bakhyt Kartabaeva
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (T.P.); (B.K.)
| | - Ekaterina Istomina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.S.); (E.I.)
| | - Vitaly Dzhavakhiya
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia;
| |
Collapse
|