1
|
Parodi E, Novi M, Bottino P, La Porta E, Merlotti G, Castello LM, Gotta F, Rocchetti A, Quaglia M. The Complex Role of Gut Microbiota in Systemic Lupus Erythematosus and Lupus Nephritis: From Pathogenetic Factor to Therapeutic Target. Microorganisms 2025; 13:445. [PMID: 40005809 PMCID: PMC11858628 DOI: 10.3390/microorganisms13020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The role of gut microbiota (GM) and intestinal dysbiosis in triggering the onset and/or modulating the severity and progression of lupus nephritis (LN) has been the object of intense research over the last few years. Some alterations at the phyla level, such as the abundance of Proteobacteria and reduction in Firmicutes/Bacteroidetes (F/B) ratio and in α-diversity have been consistently reported in systemic lupus erythematosus (SLE), whereas a more specific role has been ascribed to some species (Bacteroides thetaiotaomicron and Ruminococcus gnavus) in LN. Underlying mechanisms include microbial translocation through a "leaky gut" and subsequent molecular mimicry, immune dysregulation (alteration of IFNγ levels and of balance between Treg and Th17 subsets), and epigenetic interactions. Levels of bacterial metabolites, such as butyrate and other short-chain fatty acids (SCFAs), appear to play a key role in modulating LN. Beyond bacterial components of GM, virome and mycobiome are also increasingly recognized as important players in the modulation of an immune response. On the other hand, microbiota-based therapy appears promising and includes diet, prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). The modulation of microbiota could correct critical alterations, such as F/B ratio and Treg/Th17 imbalance, and blunt production of autoantibodies and renal damage. Despite current limits, GM is emerging as a powerful environmental factor that could be harnessed to interfere with key mechanisms leading to SLE, preventing flares and organ damage, including LN. The aim of this review is to provide a state-of-the-art analysis of the role of GM in triggering and modulating SLE and LN on the one hand, while exploring possible therapeutic manipulation of GM to control the disease on the other hand.
Collapse
Affiliation(s)
- Emanuele Parodi
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Marialuisa Novi
- Gastroenterology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
| | - Paolo Bottino
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Edoardo La Porta
- Nephrology and Dialysis Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Guido Merlotti
- Department of Primary Care, Azienda Socio Sanitaria Territoriale (ASST) of Pavia, 27100 Pavia, Italy;
| | - Luigi Mario Castello
- Internal Medicine Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Franca Gotta
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Andrea Rocchetti
- Microbiology Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy; (F.G.); (A.R.)
| | - Marco Quaglia
- Nephrology and Dialysis Unit, SS. Antonio e Biagio e Cesare Arrigo University Hospital, 15121 Alessandria, Italy;
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
2
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
da Mota JCNL, Carvalho LM, Ribeiro AA, Souza LL, Borba EF, Roschel H, Gualano B, Nicoletti CF. Methyl-donor supplementation in women with systemic lupus erythematosus with different nutritional status: the protocol for a randomised, double-blind, placebo-controlled trial. Lupus Sci Med 2024; 11:e001279. [PMID: 39375179 PMCID: PMC11459299 DOI: 10.1136/lupus-2024-001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION DNA hypomethylation in patients with systemic lupus erythematosus (SLE) has been recently documented in the literature. Low levels of DNA methylation have been observed globally and in genes associated with immune and inflammatory pathways in SLE's CD4+T lymphocytes. Given that certain micronutrients can either donate methyl groups within one-carbon metabolism pathways or serve as cofactors for enzymes involved in the DNA methylation process, this randomised, double-blind, placebo-controlled trial aims to investigate whether a 3-month supplementation of folic acid and vitamin B12 will modulate the DNA methylation profile in subcutaneous adipose tissue (primary outcome) of women with SLE and normal weight or excess body weight. As secondary objectives, we will assess gene expression, telomere length and phenotypic characteristics (ie, clinical parameters, body weight and composition, abdominal circumference, food intake and disordered eating attitude, physical activity, lipid profile, serum concentrations of leptin, adiponectin, and cytokines). METHODS AND ANALYSIS Patients will be classified according to their nutritional status by body mass index in normal weight or excess body weight. Subsequently, patients in each group will be randomly assigned to either a placebo or an intervention group (folic acid (400 mcg) and vitamin B12 (2000 mcg) supplementation). Endpoint evaluations will be conducted using both intention-to-treat and per-protocol analyses. This study has the potential to design new personalised nutritional approaches as adjunctive therapy for patients with SLE. ETHICS AND DISSEMINATION This study has been reviewed and approved by the Ethical Committee from Clinical Hospital of the School of Medicine of the University of Sao Paulo, Brazil (CAAE.: 47317521.8.0000.0068). TRIAL REGISTRATION NUMBER NCT05097365 (first version).
Collapse
Affiliation(s)
| | | | | | | | - Eduardo F Borba
- Rheumatology, Universidade de Sao Paulo Faculdade de Medicina, Sao Paulo, Brazil
| | | | | | - Carolina F Nicoletti
- Rheumatology Division, Sao Paulo University Faculty of Medicine, Sao Paulo, Brazil
| |
Collapse
|
4
|
Ospelt C. Annals of the Rheumatic Diseases collection on epigenetics: from three dimensional chromatin organisation to microRNA. Ann Rheum Dis 2024; 83:821-825. [PMID: 38123909 DOI: 10.1136/ard-2023-224857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
|
5
|
Deng T, Wang Z, Geng Q, Wang Z, Jiao Y, Diao W, Xu J, Deng T, Luo J, Tao Q, Xiao C. Methylation of T and B Lymphocytes in Autoimmune Rheumatic Diseases. Clin Rev Allergy Immunol 2024; 66:401-422. [PMID: 39207646 DOI: 10.1007/s12016-024-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The role of abnormal epigenetic modifications, particularly DNA methylation, in the pathogenesis of autoimmune rheumatic diseases (ARDs) has garnered increasing attention. Lymphocyte dysfunction is a significant contributor to the pathogenesis of ARDs. Methylation is crucial for maintaining normal immune system function, and aberrant methylation can hinder lymphocyte differentiation, resulting in functional abnormalities that disrupt immune tolerance, leading to the excessive expression of inflammatory cytokines, thereby exacerbating the onset and progression of ARDs. Recent studies suggest that methylation-related factors have the potential to serve as biomarkers for monitoring the activity of ARDs. This review summarizes the current state of research on the impact of DNA and RNA methylation on the development, differentiation, and function of T and B cells and examines the progress of these epigenetic modifications in studies of six specific ARDs: systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, juvenile idiopathic arthritis, and ankylosing spondylitis. Additionally, we propose that exploring the interplay between RNA methylation and DNA methylation may represent a novel direction for understanding the pathogenesis of ARDs and developing novel treatment strategies.
Collapse
Affiliation(s)
- Tiantian Deng
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zihan Wang
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhaoran Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yi Jiao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenya Diao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- China-Japan Friendship Hospital, Peking University, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
6
|
Pan L, Liu J, Liu C, Guo L, Punaro M, Yang S. Childhood-onset systemic lupus erythematosus: characteristics and the prospect of glucocorticoid pulse therapy. Front Immunol 2023; 14:1128754. [PMID: 37638017 PMCID: PMC10448525 DOI: 10.3389/fimmu.2023.1128754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) is an autoimmune disease that results in significant damage and often needs more aggressive treatment. Compared to adult-onset SLE, cSLE has a stronger genetic background and more prevalent elevated type I Interferon expression. The management of cSLE is more challenging because the disease itself and treatment can affect physical, psychological and emotional growth and development. High dose oral glucocorticoid (GC) has become the rule for treating moderate to severe cSLE activity. However, GC-related side effects and potential toxicities are problems that cannot be ignored. Recent studies have suggested that GC pulse therapy can achieve disease remission rapidly and reduce GC-related side effects with a reduction in oral prednisone doses. This article reviews characteristics, including pathogenesis and manifestations of cSLE, and summarized the existing evidence on GC therapy, especially on GC pulse therapy in cSLE, followed by our proposal for GC therapy according to the clinical effects and pathogenesis.
Collapse
Affiliation(s)
- Lu Pan
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Jinxiang Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Congcong Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Lishuang Guo
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| | - Marilynn Punaro
- Pediatric Rheumatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Rheumatology, Texas Scottish Rite Hospital for Children, Houston, TX, United States
- Pediatric Rheumatology, Children’s Medical Center of Dallas, Dallas, TX, United States
| | - Sirui Yang
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
7
|
Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 2023; 82:999-1014. [PMID: 36792346 DOI: 10.1136/ard-2022-223741] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Research elucidating the pathogenesis of systemic lupus erythematosus (SLE) has defined two critical families of mediators, type I interferon (IFN-I) and autoantibodies targeting nucleic acids and nucleic acid-binding proteins, as fundamental contributors to the disease. On the fertile background of significant genetic risk, a triggering stimulus, perhaps microbial, induces IFN-I, autoantibody production or most likely both. When innate and adaptive immune system cells are engaged and collaborate in the autoimmune response, clinical SLE can develop. This review describes recent data from genetic analyses of patients with SLE, along with current studies of innate and adaptive immune function that contribute to sustained IFN-I pathway activation, immune activation and autoantibody production, generation of inflammatory mediators and tissue damage. The goal of these studies is to understand disease mechanisms, identify therapeutic targets and stimulate development of therapeutics that can achieve improved outcomes for patients.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
8
|
Fragoso-Bargas N, Page CM, Joubert BR, London SJ, Lee-Ødegård S, Opsahl JO, Sletner L, Jenum AK, Qvigstad E, Prasad RB, Moen GH, Birkeland KI, Sommer C. Epigenome-wide association study of serum folate in maternal peripheral blood leukocytes. Epigenomics 2023; 15:39-52. [PMID: 36974632 PMCID: PMC10072132 DOI: 10.2217/epi-2022-0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Aim: To perform an epigenome-wide association study (EWAS) of serum folate in maternal blood. Methods: Cross-ancestry (Europeans = 302, South Asians = 161) and ancestry-specific EWAS in the EPIPREG cohort were performed, followed by methyl quantitative trait loci analysis and association with cardiometabolic phenotypes. Replication was attempted using maternal folate intake and blood methylation data from the MoBa study and verified if the findings were significant in a previous EWAS of maternal serum folate in cord blood. Results & conclusion: cg19888088 (cross-ancestry) in EBF3, cg01952260 (Europeans) and cg07077240 (South Asians) in HERC3 were associated with serum folate. cg19888088 and cg01952260 were associated with diastolic blood pressure. cg07077240 was associated with variants in CASC15. The findings were not replicated and were not significant in cord blood.
Collapse
Affiliation(s)
- Nicolas Fragoso-Bargas
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Christian M Page
- Centre for Fertility & Health, Norwegian Institute of Public Health, 0403, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics & Natural Sciences, University of Oslo, 0315, Oslo, Norway
| | - Bonnie R Joubert
- Department of Health & Human Services, Population Health Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Stephanie J London
- Department of Health & Human Services, Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Julia O Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Line Sletner
- Department of Pediatric & Adolescents Medicine, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Anne K Jenum
- Department of General Practice, Institute of Health & Society, University of Oslo, 0318, Oslo, Norway
| | - Elisabeth Qvigstad
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Rashmi B Prasad
- Lund University Diabetes Centre, 214 28, Malmö, Sweden
- Institute for Molecular Medicine Finland FIMM, Helsinki University, 00014, Helsinki, Finland
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
- Institute of Molecular Biosciences, The University of Queensland, St Lucia QLD 4072, Australia
- Department of Public Health & Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science & Technology, 7491, Trondheim, Norway
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, Australia
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 1QU, Bristol, United Kingdom
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
| |
Collapse
|