1
|
Kitahara K, Ebata T, Liyile C, Nishida Y, Ogawa Y, Tokuhiro T, Shiota J, Nagano T, Takasuka TE, Endo T, Shimizu T, Alhasan H, Asano T, Takahashi D, Homan K, Onodera T, Kadoya K, Terkawi MA, Iwasaki N. Chondroprotective functions of neutrophil-derived extracellular vesicles by promoting the production of secreted frizzled-related protein 5 in cartilage. Cell Commun Signal 2024; 22:569. [PMID: 39604981 PMCID: PMC11603793 DOI: 10.1186/s12964-024-01953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common degenerative joint disease characterized by cartilage degradation and various degrees of inflammation in the synovium. Growing evidence highlights that neutrophil extracellular vesicles (EVs) play a protective role in arthritic joints by promoting the resolution of inflammation and the synthesis of proteoglycans in cartilage. However, this homeostatic function is dependent on the activation state of neutrophils and the surrounding environment/tissues. Hence, we explored the chondroprotective functions of neutrophil-derived EVs under different stimulation conditions and the underlying molecular mechanism. METHODS Human blood-derived neutrophils, murine bone marrow-derived neutrophils, C-28I2 cells and primary chondrocytes were used. Neutrophils were stimulated with different cytokines, and their EVs were isolated for chondrocyte stimulation and further subjected to RNA-sequencing analysis. Two experimental murine OA models were used, and the treatment was performed by intraarticular injections. RESULTS Conditioned medium from neutrophils stimulated with TGF-β (N-β) had the greatest inhibitory effect on the expression of catabolic factors in stimulated chondrocytes. These protective effects were not impaired when conditioned medium of N-β from AnxA1-deficient mice was used. Consistent with these results, EVs isolated from N-β significantly reduced the expression of catabolic factors in stimulated chondrocytes. Bulk RNA-seq analysis revealed that secreted frizzled-related protein 5 (SFRP5) is upregulated in N-β-EV-stimulated chondrocytes. Furthermore, recombinant SFRP5 treatment significantly reduced the expression of catabolic factors in vitro and catabolic process in experimental murine OA models. CONCLUSIONS The current study emphasizes the potential therapeutic application of neutrophils in OA and provides new knowledge on the molecular mechanisms underlying their function.
Collapse
Affiliation(s)
- Keita Kitahara
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Chen Liyile
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yoshio Nishida
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yuki Ogawa
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taiki Tokuhiro
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Junki Shiota
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tatsuya Nagano
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 060-8589, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 060-8589, Japan
| | - Tsutomu Endo
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tsuyoshi Asano
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - M Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
2
|
Schrenker S, Cucchiarini M, Goebel L, Oláh T, Venkatesan JK, Schmitt G, Speicher-Mentges S, Maihöfer J, Gao L, Zurakowski D, Menger MD, Laschke MW, Madry H. In vivo rAAV-mediated human TGF-β overexpression reduces perifocal osteoarthritis and improves osteochondral repair in a large animal model at one year. Osteoarthritis Cartilage 2023; 31:467-481. [PMID: 36481450 DOI: 10.1016/j.joca.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a serious consequence of focal osteochondral defects. Gene transfer of human transforming growth factor beta (hTGF-β) with recombinant adeno-associated virus (rAAV) vectors offers a strategy to improve osteochondral repair. However, the long-term in vivo effects of such rAAV-mediated TGF-β overexpression including its potential benefits on OA development remain unknown. METHOD Focal osteochondral defects in minipig knees received rAAV-lacZ (control) or rAAV-hTGF-β in vivo. After one year, osteochondral repair and perifocal OA were visualized using validated macroscopic scoring, ultra-high-field MRI at 9.4 T, and micro-CT. A quantitative estimation of the cellular densities and a validated semi-quantitative scoring of histological and immunohistological parameters completed the analysis of microarchitectural parameters. RESULTS Direct rAAV-hTGF-β application induced and maintained significantly improved defect filling and safranin O staining intensity and overall cartilage repair at one year in vivo. In addition, rAAV-hTGF-β led to significantly higher chondrocyte densities within the cartilaginous repair tissue without affecting chondrocyte hypertrophy and minimized subarticular trabecular separation. Of note, rAAV-hTGF-β significantly improved the adjacent cartilage structure and chondrocyte density and reduced overall perifocal OA development after one year in vivo. CONCLUSIONS rAAV-hTGF-β treatment improves long-term osteochondral repair and delays the progression of perifocal OA in a translational model. These findings have considerable potential for targeted molecular approaches to treat focal osteochondral defects.
Collapse
Affiliation(s)
- S Schrenker
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| | - M Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| | - L Goebel
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| | - T Oláh
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| | - J K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| | - G Schmitt
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| | - S Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| | - J Maihöfer
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| | - L Gao
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| | - D Zurakowski
- Departments of Anesthesia and Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, USA.
| | - M D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| | - M W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| | - H Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421, Homburg, Saar, Germany.
| |
Collapse
|
3
|
Yu W, Hu B, Boakye-Yiadom KO, Ho W, Chen Q, Xu X, Zhang XQ. Injectable hydrogel mediated delivery of gene-engineered adipose-derived stem cells for enhanced osteoarthritis treatment. Biomater Sci 2021; 9:7603-7616. [PMID: 34671794 DOI: 10.1039/d1bm01122g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoarthritis (OA), a chronic and degenerative joint disease, remains a challenge in treatment due to the lack of disease-modifying therapies. As a promising therapeutic agent, adipose-derived stem cells (ADSCs) have an effective anti-inflammatory and chondroprotective paracrine effect that can be enhanced by genetic modification. Unfortunately, direct cell delivery without matrix support often results in poor viability of therapeutic cells. Herein, a hydrogel implant approach that enabled intra-articular delivery of gene-engineered ADSCs was developed for improved therapeutic outcomes in a surgically induced rat OA model. An injectable extracellular matrix (ECM)-mimicking hydrogel was prepared as the carrier for cell delivery, providing a favorable microenvironment for ADSC spreading and proliferation. The ECM-mimicking hydrogel could reduce cell death during and post injection. Additionally, ADSCs were genetically modified to overexpress transforming growth factor-β1 (TGF-β1), one of the paracrine factors that exert an anti-inflammatory and pro-anabolic effect. The gene-engineered ADSCs overexpressing TGF-β1 (T-ADSCs) had an enhanced paracrine effect on OA-like chondrocytes, which effectively decreased the expression of tumor necrosis factor-alpha and increased the expression of collagen II and aggrecan. In a surgically induced rat OA model, intra-articular injection of the T-ADSC-loaded hydrogel markedly reduced cartilage degeneration, joint inflammation, and the loss of the subchondral bone. Taken together, this study provides a potential biomaterial strategy for enhanced OA treatment by delivering the gene-engineered ADSCs within an ECM-mimicking hydrogel.
Collapse
Affiliation(s)
- Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Kofi Oti Boakye-Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - William Ho
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Qijing Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
4
|
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6:4110-4140. [PMID: 33997497 PMCID: PMC8091181 DOI: 10.1016/j.bioactmat.2021.03.043] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-tissue defects affect millions of people worldwide. Despite being common treatment approaches, autologous and allogeneic bone grafting have not achieved the ideal therapeutic effect. This has prompted researchers to explore novel bone-regeneration methods. In recent decades, the development of bone tissue engineering (BTE) scaffolds has been leading the forefront of this field. As researchers have provided deep insights into bone physiology and the bone-healing mechanism, various biomimicking and bioinspired BTE scaffolds have been reported. Now it is necessary to review the progress of natural bone physiology and bone healing mechanism, which will provide more valuable enlightenments for researchers in this field. This work details the physiological microenvironment of the natural bone tissue, bone-healing process, and various biomolecules involved therein. Next, according to the bone physiological microenvironment and the delivery of bioactive factors based on the bone-healing mechanism, it elaborates the biomimetic design of a scaffold, highlighting the designing of BTE scaffolds according to bone biology and providing the rationale for designing next-generation BTE scaffolds that conform to natural bone healing and regeneration.
Collapse
Affiliation(s)
- Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yazhen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
5
|
Zhang W, Xia Y, Ling Y, Yang W, Dong ZX, Wang DA, Fan C. A Transcriptome Sequencing Study on Genome-Wide Gene Expression Differences of 3D Cultured Chondrocytes in Hydrogel Scaffolds with Different Gel Density. Macromol Biosci 2020; 20:e2000028. [PMID: 32187455 DOI: 10.1002/mabi.202000028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Hydrogel is considered as a promising cell delivery vehicle in cartilage tissue engineering, whose tunable microenvironments may influence the function and fate of encapsulated chondrocytes. Here, the transcriptomes of chondrocytes that are encapsulated and cultured in hydrogel constructs respectively made of 0.8% and 4% alginate solution are investigated. Differences in chondrocyte transcriptome are detected via RNA-sequencing from these two cultural conditions. The differentially expressed genes (DEGs) are reflected in extracellular matrix (ECM) secretion, cell cycle, proliferation, cartilage development, and so on. Significantly, the expression of DEGs associated with cartilage ECM and cell proliferation are upregulated in 0.8% constructs; whilst the expressions of DEGs involved in cell cycle and matrix degradation are upregulated in 4% constructs. Moreover, interestingly, the expressions of chondrocyte hypertrophy markers are upregulated in 0.8% constructs; while 4% constructs seemingly favor the long-term maintenance of chondrocyte phenotype. Taken together, this study confirms on transcriptomic level that gel density affects gene expression and phenotype of the encapsulated chondrocytes; therefore, it may provide guidance for future design and fabrication of cartilage tissue engineering scaffolds.
Collapse
Affiliation(s)
- Weiyuan Zhang
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Ling
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wei Yang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Zuo-Xiang Dong
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, 266021, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Changjiang Fan
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China.,Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
6
|
Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019; 8:cells8090969. [PMID: 31450621 PMCID: PMC6769927 DOI: 10.3390/cells8090969] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the TGFβs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFβ family in cartilage biology by listing several TGFβ family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFβ family signaling, leading to disturbed cartilage metabolism and disease.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Seidel SRT, Vendruscolo CP, Moreira JJ, Fülber J, Ottaiano TF, Oliva MLV, Michelacci YM, Baccarin RYA. Does Double Centrifugation Lead to Premature Platelet Aggregation and Decreased TGF-β1 Concentrations in Equine Platelet-Rich Plasma? Vet Sci 2019; 6:vetsci6030068. [PMID: 31438534 PMCID: PMC6789863 DOI: 10.3390/vetsci6030068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022] Open
Abstract
Blood-derived autologous products are frequently used in both human and equine medicine to treat musculoskeletal disorders. These products, especially the platelet-rich plasma (PRP), may contain high concentrations of growth factors (GFs), and thus improve healing in several tissues. Nevertheless, the procedures for preparation of PRP are currently non-standardized. Several protocols, which are based on distinct centrifugation patterns (rotation speed and time), result in PRPs with different characteristics, concerning platelet and GFs concentrations, as well as platelet activation. The aim of the present study was to compare two different protocols for PRP preparation: protocol (A) that is based on a single-centrifugation step; protocol (B), which included two sequential centrifugation steps (double-centrifugation). The results here reported show that the double-centrifugation protocol resulted in higher platelet concentration, while leukocytes were not concentrated by this procedure. Although platelet activation and aggregation were increased in this protocol in comparison to the single-centrifugation one, the TGF-β1 concentration was also higher. Pearson’s correlation coefficients gave a significant, positive correlation between the platelet counts and TGF-β1 concentration. In conclusion, although the double-centrifugation protocol caused premature platelet aggregation, it seems to be an effective method for preparation of PRP with high platelet and TGF-β1 concentrations.
Collapse
Affiliation(s)
- Sarah R T Seidel
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil.
| | - Cynthia P Vendruscolo
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Juliana J Moreira
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Joice Fülber
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Tatiana F Ottaiano
- Departamento de Bioquímica, Escola Paulista de Medicina, UNIFESP, São Paulo 04023-062, Brazil
| | - Maria L V Oliva
- Departamento de Bioquímica, Escola Paulista de Medicina, UNIFESP, São Paulo 04023-062, Brazil
| | - Yara M Michelacci
- Departamento de Bioquímica, Escola Paulista de Medicina, UNIFESP, São Paulo 04023-062, Brazil
| | - Raquel Y A Baccarin
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil.
| |
Collapse
|
8
|
Wiegertjes R, van Caam A, van Beuningen H, Koenders M, van Lent P, van der Kraan P, van de Loo F, Blaney Davidson E. TGF-β dampens IL-6 signaling in articular chondrocytes by decreasing IL-6 receptor expression. Osteoarthritis Cartilage 2019; 27:1197-1207. [PMID: 31054955 DOI: 10.1016/j.joca.2019.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Transforming growth factor-β (TGF-β) is an important homeostatic regulator of cartilage. In contrast, interleukin-6 (IL-6) is a pro-inflammatory cytokine implicated in cartilage degeneration. Cross-talk between TGF-β and IL-6 is reported in tissues other than articular cartilage. Here, we investigated regulation of IL-6 signaling by TGF-β in articular chondrocytes. DESIGN Human primary chondrocytes and the human G6 chondrocyte cell line were stimulated with TGF-β1 or interleukin-1β (IL-1β). Expression of IL-6 and IL-6 receptor (IL-6R) was determined on mRNA and protein level. TGF-β regulation of IL-6 signaling via phosho-STAT3 (p-STAT3) was determined using Western blot, in presence of inhibitors for IL-6R, and Janus kinase(JAK)- and activin receptor-like kinase ALK)5 kinase activity. Furthermore, induction of STAT3-responsive genes was used as a read-out for IL-6 induced gene expression. RESULTS TGF-β1 increased IL-6 mRNA and protein expression in both G6 and primary chondrocytes. Moreover, TGF-β1 stimulation clearly induced p-STAT3), which was abolished by inhibition of either IL-6R, JAK- or ALK5 kinase activity. However, TGF-β1 did not increase expression of the STAT3-responsive gene SOCS3 and pre-treatment with TGF-β1 even inhibited induction of p-STAT3 and SOCS3 by rhIL-6. Interestingly, TGF-β1 potently decreased IL-6R expression. In contrast, IL-1β did increase IL-6 levels, but did not affect IL-6R expression. Finally, addition of recombinant IL-6R abolished the inhibitory effect of TGF-β1 on IL-6-induced p-STAT3 and downstream SOCS3, BCL3, SAA1 and MMP1 expression. CONCLUSIONS In this study we show that TGF-β decreases IL-6R expression, thereby dampening IL-6 signaling in chondrocytes. This reveals a novel effect of TGF-β, possibly important to restrict pro-inflammatory IL-6 effects to preserve cartilage homeostasis.
Collapse
Affiliation(s)
- R Wiegertjes
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A van Caam
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - H van Beuningen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M Koenders
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P van Lent
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P van der Kraan
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - F van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E Blaney Davidson
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect. Biomaterials 2019; 192:323-333. [DOI: 10.1016/j.biomaterials.2018.11.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/26/2023]
|
10
|
The role of photonics and natural curing agents of TGF-β1 in treatment of osteoarthritis. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.04.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Rey-Rico A, Venkatesan JK, Schmitt G, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M. rAAV-mediated overexpression of TGF-β via vector delivery in polymeric micelles stimulates the biological and reparative activities of human articular chondrocytes in vitro and in a human osteochondral defect model. Int J Nanomedicine 2017; 12:6985-6996. [PMID: 29033566 PMCID: PMC5614797 DOI: 10.2147/ijn.s144579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are clinically adapted vectors to durably treat human osteoarthritis (OA). Controlled delivery of rAAV vectors via polymeric micelles was reported to enhance the temporal and spatial presentation of the vectors into their targets. Here, we tested the feasibility of delivering rAAV vectors via poly (ethylene oxide) (PEO) and poly (propylene oxide) (PPO) (poloxamer and poloxamine) polymeric micelles as a means to overexpress the therapeutic factor transforming growth factor-beta (TGF-β) in human OA chondrocytes and in experimental human osteochondral defects. Application of rAAV-human transforming growth factor-beta using such micelles increased the levels of TGF-β transgene expression compared with free vector treatment. Overexpression of TGF-β with these systems resulted in higher proteoglycan deposition and increased cell numbers in OA chondrocytes. In osteochondral defect cultures, a higher deposition of type-II collagen and reduced hypertrophic events were noted. Delivery of therapeutic rAAV vectors via PEO-PPO-PEO micelles may provide potential tools to remodel human OA cartilage.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg, Germany
| | - Angel Concheiro
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, R+ DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Henning Madry
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg, Germany.,Department of Orthopedics and Orthopedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Carmen Alvarez-Lorenzo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, R+ DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
12
|
Wen ZH, Tang CC, Chang YC, Huang SY, Lin YY, Hsieh SP, Lee HP, Lin SC, Chen WF, Jean YH. Calcitonin attenuates cartilage degeneration and nociception in an experimental rat model of osteoarthritis: role of TGF-β in chondrocytes. Sci Rep 2016; 6:28862. [PMID: 27345362 PMCID: PMC4921823 DOI: 10.1038/srep28862] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
We investigated the role of the calcitonin (Miacalcin) in the progression of osteoarthritis (OA) and in nociceptive behavior in an experimental rat model of OA and osteoporosis. OA was induced by anterior cruciate ligament transection (ACLT) of the right knee and by bilateral ovariectomy (OVX) in Wistar rats. Nociceptive behaviors (secondary mechanical allodynia and weight-bearing distribution of the hind paws) were analyzed prior to surgery and every week, beginning at 12 weeks after surgery, up to 20 weeks. At 20 weeks, histopathological studies were performed on the cartilage of the knee joints. Immunohistochemical analysis was performed to examine the effect of calcitonin on transforming growth factor (TGF)-β1 expression in articular cartilage chondrocytes. Rats subjected to ACLT + OVX surgery showed obvious OA changes in the joints. Animals subjected to ACLT + OVX and treated with calcitonin showed significantly less cartilage degeneration and improved nociceptive tests compared with animals subjected to ACLT + OVX surgeries alone. Moreover, calcitonin increased TGF-β1 expression in chondrocytes in ACLT + OVX-affected cartilage. Subcutaneous injection of calcitonin (1) attenuated the development of OA, (2) concomitantly reduced nociception, and (3) modulated chondrocyte metabolism, possibly by increasing cellular TGF-β1 expression.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology &Resources, and Center for Translational Biopharmaceuticals, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chi-Chieh Tang
- Department of Early Childhood Education, National Pintung University, Taiwan
| | - Yi-Chen Chang
- Department of Marine Biotechnology &Resources, and Center for Translational Biopharmaceuticals, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shi-Ying Huang
- Department of Marine Biotechnology &Resources, and Center for Translational Biopharmaceuticals, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yen-You Lin
- Department of Marine Biotechnology &Resources, and Center for Translational Biopharmaceuticals, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shih-Peng Hsieh
- Section of Pathology, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Hsin-Pai Lee
- Section of Pathology, Pingtung Christian Hospital, Pingtung, Taiwan.,Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Sung-Chun Lin
- Section of Pathology, Pingtung Christian Hospital, Pingtung, Taiwan.,Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Wu-Fu Chen
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| |
Collapse
|
13
|
Madej W, Buma P, van der Kraan P. Inflammatory conditions partly impair the mechanically mediated activation of Smad2/3 signaling in articular cartilage. Arthritis Res Ther 2016; 18:146. [PMID: 27334538 PMCID: PMC4918093 DOI: 10.1186/s13075-016-1038-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/31/2016] [Indexed: 01/14/2023] Open
Abstract
Background Joint trauma, which is frequently related with mechanical overloading of articular cartilage, is a well-established risk for osteoarthritis (OA) development. Additionally, reports show that trauma leads to synovial joint inflammation. In consequence, after joint trauma, cartilage is influenced by deleterious excessive loading combined with the catabolic activity of proinflammatory mediators. Since the activation of TGF-β signaling by loading is considered to be a key regulatory pathway for maintaining cartilage homeostasis, we tested the effect of proinflammatory conditions on mechanically mediated activation of TGF-β/Smad2/3P signaling in cartilage. Methods Cartilage explants were subjected to dynamic mechanical compression in the presence of interleukin-1 beta (IL-1β) or osteoarthritic synovium-conditioned medium (OAS-CM). Subsequently, the activation of the Smad2/3P pathway was monitored with QPCR analysis of reporter genes and additionally the expression of receptors activating the Smad2/3P pathway was analyzed. Finally, the ability for mechanically mediated activation of Smad2/3P was tested in human OA cartilage. Results IL-1β presence during compression did not impair the upregulation of Smad2/3P reporter genes, however the results were affected by IL-1β-mediated upregulations in unloaded controls. OAS-CM significantly impaired the compression-mediated upregulation of bSmad7 and Tgbfb1. IL-1β suppressed the compression-mediated bAlk5 upregulation where 12 MPa compression applied in the presence of OAS-CM downregulated the bTgfbr2. Mechanically driven upregulation of Smad2/3P reporter genes was present in OA cartilage. Conclusions Proinflammatory conditions partly impair the mechanically mediated activation of the protective TGF-β/Smad2/3P pathway. Additionally, the excessive mechanical compression, applied in the presence of proinflammatory conditions diminishes the expression of the type II TGF-β receptor, a receptor critical for maintenance of articular cartilage.
Collapse
Affiliation(s)
- Wojciech Madej
- Orthopedic Research Laboratory, Radboud University Medical Center, Geert Grooteplein-Zuid 10, route 547, 6525, GA, Nijmegen, The Netherlands.,Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 26-28, route 272, 6525, GA, Nijmegen, The Netherlands
| | - Pieter Buma
- Orthopedic Research Laboratory, Radboud University Medical Center, Geert Grooteplein-Zuid 10, route 547, 6525, GA, Nijmegen, The Netherlands
| | - Peter van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 26-28, route 272, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Headland SE, Jones HR, Norling LV, Kim A, Souza PR, Corsiero E, Gil CD, Nerviani A, Dell'Accio F, Pitzalis C, Oliani SM, Jan LY, Perretti M. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci Transl Med 2015; 7:315ra190. [PMID: 26606969 PMCID: PMC6034622 DOI: 10.1126/scitranslmed.aac5608] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microvesicles (MVs) are emerging as a new mechanism of intercellular communication by transferring cellular lipid and protein components to target cells, yet their function in disease is only now being explored. We found that neutrophil-derived MVs were increased in concentration in synovial fluid from rheumatoid arthritis patients compared to paired plasma. Synovial MVs overexpressed the proresolving, anti-inflammatory protein annexin A1 (AnxA1). Mice deficient in TMEM16F, a lipid scramblase required for microvesiculation, exhibited exacerbated cartilage damage when subjected to inflammatory arthritis. To determine the function of MVs in inflammatory arthritis, toward the possibility of MV-based therapeutics, we examined the role of immune cell-derived MVs in rodent models and in human primary chondrocytes. In vitro, exogenous neutrophil-derived AnxA1(+) MVs activated anabolic gene expression in chondrocytes, leading to extracellular matrix accumulation and cartilage protection through the reduction in stress-adaptive homeostatic mediators interleukin-8 and prostaglandin E2. In vivo, intra-articular injection of AnxA1(+) MV lessened cartilage degradation caused by inflammatory arthritis. Arthritic mice receiving adoptive transfer of whole neutrophils displayed abundant MVs within cartilage matrix and revealed that MVs, but not neutrophils themselves, can penetrate cartilage. Mechanistic studies support a model whereby MV-associated AnxA1 interacts with its receptor FPR2 (formyl peptide receptor 2)/ALX, increasing transforming growth factor-β production by chondrocytes, ultimately leading to cartilage protection. We envisage that MVs, either directly or loaded with therapeutics, can be harnessed as a unique therapeutic strategy for protection in diseases associated with cartilage degeneration.
Collapse
Affiliation(s)
- Sarah E Headland
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hefin R Jones
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Lucy V Norling
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Kim
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patricia R Souza
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Elisa Corsiero
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Cristiane D Gil
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil
| | - Alessandra Nerviani
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Francesco Dell'Accio
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Department of Rheumatology, Barts Health Trust, Bancroft Road, London E1 4DG, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Department of Rheumatology, Barts Health Trust, Bancroft Road, London E1 4DG, UK
| | - Sonia M Oliani
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil
| | - Lily Y Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
15
|
Blaney Davidson EN, Vitters EL, Bennink MB, van Lent PLEM, van Caam APM, Blom AB, van den Berg WB, van de Loo FAJ, van der Kraan PM. Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Ann Rheum Dis 2015; 74:1257-64. [PMID: 24448347 DOI: 10.1136/annrheumdis-2013-204528] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/21/2013] [Indexed: 11/03/2022]
Abstract
OBJECTIVES In osteoarthritis (OA) chondrocytes surrounding lesions express elevated bone morphogenetic protein 2 (BMP2) levels. To investigate the functional consequence of chondrocyte-specific BMP2 expression, we made a collagen type II dependent, doxycycline (dox)-inducible BMP2 transgenic mouse and studied the effect of elevated BMP2 expression on healthy joints and joints with experimental OA. METHODS We cloned a lentivirus with BMP2 controlled by a tet-responsive element and transfected embryos of mice containing a collagen type II driven cre-recombinase and floxed rtTA to gain a mouse expressing BMP2 solely in chondrocytes and only upon dox exposure (Col2-rtTA-TRE-BMP2). Mice were treated with dox to induce elevated BMP2 expression. In addition, experimental OA was induced (destabilisation of the medial meniscus model) with or without dox supplementation and knee joints were isolated for histology. RESULTS Dox treatment resulted in chondrocyte-specific upregulation of BMP2 and severely aggravated formation of osteophytes in experimental OA but not in control mice. Moreover, elevated BMP2 levels did not result in alterations in articular cartilage of young healthy mice, although BMP2-exposure did increase VDIPEN expression in the articular cartilage. Strikingly, despite apparent changes in knee joint morphology due to formation of large osteophytes there were no detectible differences in articular cartilage: none with regard to structural damage nor in Safranin O staining intensity when comparing destabilisation of the medial meniscus with or without dox exposure. CONCLUSIONS Our data show that chondrocyte-specific elevation of BMP2 levels does not alter the course of cartilage damage in an OA model in young mice but results in severe aggravation of osteophyte formation.
Collapse
Affiliation(s)
- E N Blaney Davidson
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E L Vitters
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M B Bennink
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A P M van Caam
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W B van den Berg
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - F A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Elmallah RK, Cherian JJ, Jauregui JJ, Pierce TP, Beaver WB, Mont MA. Genetically modified chondrocytes expressing TGF-β1: a revolutionary treatment for articular cartilage damage? Expert Opin Biol Ther 2015; 15:455-64. [PMID: 25645308 DOI: 10.1517/14712598.2015.1009886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Currently, joint arthroplasty remains the only definitive management of osteoarthritis, while other treatment modalities only provide temporary and symptomatic relief. The use of genetically engineered chondrocytes is currently undergoing clinical trials. Specifically, it has been designed to induce cartilage growth and differentiation in patients with degenerative arthritis, with the aim to play a curative role in the disease process. AREAS COVERED This treatment involves the incorporation of TGF-β1, which has been determined to play an influential role in chondrogenesis and extracellular matrix synthesis. Using genetic manipulation and viral transduction, TGF-β1 is incorporated into human chondrocytes and administered in a minimally invasive fashion directly to the affected joint. Following a database literature search, we evaluated the current evidence on this product and its outcomes. Furthermore, we also briefly reviewed other treatments developed for chondrogenesis and cartilage regeneration for comparison. EXPERT OPINION This treatment method has sustained positive effects on functional outcomes and cartilage growth in initial trials. It allows administration in a minimally invasive manner that does not require extended recovery time. Although several treatment modalities are currently under investigation and appear promising, we hope that these effects can be sustained in further studies. Ultimately, we anticipate that the results may be reproducible in many clinical settings and allow us to effectively treat cartilage damage in patients with degenerative arthritis.
Collapse
Affiliation(s)
- Randa K Elmallah
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Center for Joint Preservation and Replacement , 2401 West Belvedere Avenue, Baltimore, MD 21215 , USA +1 410 601 8500 ; +1 410 601 8501 ; ;
| | | | | | | | | | | |
Collapse
|
17
|
Signaling pathways in cartilage repair. Int J Mol Sci 2014; 15:8667-98. [PMID: 24837833 PMCID: PMC4057753 DOI: 10.3390/ijms15058667] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 12/29/2022] Open
Abstract
In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair.
Collapse
|
18
|
Parekh R, Lorenzo MK, Shin SY, Pozzi A, Clark AL. Integrin α1β1 differentially regulates cytokine-mediated responses in chondrocytes. Osteoarthritis Cartilage 2014; 22:499-508. [PMID: 24418674 PMCID: PMC4028170 DOI: 10.1016/j.joca.2013.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/07/2013] [Accepted: 12/25/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To elucidate the role of integrin α1β1 in chondrocyte responses to inflammatory interleukin-1α (IL-1) and anabolic transforming growth factor-β1 (TGF-β1) in the knee. METHODS Intracellular calcium transient responses to IL-1 and TGF-β1 were measured in wild type and integrin α1-null chondrocytes using real time ex vivo confocal microscopy, and immunohistochemistry was performed to analyze TGF-β1-mediated activation of Smad2/3 in tibial and femoral chondrocytes. RESULTS Loss of integrin α1β1 reduces intracellular calcium transient response to IL-1, while it enhances chondrocyte responses to TGF-β1 as measured by intracellular calcium transients and activation of downstream Smad2/3. CONCLUSIONS Integrin α1β1 plays a vital role in mediating chondrocyte responses to two contrasting factors that are critical players in the onset and progression of osteoarthritis - inflammatory IL-1 and anabolic TGF-β. Further investigation into the molecular mechanisms by which integrin α1β1 mediates these responses will be an important next step in understanding the influence of increased expression of integrin α1β1 during the early stages of osteoarthritis on disease progression.
Collapse
Affiliation(s)
- R Parekh
- Faculty of Science, The University of Calgary, Calgary, AB, Canada
| | - MK Lorenzo
- Faculty of Science, The University of Calgary, Calgary, AB, Canada
| | - SY Shin
- Faculty of Kinesiology, The University of Calgary, Calgary, AB, Canada
| | - A Pozzi
- Department of Medicine, Vanderbilt University, Nashville, TN, USA,Department of Medicine, Veterans Affairs Hospital, Nashville, TN, USA
| | - AL Clark
- Faculty of Kinesiology, The University of Calgary, Calgary, AB, Canada,Department of Surgery, Faculty of Medicine, The University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Lugo JP, Saiyed ZM, Lau FC, Molina JPL, Pakdaman MN, Shamie AN, Udani JK. Undenatured type II collagen (UC-II®) for joint support: a randomized, double-blind, placebo-controlled study in healthy volunteers. J Int Soc Sports Nutr 2013; 10:48. [PMID: 24153020 PMCID: PMC4015808 DOI: 10.1186/1550-2783-10-48] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND UC-II contains a patented form of undenatured type II collagen derived from chicken sternum. Previous preclinical and clinical studies support the safety and efficacy of UC-II in modulating joint discomfort in osteoarthritis and rheumatoid arthritis. The purpose of this study was to assess the efficacy and tolerability of UC-II in moderating joint function and joint pain due to strenuous exercise in healthy subjects. METHODS This randomized, double-blind, placebo-controlled study was conducted in healthy subjects who had no prior history of arthritic disease or joint pain at rest but experienced joint discomfort with physical activity. Fifty-five subjects who reported knee pain after participating in a standardized stepmill performance test were randomized to receive placebo (n = 28) or the UC-II (40 mg daily, n = 27) product for 120 days. Joint function was assessed by changes in degree of knee flexion and knee extension as well as measuring the time to experiencing and recovering from joint pain following strenuous stepmill exertion. RESULTS After 120 days of supplementation, subjects in the UC-II group exhibited a statistically significant improvement in average knee extension compared to placebo (81.0 ± 1.3º vs 74.0 ± 2.2º; p = 0.011) and to baseline (81.0 ± 1.3º vs 73.2 ± 1.9º; p = 0.002). The UC-II cohort also demonstrated a statistically significant change in average knee extension at day 90 (78.8 ± 1.9º vs 73.2 ± 1.9º; p = 0.045) versus baseline. No significant change in knee extension was observed in the placebo group at any time. It was also noted that the UC-II group exercised longer before experiencing any initial joint discomfort at day 120 (2.8 ± 0.5 min, p = 0.019), compared to baseline (1.4 ± 0.2 min). By contrast, no significant changes were seen in the placebo group. No product related adverse events were observed during the study. At study conclusion, five individuals in the UC-II cohort reported no pain during or after the stepmill protocol (p = 0.031, within visit) as compared to one subject in the placebo group. CONCLUSIONS Daily supplementation with 40 mg of UC-II was well tolerated and led to improved knee joint extension in healthy subjects. UC-II also demonstrated the potential to lengthen the period of pain free strenuous exertion and alleviate the joint pain that occasionally arises from such activities.
Collapse
Affiliation(s)
- James P Lugo
- InterHealth Nutraceuticals, Benicia, CA 94510, USA
| | | | | | | | - Michael N Pakdaman
- Medicus Research LLC, 28720 Roadside Drive, Suite 310, Agoura Hills, CA 91301, USA
| | | | - Jay K Udani
- Medicus Research LLC, 28720 Roadside Drive, Suite 310, Agoura Hills, CA 91301, USA
- Northridge Hospital Integrative Medicine Program, Northridge, CA 91325, USA
| |
Collapse
|
20
|
Venkatesan JK, Rey-Rico A, Schmitt G, Wezel A, Madry H, Cucchiarini M. rAAV-mediated overexpression of TGF-β stably restructures human osteoarthritic articular cartilage in situ. J Transl Med 2013; 11:211. [PMID: 24034904 PMCID: PMC3847562 DOI: 10.1186/1479-5876-11-211] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/11/2013] [Indexed: 11/16/2022] Open
Abstract
Background Therapeutic gene transfer is of significant value to elaborate efficient, durable treatments against human osteoarthritis (OA), a slow, progressive, and irreversible disorder for which there is no cure to date. Methods Here, we directly applied a recombinant adeno-associated virus (rAAV) vector carrying a human transforming growth factor beta (TGF-β) gene sequence to primary human normal and OA chondrocytes in vitro and cartilage explants in situ to monitor the stability of transgene expression and the effects of the candidate pleiotropic factor upon the regenerative cellular activities over time. Results Efficient, prolonged expression of TGF-β achieved via rAAV gene transfer enhanced both the proliferative, survival, and anabolic activities of cells over extended periods of time in all the systems evaluated (at least for 21 days in vitro and for up to 90 days in situ) compared with control (reporter) vector delivery, especially in situ where rAAV-hTGF-β allowed for a durable remodeling of OA cartilage. Notably, sustained rAAV production of TGF-β in OA cartilage advantageously reduced the expression of key OA-associated markers of chondrocyte hypertrophic and terminal differentiation (type-X collagen, MMP-13, PTHrP, β-catenin) while increasing that of protective TIMPs and of the TGF-β receptor I in a manner that restored a favorable ALK1/ALK5 balance. Of note, the levels of activities in TGF-β-treated OA cartilage were higher than those of normal cartilage, suggesting that further optimization of the candidate treatment (dose, duration, localization, presence of modulating co-factors) will most likely be necessary to reproduce an original cartilage surface in relevant models of experimental OA in vivo without triggering potentially adverse effects. Conclusions The present findings show the ability of rAAV-mediated TGF-β gene transfer to directly remodel human OA cartilage by activating the biological, reparative activities and by regulating hypertrophy and terminal differentiation in damaged chondrocytes as a potential treatment for OA or for other disorders of the cartilage that may require transplantation of engineered cells.
Collapse
Affiliation(s)
- Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, Homburg/Saar 66421, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Pulsatelli L, Addimanda O, Brusi V, Pavloska B, Meliconi R. New findings in osteoarthritis pathogenesis: therapeutic implications. Ther Adv Chronic Dis 2013; 4:23-43. [PMID: 23342245 DOI: 10.1177/2040622312462734] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review focuses on the new perspectives which can provide insight into the crucial pathways that drive cartilage-bone physiopathology. In particular, we discuss the critical signaling and effector molecules that can activate cellular and molecular processes in both cartilage and bone cells and which may be relevant in cross talk among joint compartments: growth factors (bone morphogenetic proteins and transforming growth factor), hypoxia-related factors, cell-matrix interactions [discoidin domain receptor 2 (DDR2) and syndecan 4], signaling molecules [WNT, Hedgehog (Hh)]. With the continuous progression of our knowledge on the molecular pathways involved in cartilage and bone changes in osteoarthritis (OA), an increasing number of potentially effective candidates for OA therapy are already under scrutiny in clinical trials to ascertain their possible safe use in an attempt to identify molecules active in slowing or halting OA progression and reducing joint pain. We then review the principal molecules currently under clinical investigation.
Collapse
Affiliation(s)
- Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | | | | | | |
Collapse
|
22
|
Ulrich-Vinther M. Gene therapy methods in bone and joint disorders. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2010. [DOI: 10.1080/17453690610046512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
A role for age-related changes in TGFbeta signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res Ther 2010; 12:201. [PMID: 20156325 PMCID: PMC2875624 DOI: 10.1186/ar2896] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor beta (TGFβ) is a growth factor with many faces. In our osteoarthritis (OA) research we have found that TGFβ can be protective as well as deleterious for articular cartilage. We postulate that the dual effects of TGFβ on chondrocytes can be explained by the fact that TGFβ can signal via different receptors and related Smad signaling routes. On chondrocytes, TGFβ not only signals via the canonical type I receptor ALK5 but also via the ALK1 receptor. Notably, signaling via ALK5 (Smad2/3 route) results in markedly different chondrocyte responses than ALK1 signaling (Smad1/5/8), and we postulate that the balance between ALK5 and ALK1 expression on chondrocytes will determine the overall effect of TGFβ on these cells. Importantly, signaling via ALK1, but not ALK5, stimulates MMP-13 expression by chondrocytes. In cartilage of ageing mice and in experimental OA models we have found that the ALK1/ALK5 ratio is significantly increased, favoring TGFβ signaling via the Smad1/5/8 route, changes in chondrocyte differentiation and MMP-13 expression. Moreover, human OA cartilage showed a significant correlation between ALK1 and MMP-13 expression. In this paper we summarize concepts in OA, its link with ageing and disturbed growth factor responses, and a potential role of TGFβ signaling in OA development.
Collapse
|
24
|
Sandler EA, Frisbie DD, McIlwraith CW. A dose titration of triamcinolone acetonide on insulin-like growth factor-1 and interleukin-1-conditioned equine cartilage explants. Equine Vet J 2010; 36:58-63. [PMID: 14756373 DOI: 10.2746/0425164044864615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Previous in vitro pilot studies have defined a potentially beneficial effect of insulin-like growth factor-1 (IGF-1) and triamcinolone acetonide (TA) on interleukin-1 (IL-1)-conditioned equine cartilage. Furthermore, an optimal dose for IGF-1 treatment alone has been documented previously using the same test system as in the current project. OBJECTIVES To perform a dose titration of TA on IL-1-conditioned equine articular cartilage explants in the presence of an optimised IGF-1 dose, in order to optimise a triamcinolone concentration for use in combination with IGF-1 for future investigations. METHODS Cartilage explants were harvested from the distal femur of a normal horse. The effect of a clinically relevant TA dose range was evaluated in the presence of IL-1 and IGF-1 through measurement of proteoglycan (PG) matrix metabolism (synthesis and degradation). RESULTS TA and IGF-1 in combination inhibited the IL-1-induced release of PG matrix components (glycosaminoglycan or GAG) from the articular cartilage, as well as producing a significant increase in GAG synthesis. CONCLUSIONS This experiment provided proof of principle that a combination treatment appears to be able to combat the IL-1-induced matrix depletion, while enhancing anabolic metabolism within the articular cartilage. POTENTIAL RELEVANCE The use of IGF-1 in conjunction with TA in vivo has the potential to provide beneficial anabolic effects not seen with TA alone.
Collapse
Affiliation(s)
- E A Sandler
- Equine Orthopaedic Research Laboratory, Colorado State University, 300 West Drake, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
25
|
Djouad F, Rackwitz L, Song Y, Janjanin S, Tuan RS. ERK1/2 activation induced by inflammatory cytokines compromises effective host tissue integration of engineered cartilage. Tissue Eng Part A 2009; 15:2825-35. [PMID: 19243242 DOI: 10.1089/ten.tea.2008.0663] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Proinflammatory cytokines are known to provoke degradative signaling cascades that promote extracellular matrix disintegration in articular cartilage. Because integration of the repair tissue into the surrounding native cartilage to produce a mechanically stable interface has a profound impact on the viability and functionality of the restored joint surface, this study examined the effects of proinflammatory cytokines on the properties of tissue-engineered cartilage in the context of integration. METHODS Using an established in vitro cartilage defect model, we examined the integration of chondrocyte-laden agarose constructs into native articular cartilage and the biochemical and biomechanical alterations of these implants upon treatment with interleukin 1-beta (IL1-beta) and tumor necrosis factor-alpha (TNF-alpha). Additionally, we probed extracellular regulated kinase (ERK) signaling involvement in response to proinflammatory cytokines. RESULTS The time-dependent accumulation of extracellular matrix and concomitant increase in Young's modulus observed in the absence of cytokines was significantly decreased upon IL1-beta and TNF-alpha treatment. Push-out test showed the highest interface strength in hybrid cultures maintained without cytokines, which was significantly lowered with IL1-beta and TNF-alpha treatment. Histological characteristics of the interface region are consistent with the biochemical findings. Treatment with an inhibitor of ERK pathway antagonized the deleterious effects caused by both cytokines. CONCLUSION This study is the first to show the functional catastrophic effects of IL1-beta and TNF-alpha on the biochemical, structural, and integrative properties of tissue-engineered cartilage and their significant counteraction by the blockade of ERK signaling pathway. With the discovery of new potential chemical entities, ERK inhibitor may emerge as a new therapeutic approach for functional integration and mechanical integrity of an engineered cartilage to the host tissue and, therefore, enhance long-term viability and functionality of the restored joint surface.
Collapse
Affiliation(s)
- Farida Djouad
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-8022, USA
| | | | | | | | | |
Collapse
|
26
|
Man C, Zhu S, Zhang B, Hu J. Protection of articular cartilage from degeneration by injection of transforming growth factor-beta in temporomandibular joint osteoarthritis. ACTA ACUST UNITED AC 2009; 108:335-40. [DOI: 10.1016/j.tripleo.2009.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/18/2009] [Accepted: 05/07/2009] [Indexed: 11/25/2022]
|
27
|
Blaney Davidson EN, Remst DFG, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, van den Berg WB, van der Kraan PM. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:7937-45. [PMID: 19494318 DOI: 10.4049/jimmunol.0803991] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During osteoarthritis (OA) chondrocytes show deviant behavior resembling terminal differentiation of growth-plate chondrocytes, characterized by elevated MMP-13 expression. The latter is also a hallmark for OA. TGF-beta is generally thought to be a protective factor for cartilage, but it has also displayed deleterious effects in some studies. Recently, it was shown that besides signaling via the ALK5 (activin-like kinase 5) receptor, TGF-beta can also signal via ALK1, thereby activating Smad1/5/8 instead of Smad2/3. The Smad1/5/8 route can induce chondrocyte terminal differentiation. Murine chondrocytes stimulated with TGF-beta activated the ALK5 receptor/Smad2/3 route as well as the ALK1/Smad1/5/8 route. In cartilage of mouse models for aging and OA, ALK5 expression decreased much more than ALK1. Thus, the ALK1/ALK5 ratio increased, which was associated with changes in the respective downstream markers: an increased Id-1 (inhibitor of DNA binding-1)/PAI-1 (plasminogen activator inhibitor-1) ratio. Transfection of chondrocytes with adenovirus overexpressing constitutive active ALK1 increased MMP-13 expression, while small interfering RNA against ALK1 decreased MMP-13 expression to nondetectable levels. Adenovirus overexpressing constitutive active ALK5 transfection increased aggrecan expression, whereas small interfering RNA against ALK5 resulted in increased MMP-13 expression. Moreover, in human OA cartilage ALK1 was highly correlated with MMP-13 expression, whereas ALK5 correlated with aggrecan and collagen type II expression, important for healthy cartilage. Collectively, we show an age-related shift in ALK1/ALK5 ratio in murine cartilage and a strong correlation between ALK1 and MMP-13 expression in human cartilage. A change in balance between ALK5 and ALK1 receptors in chondrocytes caused changes in MMP-13 expression, thereby causing an OA-like phenotype. Our data suggest that dominant ALK1 signaling results in deviant chondrocyte behavior, thereby contributing to age-related cartilage destruction and OA.
Collapse
Affiliation(s)
- Esmeralda N Blaney Davidson
- Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lires-Deán M, Caramés B, Cillero-Pastor B, Galdo F, López-Armada MJ, Blanco FJ. Anti-apoptotic effect of transforming growth factor-beta1 on human articular chondrocytes: role of protein phosphatase 2A. Osteoarthritis Cartilage 2008; 16:1370-8. [PMID: 18495502 DOI: 10.1016/j.joca.2008.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 04/04/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To study whether transforming growth factor-beta1 (TGF-beta1) is able to protect human chondrocytes from apoptosis and to analyze the role of phosphatases in the possible anti-apoptotic effect of TGF-beta1. METHODS Cartilage was obtained from patients with osteoarthritis (OA) who were undergoing joint replacement; normal cartilage was obtained from cadavers who had no history of joint disease. Chondrocytes stimulated with tumor necrosis factor-alpha (TNF-alpha) plus Ro 31-8220 (a specific inhibitor of mitogen-activated kinase phosphatase-1 - MKP-1) were employed as an in vitro model of apoptosis. Apoptosis was assessed by flow cytometry and a cell death immunoassay. Protein phosphatase 2A (PP2A) activity was estimated by measuring the absorbance of a molybdate:malachite green:phosphate reaction complex. MKP-1, bcl-2 and bax expressions were quantified by western blot. RESULTS In OA cells, TGF-beta1 significantly reduced the percentage of hypo-diploid chondrocytes, as well as the percentage of internucleosomal DNA breakage. However, in normal chondrocytes, TGF-beta1 did not reduce apoptosis, as assessed by both the percentage of hypo-diploid chondrocytes and internucleosomal DNA breakage. MKP-1 expression did not show significant modulation in OA or normal chondrocytes. However, PP2A activity was differentially modulated in normal and OA chondrocytes. In OA chondrocytes, PP2A activity was not altered by TGF-beta1 stimulation; however in normal chondrocytes PP2A activity was significantly activated by TGF-beta1. The preincubation of normal chondrocytes with TGF-beta1 plus the PP2A inhibitor protein, IPP2A, reduced internucleosomal DNA breakage when compared with TGF-beta1 stimulation alone. The bcl-2/bax protein ratio was significantly higher in TGF-beta1 plus IPP2A preincubated normal chondrocytes than in cells stimulated with TGF-beta1 alone. CONCLUSION By manipulating the degree of PP2A activity, these results show the major role that PP2A plays in the outcome of TGF-beta1 signal transduction. These data suggest that PP2A could be a pivotal regulator of anti-apoptotic TGF-beta1-induced effects.
Collapse
Affiliation(s)
- M Lires-Deán
- Osteoarticular and Aging Research Laboratory, Biomedical Research Center, Rheumatology Division, CH Universitario Juan Canalejo, Coruña, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Bloom T, Renard R, Yalamanchili P, Wapner K, Chao W, Lin SS. Stimulation of ankle cartilage: other emerging technologies (cellular, electricomagnetic, etc.). Foot Ankle Clin 2008; 13:363-79, viii. [PMID: 18692005 DOI: 10.1016/j.fcl.2008.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Advances in understanding age-related changes in articular cartilage, joint homeostasis, the natural healing process after cartilage injury, and improved standards for evaluation of a joint surface made the ultimate goal of cartilage repair a possibility. New strategies for enhancement of articular cartilages' limited healing potential and biologic regeneration include advances in tissue engineering and the use of electromagnetic fields. This article reviews developments in basic science and clinical research made with these emerging technologies concerning treatment of articular cartilage defects and treatment of osteoarthritis of the ankle.
Collapse
Affiliation(s)
- Tamir Bloom
- Division of Pediatric Othopaedics, Department of Orthopaedic Surgery, New Jersey Medical School-University of Medicine and Dentistry of New Jersey, 90 Bergen Street, Newark, NJ 07103, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Hartog A, Hougee S, Faber J, Sanders A, Zuurman C, Smit HF, van der Kraan PM, Hoijer MA, Garssen J. The multicomponent phytopharmaceutical SKI306X inhibits in vitro cartilage degradation and the production of inflammatory mediators. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:313-320. [PMID: 17949960 DOI: 10.1016/j.phymed.2007.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/23/2007] [Accepted: 09/04/2007] [Indexed: 05/25/2023]
Abstract
Clinical studies have demonstrated that SKI306X, a purified preparation of three medicinal plants, relieves joint pain and improves functionality in osteoarthritis patients. To study the biological action of SKI306X, bovine cartilage explants and human peripheral blood mononuclear cells (PBMC) were stimulated with IL-1 beta and lipopolysaccharide (LPS) respectively, in the presence or absence of SKI306X and its individual composites. All tested compounds inhibited dose-dependently IL-1 beta-induced proteoglycan release and nitric oxide production by cartilage, indicating cartilage protective activity. SKI306X and two of its compounds inhibited PGE(2), TNF-alpha and IL-1 beta production by LPS-stimulated PBMC, indicating anti-inflammatory activity. These results demonstrate that the biological effect of SKI306X is at least bipartite: (1) cartilage protective and (2) anti-inflammatory. The observed anti-inflammatory effects may provide an explanation for the outcome of the clinical studies. Long-term clinical trails are necessary to elucidate whether the in vitro cartilage protective activity results in disease-modifying effects.
Collapse
Affiliation(s)
- A Hartog
- Numico Research, P.O. Box 7005, 6700 CA Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brighton CT, Wang W, Clark CC. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J Bone Joint Surg Am 2008; 90:833-48. [PMID: 18381322 DOI: 10.2106/jbjs.f.01437] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The destruction of cartilage in patients with osteoarthritis is a consequence of an imbalance between matrix synthesis and degradation. The purpose of the present study was to determine the effects of electrical stimulation on these processes in full-thickness osteoarthritic adult human articular cartilage explants. METHODS Full-thickness articular cartilage explants from osteoarthritic adult human knee joints were cultured in the absence or presence of interleukin-1beta (IL-1beta) and in the absence or presence of a specifically defined capacitively coupled electrical signal for seven or fourteen days. Total collagen and proteoglycan production were assessed by means of hydroxyproline and hexosamine analyses, respectively. Quantitative real-time polymerase chain reaction assays were used to measure mRNA expression levels of aggrecan, type-II collagen, collagenase-1 (MMP-1), collagenase-3 (MMP-13), stromelysin-1 (MMP-3), aggrecanase-1 (ADAM-TS4), and aggrecanase-2 (ADAM-TS5). RESULTS Electrical stimulation of cultured explants for seven or fourteen days resulted in significant increases (p < 0.007) in proteoglycan and collagen production and a highly significant upregulation (p <or= 0.005) of aggrecan and type-II collagen mRNA expression. This occurred even in the presence of IL-1beta. In the absence of IL-1beta, the expression of metalloproteinases was at barely detectable levels in these explants. Treatment with IL-1beta led to the significant upregulation of metalloproteinase expression (p < 0.03), but simultaneous administration of the capacitively coupled electrical signal dramatically inhibited this stimulation. CONCLUSIONS The data show that, even in the presence of IL-1beta, a specific, defined capacitively coupled electrical signal can result in significant upregulation of cartilage matrix protein expression and production while simultaneously significantly attenuating the upregulation of metalloproteinase expression. These results support the contention that delivery of a specific, defined electrical field to articular cartilage could result in matrix preservation.
Collapse
Affiliation(s)
- Carl T Brighton
- McKay Laboratory of Orthopaedic Surgery Research, University of Pennsylvania School of Medicine, 424 Stemmler Hall, Philadelphia, PA 19104-6081, USA.
| | | | | |
Collapse
|
32
|
Blaney Davidson EN, Vitters EL, van Beuningen HM, van de Loo FAJ, van den Berg WB, van der Kraan PM. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor beta-induced osteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation. ACTA ACUST UNITED AC 2008; 56:4065-73. [PMID: 18050218 DOI: 10.1002/art.23034] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by cartilage damage, synovial fibrosis, and osteophyte formation. Both transforming growth factor beta (TGFbeta) and bone morphogenetic protein 2 (BMP-2) can induce the formation of osteophytes during OA, but their specific role in this process is unclear. The purpose of this study was to investigate the respective contributions of TGFbeta and BMP-2 to OA. METHODS Mouse knee joints injected with adenovirus (Ad-TGFbeta or Ad-BMP-2) were compared histologically with knee joints from murine models of OA (joints injected with collagenase and joints from STR/Ort mice with spontaneous OA). To further investigate the role of BMP during osteophyte formation, adenovirus Ad-Gremlin was injected into knee joints that had previously been injected with Ad-TGFbeta or collagenase. RESULTS BMP-2 induced early osteophytes, which bulged from the growth plates on the femur and grew on top of the patella, whereas TGFbeta induced early osteophyte formation on the bone shaft beneath the collateral ligament on the femur as well as on top of the patella. The pattern of osteophyte formation during experimental OA closely resembled that of TGFbeta-induced osteophyte formation, but differed from the pattern induced by BMP-2. Ad-Gremlin proved to be able to totally block BMP-2-induced osteophyte formation. However, blocking BMP activity inhibited neither TGFbeta-induced nor experimental OA-associated osteophyte formation. CONCLUSION Our findings demonstrate that the role of BMP during the onset of TGFbeta-induced and experimental OA-induced osteophyte formation is limited. The latter finding does not rule out a role of BMP during osteophyte maturation.
Collapse
Affiliation(s)
- E N Blaney Davidson
- Experimental Rheumatology and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Yoon DM, Fisher JP. Chondrocyte signaling and artificial matrices for articular cartilage engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:67-86. [PMID: 17120777 DOI: 10.1007/978-0-387-34133-0_5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chondrocytes depend on their environment to aid in their expression of appropriate proteins. It has been found that the interaction of integrin receptors with chondrocytes effects the production of extracellular molecules such as type II collagen and aggrecan. Additionally, the presence of growth factors such as IGF-1, TGF-beta1 and BMP-7 induce various signaling pathways that also aid in transducing phenotypic expressions by chondrocytes. Natural and synthetic polymers have been used to act as a scaffold for chondrocytes. The production of extracellular matrix proteins by chondrocytes has been studied. As tissue engineers, it is advantageous to explore the possibility of how altering biomaterial properties affect the signaling cascades by activation of receptors and transduction through the cytoplasm. This vital information will be able to aid in the future of engineering an appropriate biomaterial that can incorporate chondrocytes to act as a scaffold for articular cartilage.
Collapse
Affiliation(s)
- Diana M Yoon
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
34
|
Roman-Blas JA, Stokes DG, Jimenez SA. Modulation of TGF-beta signaling by proinflammatory cytokines in articular chondrocytes. Osteoarthritis Cartilage 2007; 15:1367-77. [PMID: 17604656 PMCID: PMC2153443 DOI: 10.1016/j.joca.2007.04.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 04/21/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The normal structure and function of articular cartilage are the result of a precisely balanced interaction between anabolic and catabolic processes. The transforming growth factor-beta (TGF-beta) family of growth factors generally exerts an anabolic or repair response; in contrast, proinflammatory cytokines such as interleukin 1 beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) exert a strong catabolic effect. Recent evidence has shown that IL-1beta, and TNF-alpha, and the TGF-beta signaling pathways share an antagonistic relationship. The aim of this study was to determine whether the modulation of the response of articular chondrocytes to TGF-beta by IL-1beta or TNF-alpha signaling pathways occurs through regulation of activity and availability of mothers against DPP (Drosophila) human homologue (Smad) proteins. METHODS Human articular chondrocytes isolated from knee joints from patients with osteoarthritis (OA) or normal bovine chondrocytes were cultured in suspension in poly-(2-hydroxyethyl methacrylate)-coated dishes with either 10% fetal bovine serum media or serum-deprived media 6h before treatment with IL-1beta alone, TNF-alpha alone or IL-1beta followed by TGF-beta. Nuclear extracts were examined by electrophoretic mobility-shift assays (EMSA) for nuclear factor-kappa B (NF-kappaB) and Smad3/4 deoxyribonucleic acid (DNA) binding. Nuclear extracts were also subjected to the TranSignal Protein/DNA array (Panomics, Redwood City, CA) enabling the simultaneous semiquantitative assessment of DNA-binding activity of 54 different transcription factors. Nuclear phospho-Smad2/3 and total Smad7 protein expression in whole cell lysates were studied by Western blot. Cytoplasmic Smad7, type II collagen alpha 1 (COL2A1), aggrecan and SRY-related high mobility group-Box gene 9 (SOX-9) mRNA expression were measured by real-time polymerase chain reaction (PCR). RESULTS The DNA-binding activity of Smad3/4 in the TranSignal Protein/DNA array was downregulated by TNF-alpha (46%) or IL-1beta treatment (42%). EMSA analysis showed a consistent reduction in Smad3/4 DNA-binding activity in human articular chondrocytes treated with IL-1beta or TNF-alpha. TGF-beta-induced Smad3/4 DNA-binding activity and Smad2/3 phosphorylation were also reduced following pretreatment with IL-1beta in human OA and bovine chondrocytes. Real-time PCR and Western blot analysis showed that IL-1beta partially reversed the TGF-beta stimulation of Smad7 mRNA and protein levels in TGF-beta-treated human OA cells. In contrast, TGF-beta-stimulated COL2A1, aggrecan, and SOX-9 mRNA levels were abrogated by IL-1beta. CONCLUSIONS IL-1beta or TNF-alpha exerted a suppressive effect on Smad3/4 DNA-binding activity in human articular chondrocytes, as well as on TGF-beta-induced stimulation of Smad3/4 DNA-binding activity and Smad2/3 phosphorylation in human OA and bovine articular chondrocytes. IL-1beta partially reversed the increase in TGF-beta-stimulated Smad7 mRNA or protein levels suggesting that Smad7 may not be involved in the suppression of TGF-beta signaling induced by IL-1beta or TNF-alpha in articular chondrocytes. The balance between the IL-1beta or TNF-alpha and the TGF-beta signaling pathways is crucial for maintenance of articular cartilage homeostasis and its disruption likely plays a substantial role in the pathogenesis of OA.
Collapse
Affiliation(s)
- J A Roman-Blas
- Department of Medicine, Division of Rheumatology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
35
|
Niikura T, Reddi AH. Differential regulation of lubricin/superficial zone protein by transforming growth factor beta/bone morphogenetic protein superfamily members in articular chondrocytes and synoviocytes. ACTA ACUST UNITED AC 2007; 56:2312-21. [PMID: 17599751 DOI: 10.1002/art.22659] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the role of transforming growth factor beta (TGFbeta)/bone morphogenetic protein (BMP) superfamily members on accumulation of superficial zone protein (SZP) in articular chondrocytes and synoviocytes. METHODS Chondrocytes and synoviocytes were isolated from articular cartilage and synovium from calf stifle joints and cultured as monolayers in serum-free chemically defined medium. Articular chondrocytes were isolated from 3 distinct zones of the cartilage: superficial, middle, and deep. Accumulation of SZP in the culture medium in response to various members of the TGFbeta/BMP superfamily was demonstrated by immunoblotting and quantified by enzyme-linked immunosorbent assay. RESULTS TGFbeta stimulated SZP accumulation in both superficial zone chondrocytes and synoviocytes. The 3 isoforms of TGFbeta elicited a similar dose response. Inhibition of TGFbeta receptor type I kinase by the specific inhibitor SB431542 abolished the TGFbeta-stimulated accumulation of SZP. BMPs up-regulated SZP accumulation in the superficial zone; however, the magnitude of the effects was not as great as was observed with TGFbeta. There was an additive action between TGFbeta and BMP on SZP accumulation. The response of synoviocytes to BMP was stronger than that of superficial zone chondrocytes. Activin up-regulated SZP accumulation in synoviocytes, but not in chondrocytes. CONCLUSION TGFbeta is a critical regulator of SZP accumulation in both superficial zone articular chondrocytes and synoviocytes. TGFbeta and BMP have an additive effect. Synoviocytes are more sensitive to BMP family members and activins than are superficial zone articular chondrocytes. Thus, regulation of SZP accumulation by TGFbeta /BMP superfamily members is regulated differently in articular chondrocytes and synoviocytes.
Collapse
Affiliation(s)
- Takahiro Niikura
- University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | | |
Collapse
|
36
|
Altinel L, Saritas ZK, Kose KC, Pamuk K, Aksoy Y, Serteser M. Treatment with unsaponifiable extracts of avocado and soybean increases TGF-beta1 and TGF-beta2 levels in canine joint fluid. TOHOKU J EXP MED 2007; 211:181-6. [PMID: 17287602 DOI: 10.1620/tjem.211.181] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Avocado and soya unsaponifiables (ASU) are plant extracts used as a slow-acting antiarthritic agent. ASU stimulate the synthesis of matrix components by chondrocytes, probably by increasing the production of transforming growth factor-beta (TGF-beta). TGF-beta is expressed by chondrocytes and osteoblasts and is present in cartilage matrix. This study investigates the effect of ASU treatment on the levels of two isoforms of TGFbeta, TGF-beta1 and TGF-beta2, in the knee joint fluid using a canine model. Twenty-four outbred dogs were divided into three groups. The control animals were given a normal diet, while the treated animals were given 300 mg ASU every three days or every day. Joint fluid samples were obtained prior to treatment, and at the end of every month (up to three months). TGF-beta1 and TGF-beta2 levels were measured using a quantitative sandwich enzyme immunoassay technique. ASU treatment caused an increase in TGF-beta1 and TGF-beta2 levels in the joint fluid when compared to controls. The different doses did not cause a significant difference in joint fluid TGF levels. TGF-beta1 levels in the treated animals reached maximum values at the end of the second month and then decreased after the third month, while TGF-beta2 levels showed a marginal increase during the first two months, followed by a marked increase at the end of the third month. In conclusion, ASU increased both TGF-beta1 and TGF-beta2 levels in knee joint fluid.
Collapse
Affiliation(s)
- Levent Altinel
- Department of Orthopedics and Traumatology, Afyon Kocatepe University, School of Medicine, Afyonkarahisar, Turkey.
| | | | | | | | | | | |
Collapse
|
37
|
Activin A is an anticatabolic autocrine cytokine in articular cartilage whose production is controlled by fibroblast growth factor 2 and NF-κB. ACTA ACUST UNITED AC 2007; 56:3715-25. [DOI: 10.1002/art.22953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Blaney Davidson EN, Vitters EL, van den Berg WB, van der Kraan PM. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res Ther 2006; 8:R65. [PMID: 16584530 PMCID: PMC1526625 DOI: 10.1186/ar1931] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/23/2006] [Accepted: 03/07/2006] [Indexed: 11/17/2022] Open
Abstract
Cartilage damage in osteoarthritis (OA) is considered an imbalance between catabolic and anabolic factors, favoring the catabolic side. We assessed whether adenoviral overexpression of transforming growth factor-β (TGFβ) enhanced cartilage repair and whether TGFβ-induced fibrosis was blocked by local expression of the intracellular TGFβ inhibitor Smad7. We inflicted cartilage damage by injection of interleukin-1 (IL-1) into murine knee joints. After 2 days, we injected an adenovirus encoding TGFβ. On day 4, we measured proteoglycan (PG) synthesis and content. To examine whether we could block TGFβ-induced fibrosis and stimulate cartilage repair simultaneously, we injected Ad-TGFβ and Ad-Smad7. This was performed both after IL-1-induced damage and in a model of primary OA. In addition to PG in cartilage, synovial fibrosis was measured by determining the synovial width and the number of procollagen I-expressing cells. Adenoviral overexpression of TGFβ restored the IL-1-induced reduction in PG content and increased PG synthesis. TGFβ-induced an elevation in PG content in cartilage of the OA model. TGFβ-induced synovial fibrosis was strongly diminished by simultaneous synovial overexpression of Smad7 in the synovial lining. Of great interest, overexpression of Smad7 did not reduce the repair-stimulating effect of TGFβ on cartilage. Adenoviral overexpression of TGFβ stimulated repair of IL-1- and OA-damaged cartilage. TGFβ-induced synovial fibrosis was blocked by locally inhibiting TGFβ signaling in the synovial lining by simultaneously transfecting it with an adenovirus overexpressing Smad7.
Collapse
Affiliation(s)
- Esmeralda N Blaney Davidson
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Elly L Vitters
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology and Advanced Therapeutics, St. Radboud University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
39
|
Abstract
Catabolic cytokine and anabolic growth factor pathways control destruction and repair in osteoarthritis (OA). A unidirectional TNF-alpha/IL-1-driven cytokine cascade disturbs the homeostasis of the extracellular matrix of articular cartilage in OA. Although chondrocytes in OA cartilage overexpress anabolic insulin-like growth factor (IGF) and its specific receptor (IGFRI) autocrine TNF-alpha released by apoptotic articular cartilage cells sets off an auto/paracrine IL-1-driven cascade that overrules the growth factor activities that sustain repair in degenerative joint disease. Chondroprotection with reappearance of a joint space that had disappeared has been documented unmistakably in peripheral joints of patients suffering from spondyloarthropathy when treated with TNF-alpha-blocking agents that repressed the unidirectional TNF-alpha/IL-1-driven cytokine cascade. A series of connective tissue structure-modifying agents (CTSMAs) that directly affect IL-1 synthesis and release in vitro and down-modulate downstream IL-1 features, e.g. collagenase, proteoglycanase and matrix metalloproteinase activities, the expression of inducible nitric oxide synthase, the increased release of nitric oxide, and the secretion of prostaglandin E(2), IL-6 and IL-8, have been shown to possess disease-modifying OA drug (DMOAD) activities in experimental models of OA and in human subjects with finger joint and knee OA. Examples are corticosteroids, some sulphated polysaccharides, chemically modified tetracyclines, diacetylrhein/rhein, glucosamine and avocado/soybean unsaponifiables.
Collapse
Affiliation(s)
- G Verbruggen
- Polikliniek Reumatologie, 0K12, Universitair Hospitaal, De Pintelaan 185, B-9000 Ghent, Belgium.
| |
Collapse
|
40
|
Murano M, Xiong X, Murano N, Salzer JL, Lafaille JJ, Tsiagbe VK. Latent TGF-β1-transduced CD4+T cells suppress the progression of allergic encephalomyelitis. J Leukoc Biol 2005; 79:140-6. [PMID: 16244108 DOI: 10.1189/jlb.0505271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Systemic injection of small amounts of transforming growth factor-beta (TGF-beta), a cytokine produced by lymphoid and other cells, has a profound effect in protecting mice from the inflammatory demyelinating lesions of experimental allergic encephalomyelitis (EAE; an animal model for multiple sclerosis). However, TGF-beta has side-effects, which might be avoided if the cells producing TGF-beta can be delivered to the affected site in the nervous system to insure its local release in small amounts. Myelin basic protein (MBP)-specific, cloned CD4+ T cells were engineered by retroviral transduction to produce latent TGF-beta. Studies about the spontaneous form of EAE in T cell receptor (TCR)-transgenic recombination-activating gene (RAG)-1(-/-) mice showed that essentially all of the MBP-specific, TCR-transgenic RAG-1(-/-) (BALB/cxB10.PL)F1 mice develop spontaneous EAE by the age of 11 weeks. By 12 weeks, 25-50% of the mice have died from disease. A single injection of TGF-beta1-transduced T helper cell type 1 (Th1) cells significantly protected the mice from EAE, and untransduced Th1 cells did not protect. MBP-specific BALB/c Th2 clones, transduced with TGF-beta1-internal ribosome entry site-green fluorescent protein (GFP) significantly reduced EAE induction by untransduced Th1 cells in RAG-1(-/-) B10.PL mice. Furthermore, the GFP+ TGF-beta1-producing Th2 cells were detectable in the spinal cords of the injected mice.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Homeodomain Proteins/genetics
- Homeodomain Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/therapy
- Myelin Basic Protein/genetics
- Myelin Basic Protein/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Th1 Cells/immunology
- Th1 Cells/transplantation
- Th2 Cells/immunology
- Transduction, Genetic
- Transforming Growth Factor beta/administration & dosage
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Mitsuyuki Murano
- Department of Pathology, NYU Cancer Institute, School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
41
|
Blaney Davidson EN, Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther 2005; 7:R1338-47. [PMID: 16277687 PMCID: PMC1297583 DOI: 10.1186/ar1833] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 08/18/2005] [Accepted: 09/01/2005] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disease, mainly effecting the elderly population. The cause of OA seems to be an imbalance in catabolic and anabolic factors that develops with age. IL-1 is a catabolic factor known to induce cartilage damage, and transforming growth factor (TGF)-beta is an anabolic factor that can counteract many IL-1-induced effects. In old mice, we observed reduced responsiveness to TGF-beta-induced IL-1 counteraction. We investigated whether expression of TGF-beta and its signaling molecules altered with age. To mimic the TGF-beta deprived conditions in aged mice, we assessed the functional consequence of TGF-beta blocking. We isolated knee joints of mice aged 5 months or 2 years, half of which were exposed to IL-1 by intra-articular injection 24 h prior to knee joint isolation. Immunohistochemistry was performed, staining for TGF-beta1, -2 or -3, TGF-betaRI or -RII, Smad2, -3, -4, -6 and -7 and Smad-2P. The percentage of cells staining positive was determined in tibial cartilage. To mimic the lack of TGF-beta signaling in old mice, young mice were injected with IL-1 and after 2 days Ad-LAP (TGF-beta inhibitor) or a control virus were injected. Proteoglycan (PG) synthesis (35S-sulfate incorporation) and PG content of the cartilage were determined. Our experiments revealed that TGF-beta2 and -3 expression decreased with age, as did the TGF-beta receptors. Although the number of cells positive for the Smad proteins was not altered, the number of cells expressing Smad2P strongly dropped in old mice. IL-1 did not alter the expression patterns. We mimicked the lack of TGF-beta signaling in old mice by TGF-beta inhibition with LAP. This resulted in a reduced level of PG synthesis and aggravation of PG depletion. The limited response of old mice to TGF-beta induced-IL-1 counteraction is not due to a diminished level of intracellular signaling molecules or an upregulation of intracellular inhibitors, but is likely due to an intrinsic absence of sufficient TGF-beta receptor expression. Blocking TGF-beta distorted the natural repair response after IL-1 injection. In conclusion, TGF-beta appears to play an important role in repair of cartilage and a lack of TGF-beta responsiveness in old mice might be at the root of OA development.
Collapse
Affiliation(s)
- EN Blaney Davidson
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - A Scharstuhl
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - EL Vitters
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - PM van der Kraan
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - WB van den Berg
- Experimental Rheumatology and Advanced Therapeutics, St Radboud University Medical Centre Nijmegen, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
42
|
Takafuji VA, Howard RD, Ward DL, Sharova LV, Crisman MV. Modulation of equine articular chondrocyte messenger RNA levels following brief exposures to recombinant equine interleukin-1β. Vet Immunol Immunopathol 2005; 106:23-38. [PMID: 15910990 DOI: 10.1016/j.vetimm.2005.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 12/10/2004] [Accepted: 01/05/2005] [Indexed: 11/26/2022]
Abstract
The effect of recombinant equine IL-1beta (EqIL-1beta) on steady-state mRNA levels of equine articular chondrocytes in high-density monolayer culture was investigated using a customized cDNA array analysis. Total RNA samples isolated from chondrocytes cultured in media alone or with the addition of 1 ng/ml EqIL-1beta for 1-, 3-, and 6-h durations of exposure were reverse transcribed, radiolabeled, and hybridized to a customized 380-target cDNA array. Means of duplicate log base 2 transformed hybridization signals were normalized to equine glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mean signal intensities. Differentially expressed transcripts were identified using a two-stage mixed linear analysis of variance model (Statistical Analysis Software, Cary, NC). A time-dependent pattern was observed in the number of transcripts increased > or =two-fold in response to EqIL-1beta after 1, 3 and 6h (1, 2 and 109 transcripts, respectively). At 6 h of EqIL-1beta stimulation, signal intensities for 88 cDNA targets with purported function in processes related to cell cycle, intracellular signaling, transcription, translation, extracellular matrix turnover, and inflammation, as well as a number of cDNAs lacking homology to previously reported cDNA sequences, were increased >two-fold and were associated with p<0.05. Principal component analysis identified a vector component ( approximately 10% of the total variation) corresponding to a potential EqIL-1beta co-regulation of cell cycle associated gene transcription. These results support and expand our existing comprehension of the complex role of IL-1 in modulated chondrocyte gene expression and suggest the involvement of specific target gene up-regulation and activation of downstream inflammatory cascade mediators. This study adds to the current understanding of the molecular events associated with an IL-1 induced inflammation and pathobiologic processes that may be associated with the development of equine osteoarthritis.
Collapse
Affiliation(s)
- V A Takafuji
- Orthopedic Research Laboratory, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA 24061-0442, USA
| | | | | | | | | |
Collapse
|
43
|
Takahashi N, Rieneck K, van der Kraan PM, van Beuningen HM, Vitters EL, Bendtzen K, van den Berg WB. Elucidation of IL-1/TGF-beta interactions in mouse chondrocyte cell line by genome-wide gene expression. Osteoarthritis Cartilage 2005; 13:426-38. [PMID: 15882566 DOI: 10.1016/j.joca.2004.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 12/20/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To elucidate the antagonism between interleukin-1 (IL-1) and transforming growth factor-beta (TGF-beta) at the gene expression level, as IL-1 and TGF-beta are postulated to be critical mediators of cartilage degeneration/protection in rheumatic diseases. METHODS The H4 chondrocyte cell line was validated by comparing metalloproteinase expression profile with intact murine cartilage by reverse transcription polymerase chain reaction. Genome-wide gene expression in the H4 cells in response to IL-1 and TGF-beta, alone and in combination, was analyzed by using oligonucleotide arrays negotiating approximately 12,000 genes. RESULTS The response of cartilage and the H4 cell line to IL-1 and TGF-beta was comparable. Oligonucleotide array analysis demonstrated a mutual but asymmetrical antagonism as the dominant mode of interaction between IL-1 and TGF-beta. Cluster analysis revealed a remarkable selectivity in the mode of action exerted by TGF-beta on IL-1 regulated genes: antagonistic on pro-inflammatory genes whereas additive on growth regulators such as vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF). While the former cluster underlined the protective effect of TGF-beta, the latter underscored the adverse effect of TGF-beta. We further identified potentially novel classes of target genes under control of TGF-beta such as ras family, histones, proteasome components, and ubiquitin family, highlighting the importance of such genes in TGF signaling besides the well-characterized SMAD pathway. CONCLUSIONS We identified a cluster of genes as potential targets mediating the adverse effect of TGF-beta such as fibrosis. Transcriptional regulation of ras GTPase and ubiquitin/proteasome pathways is likely to be a novel mechanism mediating the effect of TGF-beta and its interaction with IL-1. These down-stream genes and pathways can be targets in future therapy.
Collapse
Affiliation(s)
- N Takahashi
- Department of Rheumatology Research and Advanced Therapeutics, UMC Nijmegen/NCMLS, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
44
|
Livne E, Laufer D, Blumenfeld I. Differential response of articular cartilage from young growing and mature old mice to IL-1 and TGF-beta. Arch Gerontol Geriatr 2005; 24:211-21. [PMID: 15374127 DOI: 10.1016/s0167-4943(96)00753-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1996] [Revised: 07/25/1996] [Accepted: 07/29/1996] [Indexed: 11/29/2022]
Abstract
Osteoarthritic lesions are observed in temporomandibular joint cartilage of ICR mice aged 7 months and older, accompanied by reduced proliferation and matrix synthesis. Transforming growth factor-beta (TGF-beta), is a multifactorial growth factor affecting matrix synthesis and cell proliferation in bone and cartilage, whereas interleukin-1 (IL-1) is involved in cartilage degradation. In order to establish the repair capacity of cartilage in aging, the response of cartilage from young and old animals to TGF-beta and IL-1 was studied. Mandibular condyles from young (1-month-old) and old (18-month-old) mice were cultured for up to 72 h in medium supplemented with TGF-beta1 or IL-1alpha. TGF-beta increased protein (+9.26%) and DNA (+36.0%) contents in young animals and DNA content (+19.49%) in old animals. Incorporations of [(3)H]thymidine and [(35)S]sulfate were enhanced in young (+254% and +116%, respectively) and in old (+22.6% and +6.88%, respectively) and animals and activity of alkaline phosphatase was induced in old animals. Treatment with IL-1 resulted in reduced DNA content in young (-35.76%) and old (-33.33%) animals, but acid phosphatase activity was induced in old animals. It is concluded that TGF-beta can induce anabolic activity even in cartilage from old animals indicating repair response in articular cartilage in aging.
Collapse
Affiliation(s)
- E Livne
- Division of Morphological Sciences, Faculty of Medicine, Technion, PO Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
45
|
Moulharat N, Lesur C, Thomas M, Rolland-Valognes G, Pastoureau P, Anract P, De Ceuninck F, Sabatini M. Effects of transforming growth factor-beta on aggrecanase production and proteoglycan degradation by human chondrocytes in vitro. Osteoarthritis Cartilage 2004; 12:296-305. [PMID: 15023381 DOI: 10.1016/j.joca.2003.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Accepted: 11/25/2003] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Aggrecan is degraded by Aggrecanases (ADAMTS-4 and -5) and MMPs, which cleave its core protein at different sites. Transforming growth factor (TGF)beta is known to stimulate matrix formation in cartilage, and ADAMTS-4 production in synoviocytes. The aim of this in-vitro study was to examine the effects of TGFbeta on aggrecanase production in human cartilage. DESIGN Expression of ADAMTS-4 and -5 in chondrocyte cultures from normal or osteoarthritic cartilage was studied at mRNA level by RT-PCR. Aggrecanase activity was examined by western blot of aggrecanase-generated neoepitope NITEGE, and by measure of proteoglycan degradation in cartilage explants. RESULTS TGFbeta strongly increased mRNA levels of ADAMTS-4, while ADAMTS-5 was expressed in a constitutive way in chondrocytes from normal and osteoathritic cartilage. TGFbeta also increased NITEGE levels and proteoglycan degradation. Addition of an aggrecanase inhibitor blocked the increase of NITEGE, and partially inhibited proteoglycan degradation. CONCLUSIONS TGFbeta stimulates ADAMTS-4 expression and aggrecan degradation in cartilage. This catabolic action seems to be partially mediated by aggrecanases. It is, therefore, proposed that the role of TGFbeta in cartilage matrix turnover is not limited to anabolic and anti-catabolic actions, but also extends to selective degradation of matrix components such as aggrecan.
Collapse
Affiliation(s)
- N Moulharat
- Division of Rheumatology, Institut de Recherches Servier, Suresnes, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The purpose of this review is to summarize the current scientific knowledge of bone morphogenetic proteins (BMPs) in adult articular cartilage. We specifically focus on adult cartilage, since one of the major potential applications of the members of the BMP family may be a repair of adult tissue after trauma and/or disease. After reviewing cartilage physiology and BMPs, we analyze the data on the role of recombinant BMPs as anabolic agents in tissue formation and restoration in different in vitro and in vivo models following with the endogenous expression of BMPs and factors that regulate their expression. We also discuss recent transgenic modifications of BMP genes and subsequent effect on cartilage matrix synthesis. We found that the most studied BMPs in adult articular cartilage are BMP-7 and BMP-2 as well as transforming growth factor-beta (TGF-beta). There are a number of contradicting reports for some of these growth factors, since different models, animals, doses, time points, culture conditions and devices were used. However, regardless of the experimental conditions, only BMP-7 or osteogenic protein-1 (OP-1) exhibits the most convincing effects. It is the only BMP studied thus far in adult cartilage that demonstrates strong anabolic activity in vitro and in vivo with and without serum. OP-1 stimulates the synthesis of the majority of cartilage extracellular matrix proteins in adult articular chondrocytes derived from different species and of different age. OP-1 counteracts the degenerative effect of numerous catabolic mediators; it is also expressed in adult human, bovine, rabbit and goat articular cartilage. This review reveals the importance of the exploration of the BMPs in the cartilage field and highlights their significance for clinical applications in the treatment of cartilage-related diseases.
Collapse
Affiliation(s)
- Susan Chubinskaya
- Department of Biochemistry, Rush Medical College at Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
47
|
van Beuningen HM, Stoop R, Buma P, Takahashi N, van der Kraan PM, van den Berg WB. Phenotypic differences in murine chondrocyte cell lines derived from mature articular cartilage. Osteoarthritis Cartilage 2002; 10:977-86. [PMID: 12464558 DOI: 10.1053/joca.2002.0855] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To obtain well characterized immortalized murine chondrocyte cell lines. The cell lines were obtained from mature articular chondrocytes, instead of embryonal cells which are used in most other studies. METHODS Pieces of articular cartilage were cut from murine patellae and femoral heads. Chondrocytes were isolated by digestion with collagenase. These cells were cultured in monolayer and immortalized by transfection of the SV40 large T antigen gene. To preserve the differentiated phenotype, the resulting clones were cultured in three-dimensional carriers, alginate beads. The phenotypes of the cells were characterized using the following parameters: Cell morphology (light microscopy), messenger RNA (RT-PCR) and protein (immunohistochemistry) levels of extracellular matrix molecules. Moreover, responsiveness to interleukin-1(IL-1) was determined by measuring production of proteoglycans ((35)S-sulfate incorporation) and of nitric oxide (Griess reaction). RESULTS Sixteen clones were obtained, ten (P1 to P10) derived from patellar cartilage, and six (H1 to H6) from femoral head cartilage. In seven cell lines (P2, P5, H1, H3, H4, H5, H6) high production of type II collagen corresponded with high levels of mRNA of type II collagen (and prevalence of the IIB type) and with high IL-1-induced suppression of proteoglycan synthesis. Like intact murine articular cartilage, all cell lines produced type I and type X collagens, but mRNA levels of both types of collagen were never higher in the cell lines as compared with intact cartilage. CONCLUSION Our results demonstrate that it is possible to immortalize mature murine articular chondrocytes. Each of the obtained chondrocyte cell lines appeared to have a stable phenotype. Both relatively differentiated and relatively dedifferentiated chondrocyte cell lines could be identified.
Collapse
Affiliation(s)
- H M van Beuningen
- Laboratory of Experimental Rheumatology, University Medical Center Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Scharstuhl A, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Loss of transforming growth factor counteraction on interleukin 1 mediated effects in cartilage of old mice. Ann Rheum Dis 2002; 61:1095-8. [PMID: 12429542 PMCID: PMC1753968 DOI: 10.1136/ard.61.12.1095] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate if a difference exists between young and old mice in the response of articular cartilage to interleukin 1 (IL1) and transforming growth factor beta (TGFbeta) alone or in combination. METHODS The interaction of IL1 and TGFbeta was studied in cartilage of young (three months) and old mice (18 months) both in vivo and in vitro. Therefore, IL1, TGFbeta, or IL1 together with TGFbeta was injected into the knee joints of mice on days 1, 3, and 5 before harvest of the patellae on day 6. Alternatively, isolated patellae were stimulated with IL1, TGFbeta, or IL1 together with TGFbeta in culture for 48 hours. Proteoglycan (PG) synthesis and nitric oxide (NO) production were measured. RESULTS IL1 inhibited PG synthesis and increased NO production in cartilage of both young and old mice. On the other hand, TGFbeta stimulated PG synthesis and reduced NO production in both age groups. Importantly, TGFbeta was able to counteract IL1 mediated effects on PG synthesis and NO production in young but not in old mice. CONCLUSIONS Contrary to the findings in young mice, the cartilage of old animals does not antagonise IL1 effects via TGFbeta. This loss of responsiveness to the pivotal cytokine TGFbeta on effects of IL1 can be important in the initiation and progression of osteoarthritis (OA).
Collapse
Affiliation(s)
- A Scharstuhl
- Rheumatology Research Laboratory, Department of Rheumatology, University Medical Centre Nijmegen, Nijmegen, 6525 GA, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:507-14. [PMID: 12077282 DOI: 10.4049/jimmunol.169.1.507] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoarthritis has as main characteristics the degradation of articular cartilage and the formation of new bone at the joint edges, so-called osteophytes. In this study enhanced expression of TGF-beta1 and -beta3 was detected in developing osteophytes and articular cartilage during murine experimental osteoarthritis. To determine the role of endogenous TGF-beta on osteophyte formation and articular cartilage, TGF-beta activity was blocked via a scavenging soluble TGF-beta-RII. Our results clearly show that inhibition of endogenous TGF-beta nearly completely prevented osteophyte formation. In contrast, treatment with recombinant soluble TGF-beta-RII markedly enhanced articular cartilage proteoglycan loss and reduced the thickness of articular cartilage. In conclusion, we show for the first time that endogenous TGF-beta is a crucial factor in the process of osteophyte formation and has an important function in protection against cartilage loss.
Collapse
MESH Headings
- ADAM Proteins
- ADAMTS4 Protein
- ADAMTS5 Protein
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Blotting, Western
- Cartilage, Articular/chemistry
- Cartilage, Articular/drug effects
- Cartilage, Articular/immunology
- Cartilage, Articular/pathology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Chondrocytes/drug effects
- Chondrocytes/immunology
- Chondrocytes/pathology
- Collagenases/biosynthesis
- Collagenases/genetics
- Electrophoresis, Polyacrylamide Gel
- Immunohistochemistry
- Male
- Matrix Metalloproteinase 1/biosynthesis
- Matrix Metalloproteinase 1/genetics
- Matrix Metalloproteinase 13
- Metalloendopeptidases/biosynthesis
- Metalloendopeptidases/genetics
- Mice
- Mice, Inbred C57BL
- Osteoarthritis, Knee/immunology
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Osteogenesis/drug effects
- Osteogenesis/immunology
- Pichia/enzymology
- Procollagen N-Endopeptidase
- Protein Isoforms/analysis
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/biosynthesis
- Protein Serine-Threonine Kinases
- RNA, Messenger/biosynthesis
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/analysis
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/physiology
- Recombinant Proteins/analysis
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/pharmacology
- Solubility
- Tissue Inhibitor of Metalloproteinases/biosynthesis
- Tissue Inhibitor of Metalloproteinases/genetics
- Transforming Growth Factor beta/analysis
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta1
- Transforming Growth Factor beta3
Collapse
Affiliation(s)
- Alwin Scharstuhl
- Rheumatology Research Laboratory, Department of Rheumatology, University Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
50
|
Suzuki T, Bessho K, Fujimura K, Okubo Y, Segami N, Iizuka T. Regeneration of defects in the articular cartilage in rabbit temporomandibular joints by bone morphogenetic protein-2. Br J Oral Maxillofac Surg 2002; 40:201-6. [PMID: 12054709 DOI: 10.1054/bjom.2001.0720] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to investigate the therapeutic use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in internally deranged temporomandibular joints (TMJ). Defects (2 mm in diameter) were created in the surface of the condylar head. Lyophilized rhBMP-2 with collagen as the carrier was implanted in the defects in different doses: rhBMP-2 15 microg (n = 5); rhBMP-2 3 microg (n = 5); rhBMP-2 0.6 microg (n = 5). In the two control groups, the defects were either filled with collagen alone (n = 5) or left untreated (n = 5). Three weeks postoperatively the sites of defects were examined under light microscopy. In the 15 micromg and the 3 microg groups, new cartilage had filled the defects; endochondral ossification was also found deep within the defect. In the 0.6 microg group, fibrous tissue was proliferating in most areas of the defect, although cartilage was also found in some parts. In the two control groups, there was either soft tissue repair only or no evidence of tissue repair. These findings suggest that BMP-2 could stimulate the repair of defects in the articular cartilage of the mandibular condyle head during the 3 weeks postoperatively. To observe the progress of endochondral ossification in more detail, it may be necessary to extend the experiment for a longer period of time. However, this study supports the contention that BMP-2 may be useful in the regeneration of cartilage in TMJ disease.
Collapse
Affiliation(s)
- T Suzuki
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|