1
|
Samiea A, Celis G, Yadav R, Rodda LB, Moreau JM. B cells in non-lymphoid tissues. Nat Rev Immunol 2025:10.1038/s41577-025-01137-6. [PMID: 39910240 DOI: 10.1038/s41577-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
B cells have long been understood to be drivers of both humoral and cellular immunity. Recent advances underscore this importance but also indicate that in infection, inflammatory disease and cancer, B cells function directly at sites of inflammation and form tissue-resident memory populations. The spatial organization and cellular niches of tissue B cells have profound effects on their function and on disease outcome, as well as on patient response to therapy. Here we review the role of B cells in peripheral tissues in homeostasis and disease, and discuss the newly identified cellular and molecular signals that are involved in regulating their activity. We integrate emerging data from multi-omic human studies with experimental models to propose a framework for B cell function in tissue inflammation and homeostasis.
Collapse
Affiliation(s)
- Abrar Samiea
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - George Celis
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Rashi Yadav
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lauren B Rodda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
| | - Joshua M Moreau
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Wojciechowska-Durczynska K, Stepniak J, Lewinski A, Karbownik-Lewinska M. The Increased FCRL mRNA Expression in Patients with Graves' Disease Is Associated with Hyperthyroidism (But Not with Positive Thyroid Antibodies). J Clin Med 2024; 13:5289. [PMID: 39274506 PMCID: PMC11396638 DOI: 10.3390/jcm13175289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Fc receptor-like (FCRL) genes play a role in the immune system by encoding proteins that function as receptors on the surface of immune cells. The clinical significance of FCRL gene expression in Graves' Disease (GD) and Graves' Orbitopathy (GO) remains unclear. We evaluated the expression of FCRL 2, 3, 4 mRNA in patients with GD and GO and its role in the development and activity of these diseases. Methods: Peripheral blood samples from patients with GD (n = 24) or GO (n = 49) hospitalized in the Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, were collected. Expressions of FCRL2, FCRL3 and FCRL4 were measured by real-time PCR. Results: FCRL3 expression was higher in patients with GD compared to GO (1.375 vs. 0.673, p = 0.004) and, specifically, active GO (1.375 vs. 0.639, p = 0.005). Regarding FCRL4, mRNA expression was higher in GD compared to Control (3.078 vs. 0.916, p = 0.003), GO (3.078 vs. 1.178, p < 0.001), active GO (3.078 vs. 1.186, p = 0.002) and inactive GO (3.078 vs. 1.171, p = 0.008). In turn, FCRL4 mRNA expression was higher in patients with hyperthyroidism (subclinical + overt) than in euthyroid patients (2.509 vs. 0.995, p = 0.001 when the whole group of individuals was considered; 2.509 vs. 1.073, p = 0.004 when GO + GD was considered). Conclusions: The increased FCRL mRNA expression in patients with GD is associated with hyperthyroidism (but not with positive TSHRAbs), and our study is the first one to confirm this relationship.
Collapse
Affiliation(s)
- Katarzyna Wojciechowska-Durczynska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Jan Stepniak
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Malgorzata Karbownik-Lewinska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
3
|
Nagatsuka Y, Iwata M, Nagasawa Y, Tsuzuki H, Kitamura N, Komatsu A, Kawana K, Ito R, Fujiwara S, Nakamura H, Takei M. Epstein-barr virus infections induce aberrant osteoclastogenesis in immune system-humanized NOD/Shi-scid/IL-2RγC null mice. Biochem Biophys Res Commun 2024; 715:149984. [PMID: 38688056 DOI: 10.1016/j.bbrc.2024.149984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Epstein-Barr virus (EBV) and other viral infections are possible triggers of autoimmune diseases, such as rheumatoid arthritis (RA). To analyze the causative relationship between EBV infections and RA development, we performed experiment on humanized NOD/Shi-scid/IL-2RγCnull (hu-NOG) mice reconstituted human immune system components and infected with EBV. In EBV-infected hu-NOG mice, breakdown of knee joint bones was found to be accompanied by the accumulation of receptor activator of nuclear factor-κB (NF-κB) (RANK) ligand (RANKL), a key factor in osteoclastogenesis, human CD19 and EBV-encoded small RNA (EBER)-bearing cells. Accumulation of these cells expanded in the bone marrow adjacent to the bone breakage, showing a histological feature like to that in bone marrow edema. On the other hand, human RANK/human matrix metalloprotease-9 (MMP-9) positive, osteoclast-like cells were found at broken bone portion of EBV-infected mouse knee joint. In addition, human macrophage-colony stimulating factor (M-CSF), an essential factor in development of osteoclasts, evidently expressed in spleen and bone marrow of EBV-infected humanized mice. Furthermore, RANKL and M-CSF were identified at certain period of EBV-transformed B lymphoblastoid cells (BLBCs) derived from umbilical cord blood lymphocytes. Co-culturing bone marrow cells of hu-NOG mice with EBV-transformed BLBCs resulted in the induction of a multinucleated cell population positive for tartrate-resistant acid phosphatase and human MMP-9 which indicating human osteoclast-like cells. These findings suggest that EBV-infected BLBCs induce human aberrant osteoclastogenesis, which cause erosive arthritis in the joints.
Collapse
Affiliation(s)
- Yasuko Nagatsuka
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University, Japan.
| | - Mitsuhiro Iwata
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University, Japan.
| | - Yosuke Nagasawa
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University, Japan.
| | - Hiroshi Tsuzuki
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University, Japan.
| | - Noboru Kitamura
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University, Japan.
| | - Atsushi Komatsu
- Department of Medicine, Division of Obstetrics and Gynecology, Nihon University, Japan.
| | - Kei Kawana
- Department of Medicine, Division of Obstetrics and Gynecology, Nihon University, Japan.
| | - Ryoji Ito
- Department of Immunology, Central Institute for Experimental Animals, Japan.
| | | | - Hideki Nakamura
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University, Japan.
| | - Masami Takei
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University, Japan.
| |
Collapse
|
4
|
Gonçalves IV, Pinheiro-Rosa N, Torres L, Oliveira MDA, Rapozo Guimarães G, Leite CDS, Ortega JM, Lopes MTP, Faria AMC, Martins MLB, Felicori LF. Dynamic changes in B cell subpopulations in response to triple-negative breast cancer development. Sci Rep 2024; 14:11576. [PMID: 38773133 PMCID: PMC11109097 DOI: 10.1038/s41598-024-60243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/19/2024] [Indexed: 05/23/2024] Open
Abstract
Despite presenting a worse prognosis and being associated with highly aggressive tumors, triple-negative breast cancer (TNBC) is characterized by the higher frequency of tumor-infiltrating lymphocytes, which have been implicated in better overall survival and response to therapy. Though recent studies have reported the capacity of B lymphocytes to recognize overly-expressed normal proteins, and tumor-associated antigens, how tumor development potentially modifies B cell response is yet to be elucidated. Our findings reveal distinct effects of 4T1 and E0771 murine tumor development on B cells in secondary lymphoid organs. Notably, we observe a significant expansion of total B cells and plasma cells in the tumor-draining lymph nodes (tDLNs) as early as 7 days after tumor challenge in both murine models, whereas changes in the spleen are less pronounced. Surprisingly, within the tumor microenvironment (TME) of both models, we detect distinct B cell subpopulations, but tumor development does not appear to cause major alterations in their frequency over time. Furthermore, our investigation into B cell regulatory phenotypes highlights that the B10 Breg phenotype remains unaffected in the evaluated tissues. Most importantly, we identified an increase in CD19 + LAG-3 + cells in tDLNs of both murine models. Interestingly, although CD19 + LAG-3 + cells represent a minor subset of total B cells (< 3%) in all evaluated tissues, most of these cells exhibit elevated expression of IgD, suggesting that LAG-3 may serve as an activation marker for B cells. Corroborating with these findings, we detected distinct cell cycle and proliferation genes alongside LAG-3 analyzing scRNA-Seq data from a cohort of TNBC patients. More importantly, our study suggests that the presence of LAG-3 B cells in breast tumors could be associated with a good prognosis, as patients with higher levels of LAG-3 B cell transcripts had a longer progression-free interval (PFI). This novel insight could pave the way for targeted therapies that harness the unique properties of LAG-3 + B cells, potentially offering new avenues for improving patient outcomes in TNBC. Further research is warranted to unravel the mechanistic pathways of these cells and to validate their prognostic value in larger, diverse patient cohorts.
Collapse
Affiliation(s)
- Igor Visconte Gonçalves
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Natália Pinheiro-Rosa
- NYU Grossman School of Medicine, NYU Langone Health, New York University, 550 1st Ave, New York, NY, 10016, USA
| | - Lícia Torres
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana de Almeida Oliveira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela Rapozo Guimarães
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Christiana da Silva Leite
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - José Miguel Ortega
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Miriam Teresa Paz Lopes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana Lima Boroni Martins
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
5
|
More NE, Mandlik R, Zine S, Gawali VS, Godad AP. Exploring the therapeutic opportunities of potassium channels for the treatment of rheumatoid arthritis. Front Pharmacol 2024; 15:1286069. [PMID: 38783950 PMCID: PMC11111972 DOI: 10.3389/fphar.2024.1286069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the synovial joint, which leads to inflammation, loss of function, joint destruction, and disability. The disease biology of RA involves complex interactions between genetic and environmental factors and is strongly associated with various immune cells, and each of the cell types contributes differently to disease pathogenesis. Several immunomodulatory molecules, such as cytokines, are secreted from the immune cells and intervene in the pathogenesis of RA. In immune cells, membrane proteins such as ion channels and transporters mediate the transport of charged ions to regulate intracellular signaling pathways. Ion channels control the membrane potential and effector functions such as cytotoxic activity. Moreover, clinical studies investigating patients with mutations and alterations in ion channels and transporters revealed their importance in effective immune responses. Recent studies have shown that voltage-gated potassium channels and calcium-activated potassium channels and their subtypes are involved in the regulation of immune cells and RA. Due to the role of these channels in the pathogenesis of RA and from multiple pieces of clinical evidence, they can be considered therapeutic targets for the treatment of RA. Here, we describe the role of voltage-gated and calcium-activated potassium channels and their subtypes in RA and their pharmacological application as drug targets.
Collapse
Affiliation(s)
| | - Rahul Mandlik
- Medical Affairs, Shalina Healthcare DMCC, Dubai, United Arab Emirates
| | - Sandip Zine
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | | | - Angel Pavalu Godad
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
6
|
Bemark M, Pitcher MJ, Dionisi C, Spencer J. Gut-associated lymphoid tissue: a microbiota-driven hub of B cell immunity. Trends Immunol 2024; 45:211-223. [PMID: 38402045 PMCID: PMC11227984 DOI: 10.1016/j.it.2024.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
The diverse gut microbiota, which is associated with mucosal health and general wellbeing, maintains gut-associated lymphoid tissues (GALT) in a chronically activated state, including sustainment of germinal centers in a context of high antigenic load. This influences the rules for B cell engagement with antigen and the potential consequences. Recent data have highlighted differences between GALT and other lymphoid tissues. For example, GALT propagates IgA responses against glycans that show signs of having been generated in germinal centers. Other findings suggest that humans are among those species where GALT supports the diversification, propagation, and possibly selection of systemic B cells. Here, we review novel findings that identify GALT as distinctive, and able to support these processes.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, J Waldenströms gata 35, Malmö, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK.
| |
Collapse
|
7
|
Thorarinsdottir K, McGrath S, Forslind K, Agelii ML, Ekwall AKH, Jacobsson LTH, Rudin A, Mårtensson IL, Gjertsson I. Cartilage destruction in early rheumatoid arthritis patients correlates with CD21 -/low double-negative B cells. Arthritis Res Ther 2024; 26:23. [PMID: 38225658 PMCID: PMC10789032 DOI: 10.1186/s13075-024-03264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Involvement of B cells in the pathogenesis of rheumatoid arthritis (RA) is supported by the presence of disease-specific autoantibodies and the efficacy of treatment directed against B cells. B cells that express low levels of or lack the B cell receptor (BCR) co-receptor CD21, CD21-/low B cells, have been linked to autoimmune diseases, including RA. In this study, we characterized the CD21+ and CD21-/low B cell subsets in newly diagnosed, early RA (eRA) patients and investigated whether any of the B cell subsets were associated with autoantibody status, disease activity and/or joint destruction. METHODS Seventy-six eRA patients and 28 age- and sex-matched healthy donors were recruited. Multiple clinical parameters were assessed, including disease activity and radiographic joint destruction. B cell subsets were analysed in peripheral blood (PB) and synovial fluid (SF) using flow cytometry. RESULTS Compared to healthy donors, the eRA patients displayed an elevated frequency of naïve CD21+ B cells in PB. Amongst memory B cells, eRA patients had lower frequencies of the CD21+CD27+ subsets and CD21-/low CD27+IgD+ subset. The only B cell subset found to associate with clinical factors was the CD21-/low double-negative (DN, CD27-IgD-) cell population, linked with the joint space narrowing score, i.e. cartilage destruction. Moreover, in SF from patients with established RA, the CD21-/low DN B cells were expanded and these cells expressed receptor activator of the nuclear factor κB ligand (RANKL). CONCLUSIONS Cartilage destruction in eRA patients was associated with an expanded proportion of CD21-/low DN B cells in PB. The subset was also expanded in SF from established RA patients and expressed RANKL. Taken together, our results suggest a role for CD21-/low DN in RA pathogenesis.
Collapse
Affiliation(s)
- Katrin Thorarinsdottir
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Center for Rheumatology Research, University Hospital of Iceland, Reykjavík, Iceland
- Department of Immunology, University Hospital of Iceland, Reykjavík, Iceland
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Kristina Forslind
- Department of Clinical Sciences Lund, Section of Rheumatology, Lund University, Lund, Sweden
- Spenshult Research and Development Centre, Halmstad, Sweden
| | - Monica Leu Agelii
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lennart T H Jacobsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
8
|
Sahlström P, Joshua V, Valkovskaia V, Biese C, Stålesen R, Israelsson L, Végvári Á, Scheel-Toellner D, Klareskog L, Hansson M, Hensvold A, Malmström V, Grönwall C. Autoreactive B cells against malondialdehyde-induced protein cross-links are present in the joint, lung, and bone marrow of rheumatoid arthritis patients. J Biol Chem 2023; 299:105320. [PMID: 37802315 PMCID: PMC10641667 DOI: 10.1016/j.jbc.2023.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Autoantibodies to malondialdehyde (MDA) proteins constitute a subset of anti-modified protein autoantibodies in rheumatoid arthritis (RA), which is distinct from citrulline reactivity. Serum anti-MDA IgG levels are commonly elevated in RA and correlate with disease activity, CRP, IL6, and TNF-α. MDA is an oxidation-associated reactive aldehyde that together with acetaldehyde mediates formation of various immunogenic amino acid adducts including linear MDA-lysine, fluorescent malondialdehyde acetaldehyde (MAA)-lysine, and intramolecular cross-linking. We used single-cell cloning, generation of recombinant antibodies (n = 356 from 25 donors), and antigen-screening to investigate the presence of class-switched MDA/MAA+ B cells in RA synovium, bone marrow, and bronchoalveolar lavage. Anti-MDA/MAA+ B cells were found in bone marrow plasma cells of late disease and in the lung of both early disease and risk-individuals and in different B cell subsets (memory, double negative B cells). These were compared with previously identified anti-MDA/MAA from synovial memory and plasma cells. Seven out of eight clones carried somatic hypermutations and all bound MDA/MAA-lysine independently of protein backbone. However, clones with somatic hypermutations targeted MAA cross-linked structures rather than MDA- or MAA-hapten, while the germline-encoded synovial clone instead bound linear MDA-lysine in proteins and peptides. Binding patterns were maintained in germline converted clones. Affinity purification of polyclonal anti-MDA/MAA from patient serum revealed higher proportion of anti-MAA versus anti-MDA compared to healthy controls. In conclusion, IgG anti-MDA/MAA show distinct targeting of different molecular structures. Anti-MAA IgG has been shown to promote bone loss and osteoclastogenesis in vivo and may contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Peter Sahlström
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vijay Joshua
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Viktoriia Valkovskaia
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Biese
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ragnhild Stålesen
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Israelsson
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dagmar Scheel-Toellner
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aase Hensvold
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Marasco E, Fabbriciani G, Rotunno L, Longhi M, De Luca P, de Girolamo L, Colombini A. Identification of biomarkers in patients with rheumatoid arthritis responsive to DMARDs but with progressive bone erosion. Front Immunol 2023; 14:1254139. [PMID: 37809106 PMCID: PMC10551039 DOI: 10.3389/fimmu.2023.1254139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that may cause joint destruction and disability. The pharmacological treatment of RA aims at obtaining disease remission by effectively ceasing joint inflammation and arresting progressive bone erosions. Some patients present bone lesions accrual even after controlling joint inflammation with current therapies. Our study aimed to analyze lymphocyte subsets and levels of circulating cytokines in patients with RA with progressive bone erosions. Methods We enrolled 20 patients with a diagnosis of RA and 12 healthy donors (HD). Patients with RA were divided into patients with bone erosions (RA-BE+) and without bone erosions (RA-BE-). Lymphocyte subsets in peripheral blood were evaluated by flow cytometry. Circulating cytokines levels were evaluated by protein array. Results The distribution of lymphocyte subsets was not able to separate HD from AR patients and RA-BE+ and RA-BE- in cluster analysis. We observed a significant expansion of CXCR5- PD1+ T peripheral helper cells (Tph cells) and a reduction in both total memory B cells and switched memory B cells in RA patients compared to HD. We observed an expansion in the frequency of total B cells in RA-BE+ patients compared to RA-BE- patients. Unsupervised hierarchical clustering analysis of 39 cytokines resulted in a fairly good separation of HD from RA patients but not of RA-BE+ patients from RA-BE- patients. RA-BE+ patients showed significantly higher levels of IL-11 and IL-17A than RA-BE- patients. Conclusion We show that patients with progressive erosive disease are characterized by abnormalities in B cells and in cytokines with a proven role in bone reabsorption. Understanding the role played by B cells and the cytokine IL-11 and IL-17A in progressive erosive disease can help identify novel biomarkers of erosive disease and design treatment approaches aimed at halting joint damage in RA.
Collapse
Affiliation(s)
- Emiliano Marasco
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
- Ph.D. Course “Immunology, Molecular Medicine and Applied Biotechnology”, University of Rome Tor Vergata, Rome, Italy
| | | | - Laura Rotunno
- Unit of Rheumatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Matteo Longhi
- Unit of Rheumatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Paola De Luca
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Alessandra Colombini
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
10
|
Demela P, Pirastu N, Soskic B. Cross-disorder genetic analysis of immune diseases reveals distinct gene associations that converge on common pathways. Nat Commun 2023; 14:2743. [PMID: 37173304 PMCID: PMC10182075 DOI: 10.1038/s41467-023-38389-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Genome-wide association studies (GWAS) have mapped thousands of susceptibility loci associated with immune-mediated diseases. To assess the extent of the genetic sharing across nine immune-mediated diseases we apply genomic structural equation modelling to GWAS data from European populations. We identify three disease groups: gastrointestinal tract diseases, rheumatic and systemic diseases, and allergic diseases. Although loci associated with the disease groups are highly specific, they converge on perturbing the same pathways. Finally, we test for colocalization between loci and single-cell eQTLs derived from peripheral blood mononuclear cells. We identify the causal route by which 46 loci predispose to three disease groups and find evidence for eight genes being candidates for drug repurposing. Taken together, here we show that different constellations of diseases have distinct patterns of genetic associations, but that associated loci converge on perturbing different nodes in T cell activation and signalling pathways.
Collapse
Affiliation(s)
- Pietro Demela
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Nicola Pirastu
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Blagoje Soskic
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
11
|
Fan C, Li J, Li Y, Jin Y, Feng J, Guo R, Meng X, Gong D, Chen Q, Du F, Zhang C, Lu L, Deng J, Chen X. Hypoxia-inducible factor-1α regulates the interleukin-6 production by B cells in rheumatoid arthritis. Clin Transl Immunology 2023; 12:e1447. [PMID: 37179532 PMCID: PMC10167477 DOI: 10.1002/cti2.1447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives Rheumatoid arthritis (RA) is a disease characterised by bone destruction and systemic inflammation, and interleukin-6 (IL-6) is a therapeutic target for treating it. The study aimed at investigating the sources of IL-6 and the influence of hypoxia-inducible factor-1α (HIF-1α) on IL-6 production by B cells in RA patients. Methods The phenotype of IL-6-producing cells in the peripheral blood of RA patients was analysed using flow cytometry. Bioinformatics, real-time polymerase chain reaction, Western blot and immunofluorescence staining were used to determine the IL-6 production and HIF-1α levels in B cells. A dual-luciferase reporter assay and chromatin immunoprecipitation were used to investigate the regulatory role of HIF-1α on IL-6 production in human and mouse B cells. Results Our findings revealed that B cells are major sources of IL-6 in the peripheral blood of RA patients, with the proportion of IL-6-producing B cells significantly correlated with RA disease activity. The CD27-IgD+ naïve B cell subset was identified as the typical IL-6-producing subset in RA patients. Both HIF-1α and IL-6 were co-expressed by B cells in the peripheral blood and synovium of RA patients, and HIF-1α was found to directly bind to the IL6 promoter and enhance its transcription. Conclusion This study highlights the role of B cells in producing IL-6 and the regulation of this production by HIF-1α in patients with RA. Targeting HIF-1α might provide a new therapeutic strategy for treating RA.
Collapse
Affiliation(s)
- Chaofan Fan
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jia Li
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixuan Li
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuyang Jin
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaqi Feng
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ruru Guo
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinyu Meng
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dongcheng Gong
- China‐Australia Centre for Personalised Immunology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qian Chen
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Fundus DiseaseShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Du
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunyan Zhang
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liangjing Lu
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jun Deng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)ShanghaiChina
| | - Xiao‐Xiang Chen
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Vidal‐Pedrola G, Naamane N, Cameron JA, Pratt AG, Mellor AL, Isaacs JD, Scheel‐Toellner D, Anderson AE. Characterization of age-associated B cells in early drug-naïve rheumatoid arthritis patients. Immunology 2023; 168:640-653. [PMID: 36281956 PMCID: PMC11495260 DOI: 10.1111/imm.13598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Age-associated B cells (ABCs) are an immune cell subset linked to autoimmunity, infection and ageing, and whose pathophysiological importance was recently highlighted using single cell synovial tissue profiling. To elucidate their pathophysiological relevance, peripheral blood (PB) ABCs from early rheumatoid arthritis (eRA) patients naïve to disease-modifying anti-rheumatic drugs (DMARDs) were compared with their synovial fluid (SF) counterparts, and to PB ABCs from psoriatic arthritis patients and healthy controls. PB and SF B-cell subsets were phenotyped by multi-parameter flow cytometry, sorted and subjected to gene expression profiling (NanoString nCounter® Immunology V2 Panel) and functional characterization (stimulated cytokine measurements by immunoassay). PB ABCs of eRA patients, which are transcriptionally distinct from those of control cohorts, express chemokine receptors and adhesion molecules, such as CXCR3, that favour homing to inflammatory sites over lymphoid tissue. These cells are an activated, class-switched B-cell subset expressing high levels of HLA-DR, co-stimulatory molecules and T-bet. Their secretion profile includes IL-12p70 and IL-23 but low levels of IL-10. High surface expression of FcRL family members, including FcRL3, furthermore suggests a role for these cells in autoimmunity. Finally, and unlike in the periphery where they are rare, ABCs are the predominant B-cell subsets in SF. These observations indicate the predilection of ABCs for inflammatory tissue in RA, where their propensity for antigen presentation and pro-inflammatory phenotype may support autoimmune pathology. Their potential as a therapeutic target therefore warrants further study.
Collapse
Affiliation(s)
- Gemma Vidal‐Pedrola
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Present address:
Infectious Diseases DepartmentYale School of MedicineNew HavenConnecticutUSA
| | - Najib Naamane
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - James A. Cameron
- Institute for Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Arthur G. Pratt
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Musculoskeletal UnitNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Andrew L. Mellor
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - John D. Isaacs
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Musculoskeletal UnitNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - Amy E. Anderson
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
13
|
Single-cell chemokine receptor profiles delineate the immune contexture of tertiary lymphoid structures in head and neck squamous cell carcinoma. Cancer Lett 2023; 558:216105. [PMID: 36841416 DOI: 10.1016/j.canlet.2023.216105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells associated with favourable prognosis and response to immunotherapy in cancer, but the immune architecture of TLSs remains poorly elucidated. Here, we hypothesize that the spatial architecture of leukocytes in TLSs can be reconstructed de novo, at least partially, by cell-inherent chemokine receptors profiles. Single-cell RNA-sequencing (scRNA-seq) revealed 47 subpopulations of leukocytes in head and neck squamous cell carcinoma (HNSC). Combined with bulk RNA-seq, we observed that CXCR3, CCR7, CCR6, CXCR5, and CCR1 are TLS-associated chemokine receptors. According to the spatial reference, the cellular atlas with TLS-associated chemokine receptors in HNSC TLSs was elaborately portrayed by multiplex immunohistochemistry (mIHC). Subsequently, we explored the functions and evolutionary trajectory of cells distributed in TLSs. Our investigation presents an approach to reconstructing the immune architecture of TLSs, which would help boost the antitumor immune response by inducing neogenesis TLSs in HNSC.
Collapse
|
14
|
Hu J, Zhang L, Xia H, Yan Y, Zhu X, Sun F, Sun L, Li S, Li D, Wang J, Han Y, Zhang J, Bian D, Yu H, Chen Y, Fan P, Ma Q, Jiang G, Wang C, Zhang P. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Med 2023; 15:14. [PMID: 36869384 PMCID: PMC9985263 DOI: 10.1186/s13073-023-01164-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Immunotherapy has revolutionized cancer treatment, but most patients are refractory to immunotherapy or acquire resistance, with the underlying mechanisms remaining to be explored. METHODS We characterized the transcriptomes of ~92,000 single cells from 3 pre-treatment and 12 post-treatment patients with non-small cell lung cancer (NSCLC) who received neoadjuvant PD-1 blockade combined with chemotherapy. The 12 post-treatment samples were categorized into two groups based on pathologic response: major pathologic response (MPR; n = 4) and non-MPR (NMPR; n = 8). RESULTS Distinct therapy-induced cancer cell transcriptomes were associated with clinical response. Cancer cells from MPR patients exhibited a signature of activated antigen presentation via major histocompatibility complex class II (MHC-II). Further, the transcriptional signatures of FCRL4+FCRL5+ memory B cells and CD16+CX3CR1+ monocytes were enriched in MPR patients and are predictors of immunotherapy response. Cancer cells from NMPR patients exhibited overexpression of estrogen metabolism enzymes and elevated serum estradiol. In all patients, therapy promoted expansion and activation of cytotoxic T cells and CD16+ NK cells, reduction of immunosuppressive Tregs, and activation of memory CD8+T cells into an effector phenotype. Tissue-resident macrophages were expanded after therapy, and tumor-associated macrophages (TAMs) were remodeled into a neutral instead of an anti-tumor phenotype. We revealed the heterogeneity of neutrophils during immunotherapy and identified an aged CCL3+ neutrophil subset was decreased in MPR patients. The aged CCL3+ neutrophils were predicted to interact with SPP1+ TAMs through a positive feedback loop to contribute to a poor therapy response. CONCLUSIONS Neoadjuvant PD-1 blockade combined with chemotherapy led to distinct NSCLC tumor microenvironment transcriptomes that correlated with therapy response. Although limited by a small patient sample size subjected to combination therapy, this study provides novel biomarkers to predict therapy response and suggests potential strategies to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Junjie Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haoran Xia
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Yilv Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Fenghuan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Shuangyi Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Dianke Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Jin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ya Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Dongliang Bian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Pengyu Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Qiang Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Frontier Science Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- The 1st School of Medicine, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
15
|
Grčević D, Sanjay A, Lorenzo J. Interactions of B-lymphocytes and bone cells in health and disease. Bone 2023; 168:116296. [PMID: 34942359 PMCID: PMC9936888 DOI: 10.1016/j.bone.2021.116296] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/09/2023]
Abstract
Bone remodeling occurs through the interactions of three major cell lineages, osteoblasts, which mediate bone formation, osteocytes, which derive from osteoblasts, sense mechanical force and direct bone turnover, and osteoclasts, which mediate bone resorption. However, multiple additional cell types within the bone marrow, including macrophages, T lymphocytes and B lymphocytes influence the process. The bone marrow microenvironment, which is supported, in part, by bone cells, forms a nurturing network for B lymphopoiesis. In turn, developing B lymphocytes influence bone cells. Bone health during homeostasis depends on the normal interactions of bone cells with other lineages in the bone marrow. In disease state these interactions become pathologic and can cause abnormal function of bone cells and inadequate repair of bone after a fracture. This review summarizes what is known about the development of B lymphocytes and the interactions of B lymphocytes with bone cells in both health and disease.
Collapse
Affiliation(s)
- Danka Grčević
- Department of Physiology and Immunology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.
| | - Archana Sanjay
- Department of Orthopaedics, UConn Health, Farmington, CT, USA.
| | - Joseph Lorenzo
- Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
16
|
Yousefi Z, Sharifzadeh S, Zare F, Eskandari N. Fc receptor-like 1 (FCRL1) is a novel biomarker for prognosis and a possible therapeutic target in diffuse large B-cell lymphoma. Mol Biol Rep 2023; 50:1133-1145. [PMID: 36409389 DOI: 10.1007/s11033-022-08104-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma, which can involve various types of mature B-cells. Considering that the incidence of DLBCL has increased, additional research is required to identify novel and effective prognostic and therapeutic molecules. Fc receptor-like 1 (FCRL1) acts as an activation co-receptor of human B-cells. Aberrant expression of this molecule has been reported in a number of B-cell-related disorders. Moreover, the clinical significance and prognosis value of FCRL1 in DLBCL are not completely identified. METHODS In this study, the expression levels of FCRL1 were determined in thirty patients with DLBCL and 15 healthy controls (HCs). In addition, the correlation between FCRL1 expressions with clinicopathological variables of DLBCL patients were examined. Then, the potential roles of FCRL1 in proliferation, apoptosis, and cell cycle distribution of B-cells from DLBCL patients were determined using flow cytometry analysis, after knockdown of this marker using retroviral short hairpin RNA interference. Quantitative real time-PCR, western blotting, and enzyme-linked immunosorbent assay were also used to identify the possible effects of FCRL1 knockdown on the expression levels of BCL-2, BID, BAX, intracellular signaling pathway PI3K/p-Akt, and p65 nuclear factor-kappa B (NF-κB) in the B-cells of DLBCL. RESULTS Statistical analysis revealed higher levels of FCRL1 expression in the B-cells of DLBCL patients compared to HCs at both protein and mRNA levels. A positive correlation was observed between the FCRL1 expression and some clinicopathological parameters of DLBCL patients. In addition, FCRL1 knockdown significantly decreased cell proliferation and stimulated apoptosis as well as G1 cell cycle arrest in the B-cells of DLBCL patients. The levels of p65 NF-κB and PI3K/p-Akt expressions were markedly reduced after knockdown of FCRL1 expression. CONCLUSIONS These results suggested that FCRL1 could be a potential novel biomarker for prognosis and/or a possible effective therapeutic target for treatment of patients with DLBCL.
Collapse
Affiliation(s)
- Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sedigheh Sharifzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farahnaz Zare
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Eskandari
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Wu J, Yang F, Ma X, Lin J, Chen W. Elderly-onset rheumatoid arthritis vs. polymyalgia rheumatica: Differences in pathogenesis. Front Med (Lausanne) 2023; 9:1083879. [PMID: 36714116 PMCID: PMC9879490 DOI: 10.3389/fmed.2022.1083879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease that mainly affects the facet joints. Elderly-onset rheumatoid arthritis appears to exhibit symptoms similar to those of polymyalgia rheumatica, characterized by morning stiffness and pain in the shoulder and hip joints. Both diseases develop in the elderly, and it is sometimes challenging to distinguish them. Here, we identify the differences in pathogenesis between elderly-onset rheumatoid arthritis and polymyalgia rheumatica to assist with a clear differential diagnosis and effective early intervention.
Collapse
|
18
|
Montorsi L, Siu JHY, Spencer J. B cells in human lymphoid structures. Clin Exp Immunol 2022; 210:240-252. [PMID: 36370126 PMCID: PMC9985168 DOI: 10.1093/cei/uxac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Most B cells in the human body are present in tissues where they support immune responses to pathogens, vaccines, autoantigens, and tumours. Despite their clear importance, they are very difficult to study and there are many areas of uncertainty that are difficult to resolve because of limited tissue access. In this review, we consider the zonal structure of lymphoid tissues, the B cell subsets they contain, and how these are regulated. We also discuss the impact that methods of deep interrogation have made on our current knowledge base, especially with respect to studies of cells from dissociated tissues. We discuss in some detail the controversial B cells with marginal zone distribution that some consider being archived memory B cells. We anticipate that more we understand of B cells in tissues and the niches they create, the more opportunities will be identified to harness their potential for therapeutic benefit.
Collapse
Affiliation(s)
- Lucia Montorsi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Jacqueline H Y Siu
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Jo Spencer
- Correspondence: Jo Spencer, Peter Gorer Department of Immunobiology, King’s College London, Second Floor Borough Wing, Guy’s Hospital Campus, St Thomas’ St, London SE1 9RT, UK.
| |
Collapse
|
19
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
20
|
Islas-Vazquez L, Cruz-Aguilar M, Velazquez-Soto H, Jiménez-Corona A, Pérez-Tapia SM, Jimenez-Martinez MC. Effector-Memory B-Lymphocytes and Follicular Helper T-Lymphocytes as Central Players in the Immune Response in Vaccinated and Nonvaccinated Populations against SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10101761. [PMID: 36298626 PMCID: PMC9607383 DOI: 10.3390/vaccines10101761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines have been recognized as having a central role in controlling the COVID-19 pandemic; however, most vaccine development research is focused on IgG-induced antibodies. Here, we analyzed the generation of IgGs related to SARS-CoV-2 and the changes in B- and T-lymphocyte proportions following vaccination against COVID-19. We included samples from 69 volunteers inoculated with the Pfizer-BioNTech (BNT162b2), Astra Zeneca (AZD1222 Covishield), or Sputnik V (Gam-COVID-Vac) vaccines. IgGs related to SARS-CoV-2 increased after the first vaccine dose compared with the nonvaccinated group (Pfizer, p = 0.0001; Astra Zeneca, p < 0.0001; Sputnik V, p = 0.0089). The results of the flow cytometry analysis of B- and T-lymphocytes showed a higher proportion of effector-memory B-lymphocytes in both first and second doses when compared with the nonvaccinated subjects. FcRL4+ cells were increased in second-dose-vaccinated COVID-19(−) and recovered COVID-19(+) participants when compared with the nonvaccinated participants. COVID-19(−) participants showed a lower proportion of follicular helper T-lymphocytes (TFH) in the second dose when compared with the first-vaccine-dose and nonvaccinated subjects. In conclusion, after the first vaccine dose, immunization against SARS-CoV-2 induces IgG production, and this could be mediated by TFH and effector-memory B-lymphocytes. Our data can be used in the design of vaccine schedules to evaluate immuno-bridging from a cellular point of view.
Collapse
Affiliation(s)
- Lorenzo Islas-Vazquez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Marisa Cruz-Aguilar
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Henry Velazquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Aida Jiménez-Corona
- Department of Ocular Epidemiology, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
- Health Secretariat, General Directorate of Epidemiology, Mexico City 01480, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico or
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico
| | - Maria C. Jimenez-Martinez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
21
|
SoRelle ED, Reinoso-Vizcaino NM, Horn GQ, Luftig MA. Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front Immunol 2022; 13:1001145. [PMID: 36248899 PMCID: PMC9554744 DOI: 10.3389/fimmu.2022.1001145] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| | | | - Gillian Q. Horn
- Department of Immunology, Duke University, Durham, NC, United States
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
22
|
Andreev D, Kachler K, Schett G, Bozec A. Rheumatoid arthritis and osteoimmunology: The adverse impact of a deregulated immune system on bone metabolism. Bone 2022; 162:116468. [PMID: 35688359 DOI: 10.1016/j.bone.2022.116468] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
The term osteoimmunology describes an interdisciplinary research field that links the investigation of osteology (bone cells) with immunology. The crosstalk between innate and adaptive immune cells and cells involved in bone remodeling, mainly bone-resorbing osteoclasts and bone-forming osteoblasts, becomes particularly obvious in the inflammatory autoimmune disease rheumatoid arthritis (RA). Besides striking inflammation of the joints, RA causes bone loss, leading to joint damage and disabilities as well as generalized osteoporosis. Mechanistically, RA-associated immune cells (macrophages, T cells, B cells etc.) produce high levels of pro-inflammatory cytokines, receptor activator of nuclear factor κB ligand (RANKL) and autoantibodies that promote bone degradation and at the same time counteract new bone formation. Today, antirheumatic therapy effectively ceases joint inflammation and arrests bone erosion. However, the repair of established bone lesions still presents a challenging task and requires improved treatment options. In this review, we outline the knowledge gained over the past years about the immunopathogenesis of RA and the impact of a dysregulated immune system on bone metabolism.
Collapse
Affiliation(s)
- Darja Andreev
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
23
|
SoRelle ED, Dai J, Reinoso-Vizcaino NM, Barry AP, Chan C, Luftig MA. Time-resolved transcriptomes reveal diverse B cell fate trajectories in the early response to Epstein-Barr virus infection. Cell Rep 2022; 40:111286. [PMID: 36044865 PMCID: PMC9879279 DOI: 10.1016/j.celrep.2022.111286] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Epstein-Barr virus infection of B lymphocytes elicits diverse host responses via well-adapted transcriptional control dynamics. Consequently, this host-pathogen interaction provides a powerful system to explore fundamental processes leading to consensus fate decisions. Here, we use single-cell transcriptomics to construct a genome-wide multistate model of B cell fates upon EBV infection. Additional single-cell data from human tonsils reveal correspondence of model states to analogous in vivo phenotypes within secondary lymphoid tissue, including an EBV+ analog of multipotent activated precursors that can yield early memory B cells. These resources yield exquisitely detailed perspectives of the transforming cellular landscape during an oncogenic viral infection that simulates antigen-induced B cell activation and differentiation. Thus, they support investigations of state-specific EBV-host dynamics, effector B cell fates, and lymphomagenesis. To demonstrate this potential, we identify EBV infection dynamics in FCRL4+/TBX21+ atypical memory B cells that are pathogenically associated with numerous immune disorders.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Ding K, He Y, Wei J, Fu S, Wang J, Chen Z, Zhang H, Qu Y, Liang K, Gong X, Qiu L, Chen D, Xiao B, Du H. A score of DNA damage repair pathway with the predictive ability for chemotherapy and immunotherapy is strongly associated with immune signaling pathway in pan-cancer. Front Immunol 2022; 13:943090. [PMID: 36081518 PMCID: PMC9445361 DOI: 10.3389/fimmu.2022.943090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
DNA damage repair (DDR) is critical in maintaining normal cellular function and genome integrity and is associated with cancer risk, progression, and therapeutic response. However, there is still a lack of a thorough understanding of the effects of DDR genes’ expression level in cancer progression and therapeutic resistance. Therefore, we defined a tumor-related DDR score (TR-DDR score), utilizing the expression levels of 20 genes, to quantify the tumor signature of DNA damage repair pathways in tumors and explore the possible function and mechanism for the score among different cancers. The TR-DDR score has remarkably predictive power for tumor tissues. It is a more accurate indicator for the response of chemotherapy or immunotherapy combined with the tumor-infiltrating lymphocyte (TIL) and G2M checkpoint score than the pre-existing predictors (CD8 or PD-L1). This study points out that the TR-DDR score generally has positive correlations with patients of advanced-stage, genome-instability, and cell proliferation signature, while negative correlations with inflammatory response, apoptosis, and p53 pathway signature. In the context of tumor immune response, the TR-DDR score strongly positively correlates with the number of T cells (CD4+ activated memory cells, CD8+ cells, T regs, Tfh) and macrophages M1 polarization. In addition, by difference analysis and correlation analysis, COL2A1, MAGEA4, FCRL4, and ZIC1 are screened out as the potential modulating factors for the TR-DDR score. In summary, we light on a new biomarker for DNA damage repair pathways and explore its possible mechanism to guide therapeutic strategies and drug response prediction.
Collapse
Affiliation(s)
- Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Youhua He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuying Fu
- College of Life Science, Zhaoqing University, Zhaoqing, China
| | - Jiajian Wang
- Clinical Laboratory Department of Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haibo Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yimo Qu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dong Chen
- Fangrui Institute of Innovative Drugs, South China University of Technology, Guangzhou, China
| | - Botao Xiao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Botao Xiao, ; Hongli Du,
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Botao Xiao, ; Hongli Du,
| |
Collapse
|
25
|
Moghimi N, Afkhamzadeh A, Rahmani K, Shakiba N. Association of Interleukin-10 Genotypes and Anticyclic Citrullinated Peptide Antibodies with Rheumatoid Arthritis. Med J Islam Repub Iran 2022; 36:95. [PMID: 36408339 PMCID: PMC9586713 DOI: 10.47176/mjiri.36.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/16/2023] Open
Abstract
Background: According to recent evidence, there is an association between some genetic factors and rheumatoid arthritis (RA). The aim of this study was to determine whether genetic variations in the interleukin 10 (IL10) and anti-cyclic citrullinated peptide (Anti-CCP) antibody loci were linked to RA. Methods: In this hospital-based case-control study with 224 cases and 194 healthy individuals, we investigated the association of IL-10 genotypes and anti-CCP antibodies with RA. Independent sample t, chi-square, and Fisher exact tests were used to assess the association between study variables. Results: Frequency of IL-10 -1082 A/G genotype in RA patients is significantly higher than the control group (odds ratio [OR], 1.67 [95% CI, 1.11-2.51]) (p=0.009), while the frequency of IL-10-1082 A/A and G/G polymorphisms in RA patients was lower than controls and this finding for G/G polymorphism was statistically significant (p=0.01). No significant difference was observed between the 2 studied groups regarding IL-10-592 C/C, C/A, and A/A polymorphisms (p>0.05). The chance of RA occurrence among persons with positive anti-CCP was significantly (63.3 times [22.7-176.5]) higher than individuals with negative anti-CCP (p<0.001). Conclusion: According to our data, the chance of anti-CCP positivity in persons who have IL-10 genotype 1082 A/G is higher. Further studies are recommended to determine the relationship between IL-10 genotype 1082 G/A and RA. If such a relationship is proven, this finding as a diagnostic clue can help rheumatologists in the early detection of RA.
Collapse
Affiliation(s)
- Nasrin Moghimi
- Rheumatology Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abdorrahim Afkhamzadeh
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Khaled Rahmani
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasrollah Shakiba
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
26
|
Abstract
Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Prominent B cell signature differentiates discoid from subacute cutaneous lupus erythematosus. J Invest Dermatol 2022; 142:2885-2895.e2. [PMID: 35594909 DOI: 10.1016/j.jid.2022.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
While B cells account for a significant proportion of the lymphocytic infiltrate in discoid lupus erythematosus (DLE), their contribution to pathogenesis is unknown. In this study, we compare the immune landscape of 17 subjects with DLE to 21 subjects with subacute cutaneous lupus erythematosus (SCLE) using transcriptomic and histologic analyses of lesional skin. A few of the subjects (3/17 DLE, 5/21 SCLE) had concomitant systemic lupus erythematosus (SLE). Using a modified Autoimmune Profiling Panel (NanoString), we demonstrate that B cell-specific genes, including canonical pan-B cell markers CD19 (p=0.0060), CD20 (p=0.0047), and CD79a (p=0.0201), are among the most upregulated genes in DLE. Numerous other genes encoding B cell-associated proteins, including immunoglobulins, B cell activating factor (BAFF) receptors, and Fc-receptor like (FCRL) family members, are similarly enriched. Relative cell type scoring reveals that among various inflammatory cell types, only B cells are more prevalent in DLE. Digital whole-image slide analysis of immunohistochemistry for B cells (CD20) and T cells (CD3) supports our gene expression findings of a disproportionately greater B cell infiltrate in DLE lesions. Overall, this study identifies a B cell-predominant signature unique to DLE and highlights the importance of studying the role of cutaneous B cells in DLE pathogenesis.
Collapse
|
28
|
Tofighi Zavareh F, Mirshafiey A, Yazdani R, Keshtkar AA, Abolhassani H, Mahdaviani SA, Habibi S, Sohani M, Rezaei N, Aghamohammadi A. Immunophenotypic and functional analysis of lymphocyte subsets in common variable immunodeficiency patients without monogenic defects. Scand J Immunol 2022; 96:e13164. [PMID: 35305035 DOI: 10.1111/sji.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
Common variable immunodeficiency (CVID) is accompanied by various lymphocyte abnormalities believed to be mostly responsible for disease features in patients with no diagnosed monogenic defects. Here, we evaluated the association of B and T lymphocyte abnormalities with the incidence of CVID. Twenty-six genetically unsolved CVID patients were examined for B and T lymphocyte subsets by flow cytometry and CD4+ T cell proliferation by Carboxyfluorescein succinimidyl ester (CFSE) test. We detected a reduction in total, naive, memory B cells and plasmablasts, and also total, naive, central memory and regulatory CD4+ T cells, besides naive CD8+ T cells. There were an increase in CD21low and transitional B cells, effector memory (EM) and terminally differentiated effector memory (TEMRA ) CD4+ T cell subsets as well as total, EM, TEMRA , activated and cytotoxic CD8+ T cells among non-monogenic CVID patients. CD4+ T cells proliferation response was reduced regarding both division index and percent divided. In conclusion, regarding the similarity of lymphocyte abnormalities between patients without genetic defects and those with monogenic defects, genetic mutations are not responsible for these specific lymphocyte changes. However, the novel correlations observed between lymphocyte alterations among genetically unsolved CVID patients may serve as a guide to predict the potential of future CVID development for hypogammaglobulinemia children.
Collapse
Affiliation(s)
- Farzaneh Tofighi Zavareh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abbas Mirshafiey
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Habibi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Schonfeldova B, Zec K, Udalova IA. Synovial single-cell heterogeneity, zonation and interactions: a patchwork of effectors in arthritis. Rheumatology (Oxford) 2022; 61:913-925. [PMID: 34559213 PMCID: PMC8889290 DOI: 10.1093/rheumatology/keab721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite extensive research, there is still no treatment that would lead to remission in all patients with rheumatoid arthritis as our understanding of the affected site, the synovium, is still incomplete. Recently, single-cell technologies helped to decipher the cellular heterogeneity of the synovium; however, certain synovial cell populations, such as endothelial cells or peripheral neurons, remain to be profiled on a single-cell level. Furthermore, associations between certain cellular states and inflammation were found; whether these cells cause the inflammation remains to be answered. Similarly, cellular zonation and interactions between individual effectors in the synovium are yet to be fully determined. A deeper understanding of cell signalling and interactions in the synovium is crucial for a better design of therapeutics with the goal of complete remission in all patients.
Collapse
Affiliation(s)
- Barbora Schonfeldova
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Kristina Zec
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Irina A Udalova
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Chalayer E, Gramont B, Zekre F, Goguyer-Deschaumes R, Waeckel L, Grange L, Paul S, Chung AW, Killian M. Fc receptors gone wrong: A comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun Rev 2021; 21:103016. [PMID: 34915182 DOI: 10.1016/j.autrev.2021.103016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022]
Abstract
Systemic autoimmune and inflammatory diseases have a complex and only partially known pathophysiology with various abnormalities involving all the components of the immune system. Among these components, antibodies, and especially autoantibodies are key elements contributing to autoimmunity. The interaction of antibody fragment crystallisable (Fc) and several distinct receptors, namely Fc receptors (FcRs), have gained much attention during the recent years, with possible major therapeutic perspectives for the future. The aim of this review is to comprehensively describe the known roles for FcRs (activating and inhibitory FcγRs, neonatal FcR [FcRn], FcαRI, FcεRs, Ro52/tripartite motif containing 21 [Ro52/TRIM21], FcδR, and the novel Fc receptor-like [FcRL] family) in systemic autoimmune and inflammatory disorders, namely rheumatoid arthritis, Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis, idiopathic inflammatory myopathies, mixed connective tissue disease, Crohn's disease, ulcerative colitis, immunoglobulin (Ig) A vasculitis, Behçet's disease, Kawasaki disease, IgG4-related disease, immune thrombocytopenia, autoimmune hemolytic anemia, antiphospholipid syndrome and heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Emilie Chalayer
- Department of Hematology and Cell Therapy, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France; INSERM U1059-Sainbiose, dysfonction vasculaire et hémostase, Université de Lyon, Saint-Etienne, France
| | - Baptiste Gramont
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Franck Zekre
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Pediatrics, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Roman Goguyer-Deschaumes
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Lucile Grange
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Amy W Chung
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Killian
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France.
| |
Collapse
|
31
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. B Cells in Rheumatoid Arthritis:Pathogenic Mechanisms and Treatment Prospects. Front Immunol 2021; 12:750753. [PMID: 34650569 PMCID: PMC8505880 DOI: 10.3389/fimmu.2021.750753] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its clinical features are the proliferation of joint synovial tissue, the formation of pannus and the destruction of cartilage. The global incidence of RA is about 1%, and it is more common in women. The basic feature of RA is the body’s immune system disorders, in which autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines, chemokines and autoantibodies abnormally increase in the body of RA patients B cell depletion therapy has well proved the important role of B cells in the pathogenesis of RA, and the treatment of RA with B cells as a target has also been paid more and more attention. Although the inflammatory indicators in RA patients receiving B-cell depletion therapy have been significantly improved, the risk of infection and cancer has also increased, which suggests that we need to deplete pathogenic B cells instead of all B cells. However, at present we cannot distinguish between pathogenic B cells and protective B cells in RA patients. In this review, we explore fresh perspectives upon the roles of B cells in the occurrence, development and treatment of RA.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
32
|
Patel AM, Liu YS, Davies SP, Brown RM, Kelly DA, Scheel-Toellner D, Reynolds GM, Stamataki Z. The Role of B Cells in Adult and Paediatric Liver Injury. Front Immunol 2021; 12:729143. [PMID: 34630404 PMCID: PMC8495195 DOI: 10.3389/fimmu.2021.729143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
B lymphocytes are multitasking cells that direct the immune response by producing pro- or anti-inflammatory cytokines, by presenting processed antigen for T cell activation and co-stimulation, and by turning into antibody-secreting cells. These functions are important to control infection in the liver but can also exacerbate tissue damage and fibrosis as part of persistent inflammation that can lead to end stage disease requiring a transplant. In transplantation, immunosuppression increases the incidence of lymphoma and often this is of B cell origin. In this review we bring together information on liver B cell biology from different liver diseases, including alcohol-related and metabolic fatty liver disease, autoimmune hepatitis, primary biliary and primary sclerosing cholangitis, viral hepatitis and, in infants, biliary atresia. We also discuss the impact of B cell depletion therapy in the liver setting. Taken together, our analysis shows that B cells are important in the pathogenesis of liver diseases and that further research is necessary to fully characterise the human liver B cell compartment.
Collapse
Affiliation(s)
- Arzoo M. Patel
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Yuxin S. Liu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Scott P. Davies
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rachel M. Brown
- Department of Histopathology, Queen Elizabeth Hospital, Birmingham Women’s and Children’s National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Deirdre A. Kelly
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Dagmar Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Gary M. Reynolds
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
33
|
Bauer L, Müller LJ, Volkers SM, Heinrich F, Mashreghi MF, Ruppert C, Sander LE, Hutloff A. Follicular Helper-like T Cells in the Lung Highlight a Novel Role of B Cells in Sarcoidosis. Am J Respir Crit Care Med 2021; 204:1403-1417. [PMID: 34534436 PMCID: PMC8865704 DOI: 10.1164/rccm.202012-4423oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rationale Pulmonary sarcoidosis is generally presumed to be a T-helper cell type 1– and macrophage-driven disease. However, mouse models have recently revealed that chronically inflamed lung tissue can also comprise T follicular helper (Tfh)-like cells and represents a site of active T-cell/B-cell cooperation. Objectives To assess the role of pulmonary Tfh- and germinal center–like lymphocytes in sarcoidosis. Methods BAL fluid, lung tissue, and peripheral blood samples from patients with sarcoidosis were analyzed by flow cytometry, immunohistology, RNA sequencing, and in vitro T-cell/B-cell cooperation assays for phenotypic and functional characterization of germinal center–like reactions in inflamed tissue. Measurements and Main Results We identified a novel population of Tfh-like cells characterized by high expression of the B helper molecules CD40L and IL-21 in BAL of patients with sarcoidosis. Transcriptome analysis further confirmed a phenotype that was both Tfh-like and tissue resident. BAL T cells provided potent help for B cells to differentiate into antibody-producing cells. In lung tissue, we observed large peribronchial infiltrates with T and B cells in close contact, and many IgA+ plasmablasts. Most clusters were nonectopic; that is, they did not contain follicular dendritic cells. Patients with sarcoidosis also showed elevated levels of PD-1high CXCR5− CD40Lhigh ICOShigh Tfh-like cells, but not classical CXCR5+ Tfh cells, in the blood. Conclusions Active T-cell/B-cell cooperation and local production of potentially pathogenic antibodies in the inflamed lung represents a novel pathomechanism in sarcoidosis and should be considered from both diagnostic and therapeutic perspectives.
Collapse
Affiliation(s)
- Laura Bauer
- University Hospital Schleswig Holstein, 54186, Institute of Immunology, Kiel, Germany
| | | | - Sarah M Volkers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | | | | | - Clemens Ruppert
- Justus-Liebig-University Giessen, Department of Internal Medicine, Giessen, Germany
| | - Leif E Sander
- Charite Universitatsmedizin Berlin, 14903, Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Andreas Hutloff
- University Hospital Schleswig Holstein, 54186, Institute of Immunology, Kiel, Germany;
| |
Collapse
|
34
|
Dörner T, Szelinski F, Lino AC, Lipsky PE. Therapeutic implications of the anergic/postactivated status of B cells in systemic lupus erythematosus. RMD Open 2021; 6:rmdopen-2020-001258. [PMID: 32675278 PMCID: PMC7425190 DOI: 10.1136/rmdopen-2020-001258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton's tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.
Collapse
Affiliation(s)
| | | | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Peter E Lipsky
- RILITE Research Institute, Charlottesville, Virginia, USA
| |
Collapse
|
35
|
Abstract
Adaptive immunity plays central roles in the pathogenesis of rheumatoid arthritis (RA), as it is regarded as an autoimmune disease. Clinical investigations revealed infiltrations of B cells in the synovium, especially those with ectopic lymphoid neogenesis, associate with disease severity. While some B cells in the synovium differentiate into plasma cells producing autoantibodies such as anti-citrullinated protein antibody, others differentiate into effector B cells producing proinflammatory cytokines and expressing RANKL. Synovial B cells might also be important as antigen-presenting cells. Synovial T cells are implicated in the induction of antibody production as well as local inflammation. In the former, a recently identified CD4 T cell subset, peripheral helper T (Tph), which is characterized by the expression of PD-1 and production of CXCL13 and IL-21, is implicated, while the latter might be mediated by Th1-like CD4 T cell subsets that can produce multiple proinflammatory cytokines, including IFN-γ, TNF-α, and GM-CSF, and express cytotoxic molecules, such as perforin, granzymes and granulysin. CD8 T cells in the synovium are able to produce large amount of IFN-γ. However, the involvement of those lymphocytes in the pathogenesis of RA still awaits verification. Their antigen-specificity also needs to be clarified.
Collapse
Affiliation(s)
- Hisakata Yamada
- Department of Arthritis and Immunology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Psaila AM, Vohralik EJ, Quinlan KGR. Shades of white: new insights into tissue-resident leukocyte heterogeneity. FEBS J 2021; 289:308-318. [PMID: 33513286 DOI: 10.1111/febs.15737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Populations of white blood cells (leukocytes) have been found in tissues and organs across the body, in states of both health and disease. The role leukocytes play within these tissues is often highly contested. For many leukocytes, there are studies outlining pro-inflammatory destructive functions, while other studies provide clear evidence of anti-inflammatory homeostatic activities of leukocytes within the same tissue. We discuss how this functional dissonance can be explained by leukocyte heterogeneity. Although cell morphology and surface receptor profiles are excellent methods to segregate cell types, the true degree of leukocyte heterogeneity that exists can only be appreciated by studying the variable and dynamic gene expression profile. Unbiased single-cell RNA sequencing profiling of tissue-resident leukocytes is transforming the way we understand leukocytes across health and disease. Recent investigations into adipose tissue-resident leukocytes have revealed unprecedented levels of heterogeneity among populations of macrophages. We use this example to pose emerging questions regarding tissue-resident leukocytes and review what is currently known (and unknown) about the diversity of tissue-resident leukocytes within different organs.
Collapse
Affiliation(s)
- Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
37
|
Hussain MT, Iqbal AJ, Norling LV. The Role and Impact of Extracellular Vesicles in the Modulation and Delivery of Cytokines during Autoimmunity. Int J Mol Sci 2020; 21:E7096. [PMID: 32993051 PMCID: PMC7584003 DOI: 10.3390/ijms21197096] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines and extracellular vesicles are two methods of initiating and maintaining cellular crosstalk. The role of cytokines in the initiation, progression, and resolution of inflammation has been well studied and more so, their pathophysiological role in the development of autoimmune disease. In recent years, the impact of extracellular vesicles on the progression of autoimmunity has become more widely appreciated. In this review, we discuss the mechanisms that allow extracellular vesicles of various sources to modulate cytokine production, and release, and how extracellular vesicles might be involved in the direct delivery and modulation of cytokine levels. Moreover, we explore what challenges are faced by current therapies and the promising future for extracellular vesicles as therapeutic agents in conditions driven by immune dysregulation.
Collapse
Affiliation(s)
- Mohammed Tayab Hussain
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London E1 4NS, UK;
| | - Asif Jilani Iqbal
- The Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Lucy Victoria Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London E1 4NS, UK;
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
38
|
Guo X, Xu T, Zheng J, Cui X, Li M, Wang K, Su M, Zhang H, Zheng K, Sun C, Song S, Liu H. Accumulation of synovial fluid CD19 +CD24 hiCD27 + B cells was associated with bone destruction in rheumatoid arthritis. Sci Rep 2020; 10:14386. [PMID: 32873834 PMCID: PMC7462986 DOI: 10.1038/s41598-020-71362-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022] Open
Abstract
Regulatory CD19+CD24hiCD27+ B cells were proved to be numerically decreased and functionally impaired in the peripheral blood (PB) from rheumatoid arthritis (RA), with the potential of converting into osteoclast-priming cells. However, the distribution and function of CD19+CD24hiCD27+ B cells in RA synovial fluid (SF) were unclear. In this study, we investigated whether RA SF CD19+CD24hiCD27+ B cells were increased and associated with bone destruction. We found that the proportion of RA SF CD19+CD24hiCD27+ B cells was increased significantly, and was positively correlated with swollen joint counts, tender joint counts and disease activity. CXCL12, CXCL13, CCL19 contributed to the recruitment of CD19+CD24hiCD27+ B cells in RA SF. Notably, CD19+CD24hiCD27+ B cells in the SF from RA expressed significantly more RANKL compared to OA and that in the PB from RA. Critically, RA CD19+CD24hiCD27+ B cells promoted osteoclast (OC) differentiation in vitro, and the number of OCs was higher in cultures with RA SF CD19+CD24hiCD27+ B cells than in those derived from RA PB. Collectively, these findings revealed the accumulation of CD19+CD24hiCD27+ B cells in SF and their likely contribution to joint destruction in RA. Modulating the status of CD19+CD24hiCD27+ B cells might provide novel therapeutic strategies for RA.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Tingting Xu
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Jing Zheng
- Department of Hematology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Xiangjun Cui
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Ming Li
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Kai Wang
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Min Su
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Huifang Zhang
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Ke Zheng
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Chongling Sun
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Shulin Song
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China.
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China.
| |
Collapse
|
39
|
Development and Validation of the B Cell-Associated Fc Receptor-like Molecule-Based Prognostic Signature in Skin Cutaneous Melanoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8509805. [PMID: 32908921 PMCID: PMC7463385 DOI: 10.1155/2020/8509805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 01/26/2023]
Abstract
Methods 461 patients with CM from The Cancer Genome Atlast- (TCGA-) CM cohort and 290 pateints from the GSE65904 cohort were enrolled. Student's t-test was used to compare the differences, and Pearson's correlation coefficient was employed to evaluate associations. The Kaplan-Meier (K-M) survival analysis was used to evaluate overall survival (OS). The multivariate Cox regression was conducted to generate the FCRL prognostic signature. GSEA analysis and TIMER were employed to study the potential mechanisms. Result Patients with Breslow's depth high or equal to 3 cm had the lower expression of FCRL1-6 (all, P < 0.05), which indicates poor OS, as well as age, stage, and Breslow's depth subgroups (all, P < 0.001). The overall FCRL1-6 prognostic signature was generated in the TCGA cohort (K-M, P < 0.001; area under the curve (AUC), 0.649 for 3-year OS) and validated in the GSE65904 cohort (K-M, P < 0.001; AUC, 0.659 for 3-year OS). The GSEA results revealed that high expression of FCRLs indicated activated immune-associated pathways, and FCRLs are positively associated with the infiltration of B cells. Conclusion Highly expressed FCRLs were observed associated with a favourable OS of CM. FCRL1-6-based prediction signature could act as a biomarker to predict the prognosis of patients with CM.
Collapse
|
40
|
Visser A, Verstappen GM, van der Vegt B, Vissink A, Bende RJ, Bootsma H, Bos NA, Kroese FGM. Repertoire Analysis of B-Cells Located in Striated Ducts of Salivary Glands of Patients With Sjögren's Syndrome. Front Immunol 2020; 11:1486. [PMID: 32760405 PMCID: PMC7372116 DOI: 10.3389/fimmu.2020.01486] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
A major complication of primary Sjögren's syndrome (pSS) is development of mucosa associated lymphoid tissue (MALT) B-cell lymphoma, particularly in salivary glands. These lymphomas express FcRL4 and are characteristically associated with lymphoepithelial lesions. Neoplastic B-cells may be derived from non-neoplastic glandular intraductal B-cells, also virtually all expressing FcRL4. A characteristic feature of MALT lymphomas is the production of rheumatoid factors (RFs), which are largely encoded by stereotypic immunoglobulin variable heavy chain (IGHV) sequences. The aim of this study was to examine whether there is a relationship between the intraductal and periductal B-cells and whether the intraductal B-cells are selected for RF. RNA was extracted from laser-microdissected infiltrated ductal areas and periductal infiltrates from frozen parotid gland tissue sections of 5 pSS patients. PCR amplified IGHV transcripts were cloned into pCR™4-TOPO vector and subsequently sequenced. Microdissected ducts yielded 96 unique IGHV sequences derived from intraductal B-cells, while 119 unique IGHV sequences were obtained from periductal infiltrates. No major difference in VH-gene usage was observed between intraductal and periductal B-cells. Nearly all (>90%) IGHV sequences derived from both intraductal and periductal B-cells were mutated. Clonal expansions as defined by shared VDJ rearrangements were also present among both intraductal and periductal B-cells: in total 32 clones were found, from which 12 were located within ducts, 15 in periductal areas, and five clones shared members in both areas. We observed 12 IGHV rearrangements encoding for RF sequences from which two were derived from intraductal B-cells and 10 from periductal B-cells. Nine RF sequences were part of a clone. Together these findings indicate that intraductal and periductal B-cells are closely related to each other. Intraductal B-cells are most likely derived from periductal B-cells. We did not obtain evidence that RF-specific B-cells are enriched within the striated ducts. We speculate that in principle any activated B-cell can enter the striated ducts from the periductal infiltrate, irrespective of its antigenic specificity. Within the ducts, these B-cells may receive additional activation and proliferation signals, to further expand at these sites and by acquisition of driver-mutations develop toward lymphoma.
Collapse
Affiliation(s)
- Annie Visser
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Richard J Bende
- Department of Pathology, Academic Medical Center and University of Amsterdam, Amsterdam, Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Nicolaas A Bos
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
41
|
Liu Y, Goroshko S, Leung LYT, Dong S, Khan S, Campisi P, Propst EJ, Wolter NE, Grunebaum E, Ehrhardt GRA. FCRL4 Is an Fc Receptor for Systemic IgA, but Not Mucosal Secretory IgA. THE JOURNAL OF IMMUNOLOGY 2020; 205:533-538. [DOI: 10.4049/jimmunol.2000293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
|
42
|
Amarnani AA, Poladian KR, Marciano BE, Daub JR, Williams SG, Livinski AA, Hsu AP, Palmer CL, Kenney CM, Avila DN, Holland SM, Katz JD. A Panoply of Rheumatological Manifestations in Patients with GATA2 Deficiency. Sci Rep 2020; 10:8305. [PMID: 32433473 PMCID: PMC7239896 DOI: 10.1038/s41598-020-64852-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/23/2020] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To characterize rheumatological manifestations of GATA2 deficiency. METHODS Single-center, retrospective review of 157 patients with GATA2 deficiency. Disease course, laboratory results, and imaging findings were extracted. In-person rheumatological assessments were performed on selected, available patients. A literature search of four databases was conducted to identify additional cases. RESULTS Rheumatological findings were identified in 28 patients, out of 157 cases reviewed (17.8%). Twenty-two of those patients (78.6%) reported symptom onset prior to or in conjunction with the molecular diagnosis of GATA2 deficiency. Notable rheumatological manifestations included: piezogenic pedal papules (PPP), joint hyperextensibility, early onset osteoarthritis, ankylosing spondylitis, and seronegative erosive rheumatoid arthritis. In peripheral blood of patients with rheumatological manifestations and GATA2 deficiency, CD4+ CD3+ helper T cells and naïve CD3+ CD4+ CD62L+ CD45RA+ helper T cell subpopulation fractions were significantly lower, while CD8+ cytotoxic T cell fractions were significantly higher, compared to those without rheumatological manifestations and with GATA2 deficiency. No changes in CD19, CD3, or NK populations were observed. CONCLUSION GATA2 deficiency is associated with a broad spectrum of rheumatological disease manifestations. Low total helper T lymphocyte proportions and low naïve helper T cell proportions are associated with those most at risk of overt rheumatological manifestations. Further, PPP and joint hyperextensibility may explain some of the nonimmunologically-mediated joint problems encountered in patients with GATA2 deficiency. This catalogue suggests that rheumatological manifestations and immune dysregulation are relatively common in GATA2 deficiency.
Collapse
Affiliation(s)
- Abhimanyu A Amarnani
- Office of the Clinical Director, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
- SUNY Downstate Health Sciences University, College of Medicine and School of Graduate Studies, Brooklyn, USA.
- Department of Medicine, Los Angeles County + University of Southern California Medical Center and University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Katlin R Poladian
- Office of the Clinical Director, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Beatriz E Marciano
- National Institute of Allergy and Infectious Diseases, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Janine R Daub
- National Institute of Allergy and Infectious Diseases, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandra G Williams
- Office of the Clinical Director, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alicia A Livinski
- National Institutes of Health Library, Division of Library Services, Office of Research Services, OD, NIH, Bethesda, Maryland, USA
| | - Amy P Hsu
- National Institute of Allergy and Infectious Diseases, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Cindy L Palmer
- National Institute of Allergy and Infectious Diseases, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Cara M Kenney
- National Cancer Institute, Center for Cancer Research, Office of the Clinical Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniele N Avila
- National Cancer Institute, Center for Cancer Research, Office of the Clinical Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - James D Katz
- Office of the Clinical Director, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Verstappen GM, Ice JA, Bootsma H, Pringle S, Haacke EA, de Lange K, van der Vries GB, Hickey P, Vissink A, Spijkervet FKL, Lessard CJ, Kroese FGM. Gene expression profiling of epithelium-associated FcRL4 + B cells in primary Sjögren's syndrome reveals a pathogenic signature. J Autoimmun 2020; 109:102439. [PMID: 32201227 PMCID: PMC7337041 DOI: 10.1016/j.jaut.2020.102439] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 10/31/2022]
Abstract
In primary Sjögren's syndrome (pSS), FcRL4+ B cells are present in inflamed salivary gland tissue, within or in close proximity to ductal epithelium. FcRL4 is also expressed by nearly all pSS-related mucosa-associated lymphoid tissue (MALT) B cell lymphomas, linking FcRL4 expression to lymphomagenesis. Whether glandular FcRL4+ B cells are pathogenic, how these cells originate, and how they functionally differ from FcRL4- B cells in pSS is unclear. This study aimed to investigate the phenotype and function of FcRL4+ B cells in the periphery and parotid gland tissue of patients with pSS. First, circulating FcRL4+ B cells from 44 pSS and 54 non-SS-sicca patients were analyzed by flow cytometry. Additionally, RNA sequencing of FcRL4+ B cells sorted from parotid gland cell suspensions of 6 pSS patients was performed. B cells were sorted from cell suspensions as mini bulk (5 cells/well) based on the following definitions: CD19+CD27-FcRL4- ('naive'), CD19+CD27+FcRL4- ('memory'), and CD19+FcRL4+ B cells. We found that, although FcRL4+ B cells were not enriched in blood in pSS compared with non-SS sicca patients, these cells generally exhibited a pro-inflammatory phenotype. Genes coding for CD11c (ITGAX), T-bet (TBX21), TACI (TNFRSF13B), Src tyrosine kinases and NF-κB pathway-related genes were, among others, significantly upregulated in glandular FcRL4+ B cells versus FcRL4- B cells. Pathway analysis showed upregulation of B cell activation, cell cycle and metabolic pathways. Thus, FcRL4+ B cells in pSS exhibit many characteristics of chronically activated, pro-inflammatory B cells and their gene expression profile suggests increased risk of lymphomagenesis. We postulate that these cells contribute significantly to the epithelial damage seen in the glandular tissue and that FcRL4+ B cells are an important treatment target in pSS.
Collapse
Affiliation(s)
- Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands.
| | - John A Ice
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Sarah Pringle
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Erlin A Haacke
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Kim de Lange
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerben B van der Vries
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Genomics Coordination Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Frederik K L Spijkervet
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Christopher J Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
44
|
Yousefi Z, Sharifzadeh S, Yar-Ahmadi V, Andalib A, Eskandari N. Fc Receptor-Like 1 as a Promising Target for Immunotherapeutic Interventions of B-Cell-Related Disorders. Biomark Insights 2019; 14:1177271919882351. [PMID: 31798301 PMCID: PMC6864034 DOI: 10.1177/1177271919882351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human B-cell responses are regulated through synergy between a collection of activation and inhibitory receptors. Fc receptor-like (FCRL) molecules have recently been identified as co-receptors that are preferentially expressed in human B-cells, which may also play an important role in the regulation of human B-cell responses. FCRL1 is a member of the FCRL family molecules with 2 immunoreceptor tyrosine-based activation motifs (ITAMs) in its cytoplasmic tail. This study aimed to investigate the regulatory roles of FCRL1 in human B-cell responses. MATERIALS AND METHODS The regulatory potential of FCRL1 in human B-cell through knockdown of FCRL1 expression in the Ramos and Daudi Burkitt lymphoma (BL) cell lines by using the retroviral-based short hairpin ribonucleic acid (shRNA) delivery method. The functional consequences of FCRL1 knockdown were assessed by measuring the proliferation, apoptosis, and the expression levels of Bcl-2, Bid, and Bax genes as well as phosphoinositide-3 kinase/-serine-threonine kinase AKT (PI3K/p-AKT) pathway in the BL cells, using the quantitative real-time polymerase chain reaction (PCR) and flow cytometry analysis. The NF-κB activity was also measured by the enzyme-linked immunosorbent assay (ELISA). RESULTS FCRL1 knockdown significantly decreased cell proliferation and increased apoptotic cell death in the BL cells. There was a significant reduction in the extent of the Bcl-2 gene expression in the treated BL cells compared with control cells. On the contrary, FCRL1 knockdown increased the expression levels of Bid and Bax genes in the treated BL cells when compared with control cells. In addition, the extent of the PI3K/p-AKT expression and phosphorylated-p65 NF-κB activity was significantly decreased in the treated BL cells compared with control cells. CONCLUSIONS These results suggest that FCRL1 can play a key role in the activation of human B-cell responses and has the potential to serve as a target for immunotherapy of FCRL1 positive B-cell-related disorders.
Collapse
Affiliation(s)
- Zahra Yousefi
- Department of Immunology, Faculty of
Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and
Technology Research Center, School of Paramedical Sciences, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Vali Yar-Ahmadi
- Department of Parasitology, Faculty of
Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Department of Immunology, Faculty of
Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of
Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center,
Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Barnas JL, Looney RJ, Anolik JH. B cell targeted therapies in autoimmune disease. Curr Opin Immunol 2019; 61:92-99. [PMID: 31733607 DOI: 10.1016/j.coi.2019.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW FDA-approved B cell-targeted therapy has expanded to a multitude of autoimmune diseases ranging from organ specific diseases, like pemphigus and multiple sclerosis, to systemic diseases such as ANCA-associated vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). In this review, we discuss the variability in response to B cell-targeted therapies with a focus on the diversity of human B cells and plasma cells, and will discuss several of the promising new B cell-targeted therapies. RECENT FINDING The pathogenic roles for B cells include autoantibody-dependent and autoantibody-independent functions whose importance may vary across diseases or even in subsets of patients with the same disease. Recent data have further demonstrated the diversity of human B cell subsets that contribute to disease as well as novel pathways of B cell activation in autoimmune disease. The importance of eliminating autoreactive B cells and plasma cells will be discussed, as well as new approaches to do so. SUMMARY The past several years has witnessed significant advances in our knowledge of human B cell subsets and function. This has created a nuanced picture of the diverse ways B cells contribute to autoimmunity and an ever-expanding armamentarium of B cell-targeted therapies.
Collapse
Affiliation(s)
- Jennifer L Barnas
- Department of Medicine, Division of Allergy Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Richard John Looney
- Department of Medicine, Division of Allergy Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Jennifer H Anolik
- Department of Medicine, Division of Allergy Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States.
| |
Collapse
|
46
|
Weißenberg SY, Szelinski F, Schrezenmeier E, Stefanski AL, Wiedemann A, Rincon-Arevalo H, Welle A, Jungmann A, Nordström K, Walter J, Imgenberg-Kreuz J, Nordmark G, Rönnblom L, Bachali P, Catalina MD, Grammer AC, Lipsky PE, Lino AC, Dörner T. Identification and Characterization of Post-activated B Cells in Systemic Autoimmune Diseases. Front Immunol 2019; 10:2136. [PMID: 31616406 PMCID: PMC6768969 DOI: 10.3389/fimmu.2019.02136] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases (AID) such as systemic lupus erythematosus (SLE), primary Sjögren's syndrome (pSS), and rheumatoid arthritis (RA) are chronic inflammatory diseases in which abnormalities of B cell function play a central role. Although it is widely accepted that autoimmune B cells are hyperactive in vivo, a full understanding of their functional status in AID has not been delineated. Here, we present a detailed analysis of the functional capabilities of AID B cells and dissect the mechanisms underlying altered B cell function. Upon BCR activation, decreased spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk) phosphorylation was noted in AID memory B cells combined with constitutive co-localization of CD22 and protein tyrosine phosphatase (PTP) non-receptor type 6 (SHP-1) along with hyporesponsiveness to TLR9 signaling, a Syk-dependent response. Similar BCR hyporesponsiveness was also noted specifically in SLE CD27− B cells together with increased PTP activities and increased transcripts for PTPN2, PTPN11, PTPN22, PTPRC, and PTPRO in SLE B cells. Additional studies revealed that repetitive BCR stimulation of normal B cells can induce BCR hyporesponsiveness and that tissue-resident memory B cells from AID patients also exhibited decreased responsiveness immediately ex vivo, suggesting that the hyporesponsive status can be acquired by repeated exposure to autoantigen(s) in vivo. Functional studies to overcome B cell hyporesponsiveness revealed that CD40 co-stimulation increased BCR signaling, induced proliferation, and downregulated PTP expression (PTPN2, PTPN22, and receptor-type PTPs). The data support the conclusion that hyporesponsiveness of AID and especially SLE B cells results from chronic in vivo stimulation through the BCR without T cell help mediated by CD40–CD154 interaction and is manifested by decreased phosphorylation of BCR-related proximal signaling molecules and increased PTPs. The hyporesponsiveness of AID B cells is similar to a form of functional anergy.
Collapse
Affiliation(s)
- Sarah Y Weißenberg
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Franziska Szelinski
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Eva Schrezenmeier
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Ana-Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Annika Wiedemann
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany.,Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Anna Welle
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Annemarie Jungmann
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Juliana Imgenberg-Kreuz
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Amrie C Grammer
- RILITE Research Institute, Charlottesville, VA, United States
| | - Peter E Lipsky
- RILITE Research Institute, Charlottesville, VA, United States
| | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| |
Collapse
|
47
|
Takeuchi T, Tanaka Y, Soen S, Yamanaka H, Yoneda T, Tanaka S, Nitta T, Okubo N, Genant HK, van der Heijde D. Effects of the anti-RANKL antibody denosumab on joint structural damage in patients with rheumatoid arthritis treated with conventional synthetic disease-modifying antirheumatic drugs (DESIRABLE study): a randomised, double-blind, placebo-controlled phase 3 trial. Ann Rheum Dis 2019; 78:899-907. [PMID: 31036625 PMCID: PMC6585575 DOI: 10.1136/annrheumdis-2018-214827] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To evaluate the efficacy of denosumab in suppressing joint destruction when added to conventional synthetic disease-modifying antirheumatic drug (csDMARD) therapy in patients with rheumatoid arthritis (RA). METHODS This was a multi-centre, randomised, double-blind, parallel-group, placebo-controlled phase 3 study in Japan. Patients with RA aged ≥20 years receiving csDMARDs were randomly assigned (1:1:1) to denosumab 60 mg every 3 months (Q3M), denosumab 60 mg every 6 months (Q6M) or placebo. The change in the modified total Sharp score (mTSS) and effect on bone mineral density (BMD) at 12 months was evaluated. RESULTS In total, 654 patients received the trial drugs. Denosumab groups showed significantly less progression of joint destruction. The mean changes in the mTSS at 12 months were 1.49 (95% CI 0.99 to 1.99) in the placebo group, 0.99 (95% CI 0.49 to 1.49) in the Q6M group (p=0.0235) and 0.72 (95% CI 0.41 to 1.03) in the Q3M group (p=0.0055). The mean changes in bone erosion score were 0.98 (95% CI 0.65 to 1.31) in the placebo group, 0.51 (95% CI 0.22 to 0.80) in the Q6M group (p=0.0104) and 0.22 (95% CI 0.09 to 0.34) in the Q3M group (p=0.0001). No significant between-group difference was observed in the joint space narrowing score. The per cent change in lumbar spine (L1-L4) BMD in the placebo, Q6M and Q3M groups were -1.03%, 3.99% (p<0.0001) and 4.88% (p<0.0001). No major differences were observed among safety profiles. CONCLUSIONS Denosumab inhibits the progression of joint destruction, increases BMD and is well tolerated in patients with RA taking csDMARD.
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satoshi Soen
- Department of Orthopedics and Rheumatology, Kindai University Nara Hospital, Ikoma, Japan
| | - Hisashi Yamanaka
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Sakae Tanaka
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takaya Nitta
- Clinical Development Department, Daiichi Sankyo Co., Ltd, Shinagawa-ku, Tokyo, Japan
| | - Naoki Okubo
- Biostatistics & Data Management Department, Daiichi Sankyo Co., Ltd, Shinagawa-ku, Tokyo, Japan
| | - Harry K Genant
- Department of Radiology, Medicine and Orthopedic Surgery, University of California, San Francisco, California, USA
| | | |
Collapse
|
48
|
Thorarinsdottir K, Camponeschi A, Jonsson C, Granhagen Önnheim K, Nilsson J, Forslind K, Visentini M, Jacobsson L, Mårtensson IL, Gjertsson I. CD21 -/low B cells associate with joint damage in rheumatoid arthritis patients. Scand J Immunol 2019; 90:e12792. [PMID: 31141193 DOI: 10.1111/sji.12792] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022]
Abstract
Depletion of B cells is beneficial in rheumatoid arthritis (RA) patients with autoantibodies to citrullinated proteins (ACPA) and/or the Fc portion of immunoglobulins (rheumatoid factor [RF]), suggesting a role for B cells in disease pathogenesis. To date, however, the identity of specifically pathogenic B cell subsets has not been discovered. One candidate population is identified by the low expression or absence of complement receptor 2 (CD21-/low B cells). In this study, we sought to determine whether there was any correlation between CD21-/low B cells and clinical outcome in patients with established RA, either ACPA+ /RF+ (n = 27) or ACPA- /RF- (n = 10). Healthy donors (n = 17) were included as controls. The proportion of the CD21-/low CD27- IgD- memory B cell subset in peripheral blood (PB) was significantly increased in ACPA+ /RF+ RA patients compared with healthy donors, and the frequency of this subset correlated with joint destruction (r = 0.57, P < 0.04). The levels of the chemokines CXCL-9 and CXCL-10 were higher in synovial fluid than in plasma, and PB CD21-/low cells expressed the receptor, CXCR3. In synovial fluid, most of the B cells were CD21-/low , approximately 40% of that population was CD27- IgD- , and a third of those expressed the pro-osteoclastogenic factor receptor activator of the nuclear factor κB ligand (RANKL). This subset also secreted RANKL, in addition to other factors such as IL-6, even in the absence of stimulation. We interpret these data as reason to propose the hypothesis that the CD27- IgD- subset of CD21-/low B cells may mediate joint destruction in patients with ACPA+ /RF+ RA.
Collapse
Affiliation(s)
- Katrin Thorarinsdottir
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte Jonsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Karin Granhagen Önnheim
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nilsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Forslind
- Section of Rheumatology, Department of Clinical Sciences, Lund University, Helsingborg, Sweden.,Section of Rheumatology, Department of Research and Education, Helsingborg's Hospital, Helsingborg, Sweden
| | - Marcella Visentini
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Lennart Jacobsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Soluble Markers of Antibody Secreting Cell Function as Predictors of Infection Risk in Rheumatoid Arthritis. J Immunol Res 2019; 2019:3658215. [PMID: 31183387 PMCID: PMC6512050 DOI: 10.1155/2019/3658215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/25/2019] [Indexed: 12/03/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a systemic autoimmune disease associated with immune dysregulation and increased risk of infections. The presence of autoantibodies and immunoglobulin abnormalities indicates B-cell and antibody-secreting cell (ASC) dysfunction. We hypothesize that soluble factors associated with B-cell and ASC activity are decreased in RA patients and that this is linked to higher susceptibility to infections. Methods Using the Johns Hopkins Arthritis Cohort and Biorepository, we contrasted serum protein levels of soluble factors involved in B-cell activation (CD40, CD40L) and B-cell/ASC homing (CXCL10, CXCL11, and CXCL13) or survival (BAFF, APRIL, TACI, and BCMA) in 10 healthy subjects and 23 adult RA patients (aged 24-65 years). We subdivided RA patients into those with (n = 17) and those without infections (n = 6) within a 2-year period. In order to reduce the effect of RA treatment, we only included patients receiving methotrexate monotherapy or no RA treatments at baseline. Soluble serum protein levels of B-cell/ASC factors were quantified by multiplex immunoassays. Results We identified that (1) serum levels of soluble BCMA, APRIL, CD40, and CD40L were significantly decreased in RA patients relative to healthy individuals; (2) serum soluble BCMA, predominantly released by ASC, correlated with serum concentrations of class-switched immunoglobulins, IgG and IgA; and (3) RA patients with a history of infections had significantly lower soluble BCMA levels compared with healthy donors and with RA patients without infections. Conclusions Our study using soluble factors linked to B-cell/ASC activation and survival suggests that there is a paucity of ASC in a subset of RA patients and that this may be linked to altered antibody production and increased risk of infections. Further delineating the link between ASC and infection susceptibility in RA may optimize disease management and provide novel insights into disease pathogenesis that are susceptible to intervention.
Collapse
|
50
|
Ma S, Wang C, Mao X, Hao Y. B Cell Dysfunction Associated With Aging and Autoimmune Diseases. Front Immunol 2019; 10:318. [PMID: 30873171 PMCID: PMC6400972 DOI: 10.3389/fimmu.2019.00318] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Impaired humoral responses, as well as an increased propensity for autoimmunity, play an important role in the development of immune system dysfunction associated with aging. Accumulation of a subset of atypical B cells, termed age-associated B cells (ABCs), is one of the key age-related changes in B cell compartments. ABCs are characterized by their distinct phenotypes, gene expression profiles, special survival requirements, variations in B cell receptor repertoires, and unique functions. Here, we summarize recent progress in the knowledge base related to the features of ABCs, their potential role in immune senescence, and their relationship with autoimmune diseases.
Collapse
Affiliation(s)
- Shiliang Ma
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengwei Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinru Mao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|