1
|
Toroghi MK, Cluett WR, Mahadevan R. A Personalized Multiscale Modeling Framework for Dose Selection in Precision Medicine. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masood Khaksar Toroghi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3E5
| | - William R. Cluett
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3E5
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3E5
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada, M5S 3E5
| |
Collapse
|
2
|
Ichimoto K, Fujisawa T, Shimura M, Fushimi T, Tajika M, Matsunaga A, Ogawa-Tominaga M, Akiyama N, Naruke Y, Horie H, Fukuda T, Sugie H, Inui A, Murayama K. Two cases of a non-progressive hepatic form of glycogen storage disease type IV with atypical liver pathology. Mol Genet Metab Rep 2020; 24:100601. [PMID: 32455116 PMCID: PMC7235638 DOI: 10.1016/j.ymgmr.2020.100601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022] Open
Abstract
Glycogen storage disease type IV (GSD IV) is a rare inborn metabolic disorder characterized by the accumulation of amylopectin-like glycogen in the liver or other organs. The hepatic subtype may appear normal at birth but rapidly develops to liver cirrhosis in infancy. Liver pathological findings help diagnose the hepatic form of the disease, supported by analyses of enzyme activity and GBE1 gene variants. Pathology usually shows periodic acid-Schiff (PAS) positive hepatocytes resistant to diastase. We report two cases of hepatic GSD IV with pathology showing PAS positive hepatocytes that were mostly digested by diastase, which differ from past cases. Gene analysis was critical for the diagnosis. Both cases were found to have the same variants c.288delA (p.Gly97GlufsTer46) and c.1825G > A (p.Glu609Lys). These findings suggest that c.1825G > A variant might be a common variant in the non-progressive hepatic form of GSD IV.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate transaminase
- Andersen disease
- COI, cut-off index
- GBE, glycogen-branching enzyme
- GBE1
- GSD IV
- GSD IV, Glycogen storage disease type IV
- M2BPGi
- M2BPGi, Mac-2 binding protein glycosylation isomer
- Nutrition therapy
- PAS, periodic acid-Schiff
- PAS-D, periodic acid-Schiff-diastase
- SD, standard deviation
- γ-GTP, gamma-glutamyltransferase
Collapse
Affiliation(s)
- Keiko Ichimoto
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Tomoo Fujisawa
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama-shi Tobu Hospital, 3-6-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8765, Japan
| | - Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Takuya Fushimi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Makiko Tajika
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Minako Ogawa-Tominaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Nana Akiyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Yuki Naruke
- Department of Pathology, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Hiroshi Horie
- Department of Pathology, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideo Sugie
- Faculty of Health and Medical Sciences, Tokoha University, 1230 Miyakodachou, Kita-ku, Hamamatsu 431-2102, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama-shi Tobu Hospital, 3-6-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8765, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| |
Collapse
|
3
|
Kishnani PS, Sun B, Koeberl DD. Gene therapy for glycogen storage diseases. Hum Mol Genet 2019; 28:R31-R41. [PMID: 31227835 PMCID: PMC6796997 DOI: 10.1093/hmg/ddz133] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/02/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
The focus of this review is the development of gene therapy for glycogen storage diseases (GSDs). GSD results from the deficiency of specific enzymes involved in the storage and retrieval of glucose in the body. Broadly, GSDs can be divided into types that affect liver or muscle or both tissues. For example, glucose-6-phosphatase (G6Pase) deficiency in GSD type Ia (GSD Ia) affects primarily the liver and kidney, while acid α-glucosidase (GAA) deficiency in GSD II causes primarily muscle disease. The lack of specific therapy for the GSDs has driven efforts to develop new therapies for these conditions. Gene therapy needs to replace deficient enzymes in target tissues, which has guided the planning of gene therapy experiments. Gene therapy with adeno-associated virus (AAV) vectors has demonstrated appropriate tropism for target tissues, including the liver, heart and skeletal muscle in animal models for GSD. AAV vectors transduced liver and kidney in GSD Ia and striated muscle in GSD II mice to replace the deficient enzyme in each disease. Gene therapy has been advanced to early phase clinical trials for the replacement of G6Pase in GSD Ia and GAA in GSD II (Pompe disease). Other GSDs have been treated in proof-of-concept studies, including GSD III, IV and V. The future of gene therapy appears promising for the GSDs, promising to provide more efficacious therapy for these disorders in the foreseeable future.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
4
|
Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. ADVANCES IN NEUROBIOLOGY 2019; 23:17-81. [PMID: 31667805 PMCID: PMC7239500 DOI: 10.1007/978-3-030-27480-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
5
|
Yi H, Zhang Q, Brooks ED, Yang C, Thurberg BL, Kishnani PS, Sun B. Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy. Hum Gene Ther 2016; 28:286-294. [PMID: 27832700 DOI: 10.1089/hum.2016.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1ys/ys). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1ys/ys mice at a dose of 5 × 1011 vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1ys/ys mice.
Collapse
Affiliation(s)
- Haiqing Yi
- 1 Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| | - Quan Zhang
- 1 Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| | - Elizabeth D Brooks
- 1 Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| | - Chunyu Yang
- 1 Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| | - Beth L Thurberg
- 2 Department of Pathology, Sanofi Genzyme , Framingham, Massachusetts
| | - Priya S Kishnani
- 1 Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| | - Baodong Sun
- 1 Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
6
|
Alglucosidase alfa treatment alleviates liver disease in a mouse model of glycogen storage disease type IV. Mol Genet Metab Rep 2016; 9:31-33. [PMID: 27747161 PMCID: PMC5053031 DOI: 10.1016/j.ymgmr.2016.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 01/21/2023] Open
Abstract
Patients with progressive hepatic form of GSD IV often die of liver failure in early childhood. We tested the feasibility of using recombinant human acid-α glucosidase (rhGAA) for treating GSD IV. Weekly intravenously injection of rhGAA at 40 mg/kg for 4 weeks significantly reduced hepatic glycogen accumulation, lowered liver/body weight ratio, and reduced plasma ALP and ALT activities in GSD IV mice. Our data suggests that rhGAA is a potential therapy for GSD IV. An FDA approved therapy is proposed as a new therapeutic approach for GSD IV. A short-term rhGAA treatment significantly reduced liver glycogen content in GSD IV mice. rhGAA treatment alleviated liver disease progression in GSD IV mice. Our data suggests that rhGAA is a potential therapy for hepatic form of GSD IV.
Collapse
|
7
|
Schoser B, Bruno C, Schneider HC, Shin YS, Podskarbi T, Goldfarb L, Müller-Felber W, Müller-Höcker J. Unclassified polysaccharidosis of the heart and skeletal muscle in siblings. Mol Genet Metab 2008; 95:52-8. [PMID: 18691923 PMCID: PMC2583439 DOI: 10.1016/j.ymgme.2008.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/03/2008] [Indexed: 11/24/2022]
Abstract
We describe a 15-year-old boy and his 19-year-old sister with progressive dilated cardiomyopathy and mild non-progressive proximal lower limb myopathy, secondary to the accumulation of amylopectin-like fibrillar glycogen, (polyglucosan) bodies, in heart and skeletal muscle. Evidence of idiopathic amylopectinosis or polysaccharidosis was demonstrated in heart and skeletal muscle tissue by histology, electron microscopy, biochemical, and genetic analysis. In both siblings the heart muscle stored PAS-positive, proteinase-k resistant and partly diastase resistant granulo-filamentous material, simulating polyglucosan bodies. Glycogen branching enzyme activity, and phosphofructokinase enzyme activity, measured in skeletal muscle tissue and explanted heart tissue were all within the normal limits, however glycogen content was elevated. Furthermore, GBE1, PRKAG2, desmin, alphabeta-crystallin, ZASP, myotilin, and LAMP-2 gene sequencing revealed no mutation, excluding e.g. glycogen storage disease type 4 and desmin-related myofibrillar cardiomyopathies. In both patients the diagnosis of an idiopathic polysaccharidosis with progressive dilated cardiomyopathy was made, requiring heart transplantation at age 13 and 14, respectively. Both patients belong to an autosomal recessive group of biochemically and genetically unclassified severe vacuolar glycogen storage disease of the heart and skeletal muscle. Up to now unidentified glycogen synthesis or glycogen degradation pathways are supposed to contribute to this idiopathic glycogen storage disease.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich Baur Institute, Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Recent advances in the diagnosis and treatment of inborn errors of metabolism have improved substantially the prognosis for many of these conditions. This makes it essential that the practicing pediatrician be familiar with the clinical presentation of these disorders. A practical clinical approach to the recognition of inborn errors of metabolism in the young infant is presented in this review. Indications for specific laboratory studies are discussed. Guidelines are provided for the stabilization and emergency treatment of critically ill infants. This approach will identify those infants who will benefit from additional evaluation and specific treatment. Many of the inborn errors of metabolism, including urea cycle defects, organic acidemias, and certain disorders of amino acid metabolism, present in the young infant with symptoms of an acute or chronic metabolic encephalopathy. Typical symptoms include lethargy, poor feeding, apnea or tachypnea, and recurrent vomiting. Metabolic acidosis and/or hyperammonemia are observed in many of these conditions, but there are notable exceptions, including nonketotic hyperglycinemia and molybdenum co-factor deficiency. Therefore, appropriate laboratory testing for metabolic disorders should be performed in any infant who exhibits these findings. Although sepsis may be the initial consideration in a neonate with these symptoms, inborn errors of metabolism should always be in the differential diagnosis, particularly in a full-term infant with no specific risk factors. Hypoglycemia may be the predominant finding in a number of inborn errors of metabolism, including glycogen storage disorders, defects in gluconeogenesis, and fatty acid oxidation defects. The latter disorders, among the most common encountered, exhibit marked clinical variability and also may present as a sudden death, a Reye's-like episode, or a cardiomyopathy. Jaundice or other evidence of hepatic dysfunction is the mode of presentation of another important group of inborn errors of metabolism including galactosemia, hereditary tyrosinemia, neonatal hemochromatosis, and a number of other conditions. A subset of lysosomal storage disorders may present very early with coarse facial features, organomegaly, or even hydrops fetalis. Specific patterns of dysmorphic features and congenital anomalies characterize yet another group of inherited metabolic disorders, such as Zellweger syndrome and the Smith-Lemli-Opitz syndrome. Each of these symptom complexes, and the appropriate evaluation of the affected infants, is discussed in more detail in this review.
Collapse
Affiliation(s)
- B K Burton
- Center for Medical Genetics, Michael Reese Hospital and Medical Center, Division of Genetics and Metabolism, University of Illinois College of Medicine, Chicago, IL 60616, USA
| |
Collapse
|
9
|
McConkie-Rosell A, Wilson C, Piccoli DA, Boyle J, DeClue T, Kishnani P, Shen JJ, Boney A, Brown B, Chen YT. Clinical and laboratory findings in four patients with the non-progressive hepatic form of type IV glycogen storage disease. J Inherit Metab Dis 1996; 19:51-8. [PMID: 8830177 DOI: 10.1007/bf01799348] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The classic clinical presentation for type IV glycogen storage disease (branching enzyme deficiency, GSD IV) is hepatosplenomegaly with failure to thrive occurring in the first 18 months of life, followed by progressive liver failure and death by age 5 years. Although there have been two patients without apparent liver progression previously reported, no long-term follow-up clinical data have been available. We present here the clinical spectrum of the non-progressive liver form of GSD IV in four patients, and long-term follow-up of the oldest identified patients (ages 13 and 20 years). None has developed progressive liver cirrhosis, skeletal muscle, cardiac or neurological involvement, and none has been transplanted. Branching enzyme activity was also measured in cultured skin fibroblasts from patients with the classic liver progressive, the early neonatal fatal, and the non-progressive hepatic presentations of GSD IV. The residual branching enzyme activity in the patients without progression was not distinguishable from the other forms and could not be used to predict the clinical course. Our data indicate that GSD IV does not always necessitate hepatic transplantation and that caution should be used when counselling patients regarding the prognosis of GSD IV. Patients should be carefully monitored for evidence of progression before recommending liver transplantation.
Collapse
Affiliation(s)
- A McConkie-Rosell
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ishihara T, Uchino F, Adachi H, Takahashi M, Watanabe S, Tsunetoshi S, Fuji T, Ikee Y. Type IV glycogenosis - a study of two cases. ACTA PATHOLOGICA JAPONICA 1975; 25:613-33. [PMID: 1060362 DOI: 10.1111/j.1440-1827.1975.tb01995.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liver biopsy materials of two siblings with type IV glycogenosis were studied by light and electron microscopy. Biochemical analysis was added using autopsy material in one of the two cases. Two kinds of polysaccharides were noted not only in the cardiac muscle, skeletal muscles, smooth muscles and reticuloendothelial cells, but also in the neutrophils and platelets. One was glycogen and the other was similar to amylopectin. Ultrastructurally, a large amount of fibrils, 60 A in width, glycogen rosettes and glycogen granules were detected in those cells. Branching glycosyltransferase deficiency was biochemically confirmed in one case examined.
Collapse
|
11
|
|
12
|
Ryman BE. The glycogen storage diseases. JOURNAL OF CLINICAL PATHOLOGY. SUPPLEMENT (ROYAL COLLEGE OF PATHOLOGISTS) 1974; 8:106-21. [PMID: 4620884 PMCID: PMC1347207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Krivit W, Sharp HL, Lee JC, Larner J, Edstrom R. Low molecular weight glycogen as a cause of generalized glycogen storage disease. Am J Med 1973; 54:88-97. [PMID: 4345263 DOI: 10.1016/0002-9343(73)90087-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Edstrom RD. Structure of a Low Molecular Weight Form of Glycogen Isolated from the Liver in a Case of Glycogen Storage Disease. J Biol Chem 1972. [DOI: 10.1016/s0021-9258(19)45568-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Gotlin RW, Mace JW. Diagnosis and management of short stature in childhood and adolescence. I. CURRENT PROBLEMS IN PEDIATRICS 1972; 2:3-38. [PMID: 5029492 DOI: 10.1016/s0045-9380(72)80030-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Schochet SS, McCormick WF, Kovarsky J. Light and electron microscopy of skeletal muscle in type IV glycogenosis. Acta Neuropathol 1971; 19:137-44. [PMID: 5288587 DOI: 10.1007/bf00688492] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Howell RR, Kaback MM, Brown BI. Type IV glycogen storage disease: branching enzyme deficiency in skin fibroblasts and possible heterozygote detection. J Pediatr 1971; 78:638-42. [PMID: 5278749 DOI: 10.1016/s0022-3476(71)80466-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Levin B. Glycogen storage disease type IV, amylopectinosis. Proc R Soc Med 1968; 61:1264. [PMID: 5248385 PMCID: PMC2211623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|