1
|
Bozhanova NG, Harp JM, Bender BJ, Gavrikov AS, Gorbachev DA, Baranov MS, Mercado CB, Zhang X, Lukyanov KA, Mishin AS, Meiler J. Computational redesign of a fluorogen activating protein with Rosetta. PLoS Comput Biol 2021; 17:e1009555. [PMID: 34748541 PMCID: PMC8601599 DOI: 10.1371/journal.pcbi.1009555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 11/18/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
The use of unnatural fluorogenic molecules widely expands the pallet of available genetically encoded fluorescent imaging tools through the design of fluorogen activating proteins (FAPs). While there is already a handful of such probes available, each of them went through laborious cycles of in vitro screening and selection. Computational modeling approaches are evolving incredibly fast right now and are demonstrating great results in many applications, including de novo protein design. It suggests that the easier task of fine-tuning the fluorogen-binding properties of an already functional protein in silico should be readily achievable. To test this hypothesis, we used Rosetta for computational ligand docking followed by protein binding pocket redesign to further improve the previously described FAP DiB1 that is capable of binding to a BODIPY-like dye M739. Despite an inaccurate initial docking of the chromophore, the incorporated mutations nevertheless improved multiple photophysical parameters as well as the overall performance of the tag. The designed protein, DiB-RM, shows higher brightness, localization precision, and apparent photostability in protein-PAINT super-resolution imaging compared to its parental variant DiB1. Moreover, DiB-RM can be cleaved to obtain an efficient split system with enhanced performance compared to a parental DiB-split system. The possible reasons for the inaccurate ligand binding pose prediction and its consequence on the outcome of the design experiment are further discussed. Computational approaches have recently made significant progress in the protein engineering field evolving from a tool for helping experimentalists to prioritize or short-list mutations for testing to being capable of making fully reliable predictions. However, not all the fields of protein modeling are evolving at a similar pace. That is why evaluating the capabilities of computational tools on different tasks is important to provide other scientists with up-to-date information on the state of the field. Here we tested the performance of Rosetta (one of the leading macromolecule modeling tools) in improving small molecule-binding proteins. We successfully redesigned a fluorogen binding protein DiB1 –a protein that binds a non-fluorescent molecule and enforces its fluorescence in the obtained complex–for improved brightness and better performance in super-resolution imaging. Our results suggest that such tasks can be already achieved without laborious library screenings. However, the flexibility of the proteins might still be underestimated during standard modeling protocols and should be closely evaluated.
Collapse
Affiliation(s)
- Nina G. Bozhanova
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Joel M. Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brian J. Bender
- Department of Pharmacology and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Alexey S. Gavrikov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Gorbachev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Christina B. Mercado
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xuan Zhang
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | | | - Alexander S. Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
2
|
Fluorescent Orthopalladated Complexes of 4-Aryliden-5(4 H)-oxazolones from the Kaede Protein: Synthesis and Characterization. Molecules 2021; 26:molecules26051238. [PMID: 33669118 PMCID: PMC7956804 DOI: 10.3390/molecules26051238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of the work reported here was to amplify the fluorescent properties of 4-aryliden-5(4H)-oxazolones by suppression of the hula-twist non-radiative deactivation pathway. This aim was achieved by simultaneous bonding of a Pd center to the N atom of the heterocycle and the ortho carbon of the arylidene ring. Two different 4-((Z)-arylidene)-2-((E)-styryl)-5(4H)-oxazolones, the structures of which are closely related to the chromophore of the Kaede protein and substituted at the 2- and 4-positions of the arylidene ring (1a OMe; 1b F), were used as starting materials. Oxazolones 1a and 1b were reacted with Pd(OAc)2 to give the corresponding dinuclear orthometalated palladium derivates 2a and 2b by regioselective C–H activation of the ortho-position of the arylidene ring. Reaction of 2a (2b) with LiCl promoted the metathesis of the bridging carboxylate by chloride ligands to afford dinuclear 3a (3b). Mononuclear complexes containing the orthopalladated oxazolone and a variety of ancillary ligands (acetylacetonate (4a, 4b), hydroxyquinolinate (5a), aminoquinoline (6a), bipyridine (7a), phenanthroline (8a)) were prepared from 3a or 3b through metathesis of anionic ligands or substitution of neutral weakly bonded ligands. All species were fully characterized and the X-ray determination of the molecular structure of 7a was carried out. This structure has strongly distorted ligands due to intramolecular interactions. Fluorescence measurements showed an increase in the quantum yield (QY) by up to one order of magnitude on comparing the free oxazolone (QY < 1%) with the palladated oxazolone (QY = 12% for 6a). This fact shows that the coordination of the oxazolone to the palladium efficiently suppresses the hula-twist deactivation pathway.
Collapse
|
3
|
Collado S, Pueyo A, Baudequin C, Bischoff L, Jiménez AI, Cativiela C, Hoarau C, Urriolabeitia EP. Orthopalladation of GFP-Like Fluorophores Through C-H Bond Activation: Scope and Photophysical Properties. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sandra Collado
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Alejandro Pueyo
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Christine Baudequin
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Laurent Bischoff
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Ana Isabel Jiménez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Carlos Cativiela
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Christophe Hoarau
- INSA Rouen, CNRS, COBRA; Normandie Univ, UNIROUEN; 1 rue Tesnière 76821 Mont Saint Aignan France
| | - Esteban P. Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); CSIC-Universidad de Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
4
|
|
5
|
Zaitseva SO, Golodukhina SV, Baleeva NS, Levina EA, Smirnov AY, Zagudaylova MB, Baranov MS. Azidoacetic Acid Amides in the Synthesis of Substituted Arylidene‐1‐
H
‐imidazol‐5‐(4
H
)‐ones. ChemistrySelect 2018. [DOI: 10.1002/slct.201801349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Snizhana O. Zaitseva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Svetlana V. Golodukhina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Evgenia A. Levina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Marina B. Zagudaylova
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1 117997 Moscow Russia
| |
Collapse
|
6
|
Smirnov AY, Baleeva NS, Zaitseva SO, Mineev KS, Baranov MS. Derivatives of Azidocinnamic Acid in the Synthesis of 2-Amino-4-Arylidene-1H-Imidazol-5(4H)-Ones. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Baleeva NS, Gorbachev DA, Baranov MS. The Role of C2-Substituents in the Imidazolone Ring in the Degradation of GFP Chromophore Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Baleeva NS, Baranov MS. The Sonogashira reaction as a new method for the modification of borated analogues of the green fluorescence protein chromophore. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s106816201705003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Baleeva NS, Zaitseva SO, Gorbachev DA, Smirnov AY, Zagudaylova MB, Baranov MS. The Role of N
-Substituents in Radiationless Deactivation of Aminated Derivatives of a Locked GFP Chromophore. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Snezhana O. Zaitseva
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Dmitriy A. Gorbachev
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Marina B. Zagudaylova
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| |
Collapse
|
10
|
Bozhanova NG, Baranov MS, Sarkisyan KS, Gritcenko R, Mineev KS, Golodukhina SV, Baleeva NS, Lukyanov KA, Mishin AS. Yellow and Orange Fluorescent Proteins with Tryptophan-based Chromophores. ACS Chem Biol 2017; 12:1867-1873. [PMID: 28525263 DOI: 10.1021/acschembio.7b00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid development of new microscopy techniques exposed the need for genetically encoded fluorescent tags with special properties. Recent works demonstrated the potential of fluorescent proteins with tryptophan-based chromophores. We applied rational design and random mutagenesis to the monomeric red fluorescent protein FusionRed and found two groups of mutants carrying a tryptophan-based chromophore: with yellow (535 nm) or orange (565 nm) emission. On the basis of the properties of proteins, a model synthetic chromophore, and a computational modeling, we concluded that the presence of a ketone-containing chromophore in different isomeric forms can explain the observed yellow and orange phenotypes.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1, 117997 Moscow, Russia
| | - Karen S Sarkisyan
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Roman Gritcenko
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , 22100 Lund, Sweden
| | - Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology , Institutsky per., 9, 141701 Dolgoprudny, Russia
| | - Svetlana V Golodukhina
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1, 117997 Moscow, Russia
| | - Konstantin A Lukyanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
11
|
Baleeva NS, Yampolsky IV, Baranov MS. Conformationally locked GFP chromophore derivatives as potential fluorescent sensors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Baleeva NS, Tsarkova AS, Baranov MS. Conformationally locked chromophores of CFP and Sirius protein. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Chang DH, Ou CL, Hsu HY, Huang GJ, Kao CY, Liu YH, Peng SM, Diau EWG, Yang JS. Cooperativity and Site-Selectivity of Intramolecular Hydrogen Bonds on the Fluorescence Quenching of Modified GFP Chromophores. J Org Chem 2015; 80:12431-43. [PMID: 26583964 DOI: 10.1021/acs.joc.5b02303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper provides the first example of experimentally characterized hydrogen-bond cooperativity on fluorescence quenching with a modified green fluorescence protein (GFP) chromophore that contains a 6-membered C═N···H-O and a 7-membered C═O···H-O intramolecular H-bonds. Variable-temperature (1)H NMR and electronic absorption and emission spectroscopies were used to elucidate the preference of intra- vs intermolecular H-bonding at different concentrations (1 mM and 10 μM), and X-ray crystal structures provide clues of possible intermolecular H-bonding modes. In the ground state, the 6-membered H-bond is significant but the 7-membered one is rather weak. However, fluorescence quenching is dominated by the 7-membered H-bond, indicating a strengthening of the H-bond in the excited state. The H-bonding effect is more pronounced in more polar solvents, and no intermediates were observed from femtosecond fluorescence decays. The fluorescence quenching is attributed to the occurrence of diabatic excited-state proton transfer. Cooperativity of the two intramolecular H-bonds on spectral shifts and fluorescence quenching is evidenced by comparing with both the single H-bonded and the non-H-bonded counterparts. The H-bond cooperativity does not belong to the conventional patterns of σ- and π-cooperativity but a new type of polarization interactions, which demonstrates the significant interplay of H-bonds for multiple H-bonding systems in the electronically excited states.
Collapse
Affiliation(s)
- Deng-Hsiang Chang
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Chun-Lin Ou
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Hung-Yu Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Guan-Jhih Huang
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Chen-Yi Kao
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| |
Collapse
|
14
|
Gutiérrez S, Martínez-López D, Morón M, Sucunza D, Sampedro D, Domingo A, Salgado A, Vaquero JJ. Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring. Chemistry 2015; 21:18758-63. [DOI: 10.1002/chem.201502929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Indexed: 11/09/2022]
|
15
|
Synthesis of fluorescent dipeptidomimetics and their ribosomal incorporation into green fluorescent protein. Bioorg Med Chem Lett 2015; 25:4715-4718. [PMID: 26351043 DOI: 10.1016/j.bmcl.2015.08.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
Abstract
The synthesis and incorporation into position 66 of green fluorescent protein (GFP) by in vitro protein translation of novel oxazole and thiazole based dipeptidomimetics are described. The compounds may be regarded as GFP chromophore analogues, and are strongly fluorescent. An α-amido-β-ketoester intermediate was obtained via bisacylation of a protected glycine. The intermediate underwent dehydrative cyclization to afford the 1,3-oxazole and was treated with Lawesson's reagent to furnish the 1,3-thiazole. When these fluorophores were introduced into position 66 of GFP in place of Tyr66, the resulting GFP analogues exhibited fluorescence emission several-fold greater than wild-type GFP; the emission was also shifted to shorter wavelength. It may be noted that compared to the typical fluorophores formed in the natural and modified fluorescent proteins, the oxazole and thiazole fluorophores are completely stable and do not require activation by posttranslational modification to exhibit fluorescence.
Collapse
|
16
|
Baleeva NS, Myannik KA, Yampolsky IV, Baranov MS. Bioinspired Fluorescent Dyes Based on a Conformationally Locked Chromophore of the Fluorescent Protein Kaede. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500721] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Ikejiri M, Matsumoto K, Hasegawa H, Yamaguchi D, Tsuchino M, Chihara Y, Yamaguchi T, Mori K, Imanishi T, Obika S, Miyashita K. Synthesis and fluorescence properties of 4-diarylmethylene analogues of the green fluorescent protein chromophore. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.05.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Muselli M, Baudequin C, Hoarau C, Bischoff L. Pd-Catalyzed direct C–H functionalization of imidazolones with aryl- and alkenyl halides. Chem Commun (Camb) 2015; 51:745-8. [DOI: 10.1039/c4cc07917e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Direct C–H arylation and alkenylation of 4,4′-dialkylimidazolones with a broad range of halides under palladium and copper catalysis have been developed.
Collapse
Affiliation(s)
- Mickaël Muselli
- Mickaël Muselli
- Christine Baudequin
- Christophe Hoarau
- Laurent Bischoff Normandie Univ
- COBRA
| | - Christine Baudequin
- Mickaël Muselli
- Christine Baudequin
- Christophe Hoarau
- Laurent Bischoff Normandie Univ
- COBRA
| | - Christophe Hoarau
- Mickaël Muselli
- Christine Baudequin
- Christophe Hoarau
- Laurent Bischoff Normandie Univ
- COBRA
| | - Laurent Bischoff
- Mickaël Muselli
- Christine Baudequin
- Christophe Hoarau
- Laurent Bischoff Normandie Univ
- COBRA
| |
Collapse
|
19
|
Baranov MS, Solntsev KM, Baleeva NS, Mishin AS, Lukyanov SA, Lukyanov KA, Yampolsky IV. Red-shifted fluorescent aminated derivatives of a conformationally locked GFP chromophore. Chemistry 2014; 20:13234-41. [PMID: 25171432 DOI: 10.1002/chem.201403678] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Indexed: 11/09/2022]
Abstract
A novel class of fluorescent dyes based on conformationally locked GFP chromophore is reported. These dyes are characterized by red-shifted spectra, high fluorescence quantum yields and pH-independence in physiological pH range. The intra- and intermolecular mechanisms of radiationless deactivation of ABDI-BF2 fluorophore by selective structural locking of various conformational degrees of freedom were studied. A unique combination of solvatochromic and lipophilic properties together with "infinite" photostability (due to a dynamic exchange between free and bound dye) makes some of the novel dyes promising bioinspired tools for labeling cellular membranes, lipid drops and other organelles.
Collapse
Affiliation(s)
- Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow (Russia).
| | | | | | | | | | | | | |
Collapse
|
20
|
Baranov MS, Lukyanov KA, Ivashkin PE, Yampolsky IV. Efficient Synthetic Approach to Fluorescent Oxazole-4-carboxylate Derivatives. SYNTHETIC COMMUN 2013. [DOI: 10.1080/00397911.2012.706350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mikhail S. Baranov
- a Institute of Bioorganic Chemistry, Russian Academy of Sciences , Moscow , Russia
| | | | - Pavel E. Ivashkin
- a Institute of Bioorganic Chemistry, Russian Academy of Sciences , Moscow , Russia
| | - Ilia V. Yampolsky
- a Institute of Bioorganic Chemistry, Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
21
|
Baranov MS, Lukyanov KA, Yampolsky IV. Synthesis of the chromophores of fluorescent proteins and their analogs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:255-76. [DOI: 10.1134/s1068162013030047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Cheng CW, Huang GJ, Hsu HY, Prabhakar C, Lee YP, Diau EWG, Yang JS. Effects of hydrogen bonding on internal conversion of GFP-like chromophores. II. The meta-amino systems. J Phys Chem B 2013; 117:2705-16. [PMID: 23402432 DOI: 10.1021/jp3093397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To rationalize the efficient quenching of the fluorescence and the Z → E photoisomerization of m-ABDI, the meta-amino analogue of the green fluorescent protein (GFP) chromophore, in protic solvents, the femtosecond time-resolved fluorescence and transient infrared (TRIR) spectra of m-ABDI in CD3CN, CH3OH, and CD3OD are determined. For solutions in CD3CN, the fluorescence decay lifetime is ∼7.9 ns and IR absorption lines near 1513, 1531, 1557, and 1613 cm(-1) of m-ABDI in its electronically excited state were observed with a decay time >5 ns. For solutions in CH3OH, the fluorescence decay is double exponential with time constants of ∼16 and 62 ps. In addition to IR absorption lines of m-ABDI in its electronically excited state with a decay time of ∼16 ps, new features near 1513, 1532, 1554, and 1592 cm(-1) were observed to have a rise time of ∼19 ps and a decay constant of ∼58 ps, indicating formation of an intermediate. The assignments for the IR spectra of the ground and excited states were assisted with DFT and TDDFT calculations, respectively. We conclude that the torsion of the exocyclic C═C bond (the τ torsion) is responsible for the nonradiative decay of electronically excited m-ABDI in CD3CN. However, in CH3OH and CD3OD, the solute-solvent hydrogen bonding (SSHB) interactions diminish significantly the barrier of the τ torsion and induce a new pathway that competes successfully with the τ torsion, consistent with the efficient fluorescence quenching and the diminished yield for Z → E photoisomerization. The new pathway is likely associated with excited-state proton transfer (ESPT) from the solvent to m-ABDI, particularly the carbonyl group, and generates an intermediate (ESPT*) that is weakly fluorescent.
Collapse
Affiliation(s)
- Chi-Wen Cheng
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Baranov MS, Yampolsky IV. Novel condensations of nitroacetic esters with aromatic aldehydes leading to 5-hydroxy-1,2-oxazin-6-ones. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Chatterjee T, Roy D, Das A, Ghosh A, Bag PP, Mandal PK. Chemical tweaking of a non-fluorescent GFP chromophore to a highly fluorescent coumarinic fluorophore: application towards photo-uncaging and stem cell imaging. RSC Adv 2013. [DOI: 10.1039/c3ra44034f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Baranov MS, Solntsev KM, Lukyanov KA, Yampolsky IV. A synthetic approach to GFP chromophore analogs from 3-azidocinnamates. Role of methyl rotors in chromophore photophysics. Chem Commun (Camb) 2013; 49:5778-80. [DOI: 10.1039/c3cc41948g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Huang GJ, Ho JH, Prabhakar C, Liu YH, Peng SM, Yang JS. Site-Selective Hydrogen-Bonding-Induced Fluorescence Quenching of Highly Solvatofluorochromic GFP-like Chromophores. Org Lett 2012; 14:5034-7. [DOI: 10.1021/ol302237k] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guan-Jhih Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 10607
| | - Jinn-Hsuan Ho
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 10607
| | - Ch. Prabhakar
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 10607
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 10607
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 10607
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617, and Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 10607
| |
Collapse
|
27
|
Baranov MS, Lukyanov KA, Borissova AO, Shamir J, Kosenkov D, Slipchenko LV, Tolbert LM, Yampolsky IV, Solntsev KM. Conformationally locked chromophores as models of excited-state proton transfer in fluorescent proteins. J Am Chem Soc 2012; 134:6025-32. [PMID: 22404323 DOI: 10.1021/ja3010144] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Members of the green fluorescent protein (GFP) family form chromophores by modifications of three internal amino acid residues. Previously, many key characteristics of chromophores were studied using model compounds. However, no studies of intermolecular excited-state proton transfer (ESPT) with GFP-like synthetic chromophores have been performed because they either are nonfluorescent or lack an ionizable OH group. In this paper we report the synthesis and photochemical study of two highly fluorescent GFP chromophore analogues: p-HOBDI-BF2 and p-HOPyDI:Zn. Among known fluorescent compounds, p-HOBDI-BF(2) is the closest analogue of the native GFP chromophore. These irrreversibly (p-HOBDI-BF(2)) and reversibly (p-HOPyDI:Zn) locked compounds are the first examples of fully planar GFP chromophores, in which photoisomerization-induced deactivation is suppressed and protolytic photodissociation is observed. The photophysical behavior of p-HOBDI-BF2 and p-HOPyDI:Zn (excited state pK(a)'s, solvatochromism, kinetics, and thermodynamics of proton transfer) reveals their high photoacidity, which makes them good models of intermolecular ESPT in fluorescent proteins. Moreover, p-HOPyDI:Zn is a first example of "super" photoacidity in metal-organic complexes.
Collapse
Affiliation(s)
- Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tolbert LM, Baldridge A, Kowalik J, Solntsev KM. Collapse and recovery of green fluorescent protein chromophore emission through topological effects. Acc Chem Res 2012; 45:171-81. [PMID: 21861536 DOI: 10.1021/ar2000925] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Housed within the 11-stranded β-barrel of the green fluorescent protein (GFP) is the arylideneimidazolidinone (AMI) chromophore, the component responsible for fluorescence. This class of small-molecule chromophore has drawn significant attention for its remarkable photophysical and photochemical properties, both within the intact protein and after its denaturation. All of the proteins so far isolated that have visible light fluorescence have been found to contain an AMI chromophore. These proteins comprise an extensive rainbow, ranging from GFP, which contains the simplest chromophore, p-hydroxybenzylideneimidazolidinone (p-HOBDI), to proteins having molecules with longer conjugation lengths and a variety of intraprotein interactions. The fluorescence invariably almost vanishes upon removal of the protective β-barrel. The role of the barrel in hindering internal conversion has been the subject of numerous studies, especially in our laboratories and those of our collaborators. A better understanding of these chromophores has been facilitated by the development of numerous synthetic protocols. These syntheses, which commonly use the Erlenmeyer azlactone method, have evolved in recent years with the development of a [2 + 3] cycloaddition exploited in our laboratory. The synthetic AMI chromophores have allowed delineation of the complex photophysics of GFP and its derivatives. Upon denaturation, AMI chromophores are marked by 4 orders of magnitude of diminution in emission quantum yield (EQY). This result is attributed to internal conversion resulting from conformational freedom in the released chromophore, which is not allowed within the restrictive β-barrel. To date, the photophysical properties of the AMI chromophore remain elusive and have been attributed to a variety of mechanisms, including cis-trans isomerization, triplet formation, hula twisting, and proton transfer. Advanced studies involving gas-phase behavior, solvent effects, and protonation states have significantly increased our understanding of the chromophore photophysics, but a comprehensive picture is only slowly emerging. Most importantly, mechanisms in structurally defined chromophores may provide clues as to the origin of the "blinking" behavior of the fluorescent proteins themselves. One approach to examining the effect of conformational freedom on rapid internal conversion of the chromophores is to restrict the molecules, both through structural modifications and through adjustments of the supramolecular systems. We thus include here a discussion of studies involving the crystalline state, inclusion within natural protein-binding pockets, complexation with metal ions, and sequestration within synthetic cavities; all of this research affirms the role of restricting conformational freedom in partially restoring the EQY. Additionally, new photochemistry is observed within these restricted systems. Many of the studies carried out in our laboratories show promise for these molecules to be adapted as molecular probes, wherein inclusion turns on the fluorescence and provides a signaling mechanism. In this Account, we present an overview of the AMI chromophores, including synthesis, overall photophysics, and supramolecular behavior. A significant amount of work remains for researchers to fully understand the properties of these chromophores, but important progress achieved thus far in photophysics and photochemistry is underscored here.
Collapse
Affiliation(s)
- Laren M. Tolbert
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Anthony Baldridge
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Janusz Kowalik
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
29
|
Ivashkin PE, Lukyanov KA, Lukyanov S, Yampolsky IV. A Synthetic GFP-like Chromophore Undergoes Base-Catalyzed Autoxidation into Acylimine Red Form. J Org Chem 2011; 76:2782-91. [DOI: 10.1021/jo200150b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pavel E. Ivashkin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Konstantin A. Lukyanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Sergey Lukyanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ilia V. Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|