1
|
Buck A, Wang T, Baig SS, Majid A, Ali AN. Role of remote ischaemic conditioning in fracture healing and orthopaedic surgery-a systematic review and narrative synthesis. J Orthop Surg Res 2025; 20:448. [PMID: 40336073 PMCID: PMC12060424 DOI: 10.1186/s13018-025-05772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
INTRODUCTION Remote ischaemic conditioning (RIC) involves the use of controlled and transient ischemia and reperfusion cycles, commonly of the upper or lower limb, to mitigate cellular damage from ischaemic events. Studies have demonstrated that RIC may have anti-inflammatory and cardiovascular protective effects and thus could represent a novel therapeutic strategy to improve outcomes following orthopaedic surgery. This review aimed to comprehensively describe the current pre-clinical and clinical evidence for RIC in orthopaedics. METHODS MEDLINE and EMBASE via OVID (1966-March 2024) were searched using a systematic search strategy for randomised controlled trials (RCTs) investigating the effects of RIC on fracture, bone healing, and orthopaedics. Both pre-clinical and clinical RCTs were included. RESULTS Three pre-clinical RCTs (comprising of 198 rats in models of experimental fracture) met the inclusion criteria. These showed that RIC was associated with enhanced callus formation (volume and biomechanical strength) post-fracture, reduced oxidative stress and upregulated osteoblastic activity. Sixteen clinical RCTs, involving 628 patients, investigated RIC in 6 different elective orthopaedic procedures (knee, lower limb, cervical, shoulder, general, hip fracture). RIC protocols varied in cycle frequency, duration, and pressure, but all were given as a single dose at induction of anaesthesia. Significant results included reductions in oxidative stress, improved cerebral and peripheral oxygenation, and reduced pain scores and analgesia use. Only 1 study (n = 648) evaluated RIC in acute hip fracture and demonstrated an early cardioprotective effect. CONCLUSION The potential therapeutic effects of RIC in orthopaedic surgery is supported by preliminary evidence from pre-clinical and clinical studies. Trials to date are largely small but warrant investigation in well-powered multicentre RCTs. There are still many unanswered questions about the optimal RIC parameters (cuff pressure, frequency and duration) in orthopaedic surgery and determining which patients may benefit most from this therapy.
Collapse
Affiliation(s)
- Alison Buck
- MRes, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield, Sheffield, UK
| | - Tao Wang
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Sheharyar S Baig
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Ali N Ali
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute of Translational Neuroscience, Royal Hallamshire Hospital, University of Sheffield, Glossop Rd, Sheffield, S10 2 JF, UK.
| |
Collapse
|
2
|
Norregaard LB, Rytter N, Christoffersen LC, Gliemann L, Hansen CS, Lawrence M, Evans PA, Kruuse C, Hellsten Y. Ischemic Preconditioning Negatively Affects Thrombogenic Clotting Profile in Cerebral Small Vessel Occlusion Stroke Patients. J Clin Med Res 2025; 17:97-105. [PMID: 39981339 PMCID: PMC11835555 DOI: 10.14740/jocmr6086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Background The study evaluated the effect of an acute and a 2-week daily repetitive ischemic preconditioning (IPC) on conduit artery vascular function and thrombogenic clotting profile, in patients with a recent ischemic stroke. Methods Fourteen patients, aged 71 ± 8 years, with a cerebral small vessel occlusion stroke were included in a randomized, controlled, open-label cross-over study. Treatment consisted of 2 weeks of daily IPC, four 5-min rounds of upper-arm occlusion, interspersed by 5 min rest periods. Control was without treatment. Brachial artery flow-mediated dilation (FMD) was determined at baseline and after the control and treatment periods. Before and after each period, the patients underwent an acute bout of IPC. Blood samples were obtained for thrombogenic clotting profile at baseline and after the acute IPC bout, both before and after the control and treatment periods. Results The period of daily IPC increased brachial artery diameter but did not influence FMD. Acutely, IPC was found to induce an increase in fractal dimension, indicating a denser clot microstructure, and a reduction in plasma levels of plasminogen activator inhibitor 1 (PAI-1). There was no effect of daily IPC on the basal thrombogenic clotting profile, or on the change in clotting profile induced by acute IPC. Conclusions Collectively, the data show that acute IPC leads to a prothrombotic clotting profile, despite antiplatelet therapy. Moreover, 2 weeks of daily treatment with IPC does not influence conduit artery vascular function or thrombogenicity in stroke patients.
Collapse
Affiliation(s)
- Line Boel Norregaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- These authors contributed equally to the work
| | - Nicolai Rytter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- These authors contributed equally to the work
| | - Laura Cathrine Christoffersen
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev Gentofte, Copenhagen, Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthew Lawrence
- Welsh Centre for Emergency Medicine Research, Morriston Hospital, SBU Health Board, Swansea, UK
| | - Philip Adrian Evans
- Welsh Centre for Emergency Medicine Research, Morriston Hospital, SBU Health Board, Swansea, UK
- Swansea University Medical School, Swansea, UK
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Copenhagen University Hospital-Herlev Gentofte, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Yang ZJ, Zhang WF, Jin QQ, Wu ZR, Du YY, Shi H, Qu ZS, Han XJ, Jiang LP. Lactate Contributes to Remote Ischemic Preconditioning-Mediated Protection Against Myocardial Ischemia Reperfusion Injury by Facilitating Autophagy via the AMP-Activated Protein Kinase-Mammalian Target of Rapamycin-Transcription Factor EB-Connexin 43 Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1857-1878. [PMID: 39069170 DOI: 10.1016/j.ajpath.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Remote ischemic preconditioning (RIPC) exerts a protective role on myocardial ischemia/reperfusion (I/R) injury by the release of various humoral factors. Lactate is a common metabolite in ischemic tissues. Nevertheless, little is known about the role lactate plays in myocardial I/R injury and its underlying mechanism. This investigation revealed that RIPC elevated the level of lactate in blood and myocardium. Furthermore, AZD3965, a selective monocarboxylate transporter 1 inhibitor, and 2-deoxy-d-glucose, a glycolysis inhibitor, mitigated the effects of RIPC-induced elevated lactate in the myocardium and prevented RIPC against myocardial I/R injury. In an in vitro hypoxia/reoxygenation model, lactate markedly mitigated hypoxia/reoxygenation-induced cell damage in H9c2 cells. Further studies suggested that lactate contributed to RIPC, rescuing I/R-induced autophagy deficiency by promoting transcription factor EB (TFEB) translocation to the nucleus through activating the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway without influencing the phosphatidylinositol 3-kinase-Akt pathway, thus reducing cardiomyocyte damage. Interestingly, lactate up-regulated the mRNA and protein expression of connexin 43 (CX43) by facilitating the binding of TFEB to CX43 promoter in the myocardium. Functionally, silencing of TFEB attenuated the protective effect of lactate on cell damage, which was reversed by overexpression of CX43. Further mechanistic studies suggested that lactate facilitated CX43-regulated autophagy via the AMPK-mTOR-TFEB signaling pathway. Collectively, this research demonstrates that RIPC protects against myocardial I/R injury through lactate-mediated myocardial autophagy via the AMPK-mTOR-TFEB-CX43 axis.
Collapse
Affiliation(s)
- Zhang-Jian Yang
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Pharmacy, 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wei-Fang Zhang
- Department of Pharmacy, 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qing-Qing Jin
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhi-Rong Wu
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun-Yan Du
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hao Shi
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhen-Sheng Qu
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Li-Ping Jiang
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Wahlstrøm KL, Ekeloef S, Gögenur I, Münster AMB. Myocardial injury after non-cardiac surgery and per operative fibrin metabolism in patients undergoing hip-fracture surgery: an observational study. Scand J Clin Lab Invest 2023; 83:299-308. [PMID: 37584362 DOI: 10.1080/00365513.2023.2220970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 08/17/2023]
Abstract
Myocardial injury after non-cardiac surgery (MINS) is associated with a 2-3-fold increased risk of subsequent major cardiovascular events and postoperative mortality. The pathological mechanism behind MINS is not fully uncovered. We hypothesized that patients with MINS following hip fracture surgery would have an altered haemostatic balance pre- and postoperative compared with patients without MINS. This was investigated in a prospective single-centre observational study including patients consecutively. The outcomes were changes in thrombin generation, fibrinogen/fibrin turnover, tissue plasminogen activator, plasminogen activator inhibitor-1 and fibrin structure measurements in patients developing MINS and patients who did not. Outcomes were measured preoperatively and two hours postoperatively. Seventy-two patients were included whereof 26 (36%) patients developed MINS. D-dimer delta values were significantly higher in patients developing MINS than in patients who did not (p = 0.01). After adjusting for age, sex, smoking, alcohol abuse, atrial fibrillation, anticoagulant medication preoperative CRP, preoperative creatinine and duration of surgery, the association remained significant (p = 0.04). There were no significant changes in thrombin generation, in markers of fibrinogen/fibrin turnover besides D-dimer, or in fibrin structure measurements pre- and postoperatively between patients with and without MINS. As such, a relationship between the coagulative and fibrinolytic activity and MINS cannot be ruled out in patients with MINS after hip fracture surgery. Registration: The study was an observational sub-study to a multicentre randomised clinical trial registered at ClinicalTrials.gov (NCT02344797).
Collapse
Affiliation(s)
- Kirsten L Wahlstrøm
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Sarah Ekeloef
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
- Institute for Clinical Medicine, Copenhagen University, Denmark
| | - Anna-Marie B Münster
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Regional Hospital West Jutland, Holstebro, Denmark
| |
Collapse
|
5
|
Wang F, Liang CJ, Shi JK, Huang QS, Nassirou BM, Wang X, Jin SQ, Zhao Y. Effects of remote ischaemic preconditioning on myocardial injury after major abdominal surgery in patients at high risk for cardiovascular adverse events in China (RIPC-MAS): protocol for a randomised, sham-controlled, observer-blinded trial. BMJ Open 2023; 13:e073038. [PMID: 37355267 PMCID: PMC10314695 DOI: 10.1136/bmjopen-2023-073038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023] Open
Abstract
INTRODUCTION Myocardial injury after non-cardiac surgery (MINS) caused by an ischaemic mechanism is common and is associated with adverse short-term and long-term prognoses. However, MINS is a recent concept, and few studies have prospectively used it as a primary outcome. Remote ischaemic preconditioning (RIPC) is a non-invasive procedure that induces innate cardioprotection and may reduce MINS. METHODS AND ANALYSIS This is a multicentre, randomised, sham-controlled, observer-blinded trial. Patients with a high clinical risk of cardiovascular events who are scheduled to undergo major abdominal surgery will be enrolled. A total of 766 participants will be randomised (1:1 ratio) to receive RIPC or control treatment before anaesthesia. RIPC will comprise four cycles of cuff inflation for 5 min to 200 mm Hg and deflation for 5 min. In the controls, an identical-looking cuff will be placed around the arm but will not be actually inflated. The primary outcome will be MINS, defined as at least one postoperative cardiac troponin (cTn) concentration above the 99th percentile upper reference limit of the cTn assay as a result of a presumed ischaemic mechanism. This trial will test the concentration of high-sensitivity cardiac troponin T (hs-cTnT). The secondary outcomes will be hs-cTnT levels reaching/above the prognostically important thresholds, peak hs-cTnT and total hs-cTnT release during the initial 3 days after surgery, length of hospital stay after surgery, length of stay in the intensive care unit, myocardial infarction, major adverse cardiovascular events, cardiac-related death, all-cause death within 30 days, 6 months, 1 year and 2 years after surgery, and postoperative complications and adverse events within 30 days after surgery. ETHICS AND DISSEMINATION This study protocol (version 5.0 on 7 April 2023) was approved by the Ethics Committee of Sixth Affiliated Hospital of Sun Yat-sen University. The findings will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05733208.
Collapse
Affiliation(s)
- Fan Wang
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chu-Jun Liang
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Kun Shi
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing-Shan Huang
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bizo Mailoga Nassirou
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xi Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - San-Qing Jin
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Zhao
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Papadopoulou A, Dickinson M, Samuels TL, Heiss C, Forni L, Creagh-Brown B. Efficacy of remote ischaemic preconditioning on outcomes following non-cardiac non-vascular surgery: a systematic review and meta-analysis. Perioper Med (Lond) 2023; 12:9. [PMID: 37038219 PMCID: PMC10084674 DOI: 10.1186/s13741-023-00297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Remote ischaemic preconditioning (RIPC) has been investigated as a simple intervention to potentially mitigate the ischaemic effect of the surgical insult and reduce postoperative morbidity. This review systematically evaluates the effect of RIPC on morbidity, including duration of hospital stay and parameters reflective of cardiac, renal, respiratory, and hepatic dysfunction following non-cardiac non-vascular (NCNV) surgery. METHODS The electronic databases PubMed, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) were searched from their inception date to November 2021. Studies investigating the effect of local preconditioning or postconditioning were excluded. Methodological quality and risk of bias were determined according to the Revised Cochrane risk-of-bias tool for randomised trials (RoB 2). Calculation of the odds ratios and a random effects model was used for dichotomous outcomes and mean differences or standardised mean differences as appropriate were used for continuous outcomes. The primary outcomes of interest were cardiac and renal morbidity, and the secondary outcomes included other organ function parameters and hospital length of stay. RESULTS A systematic review of the published literature identified 36 randomised controlled trials. There was no significant difference in postoperative troponin or acute kidney injury. RIPC was associated with lower postoperative serum creatinine (9 studies, 914 patients, mean difference (MD) - 3.81 µmol/L, 95% confidence interval (CI) - 6.79 to - 0.83, p = 0.01, I2 = 5%) and lower renal stress biomarker (neutrophil gelatinase-associated lipocalin (NGAL), 5 studies, 379 patients, standardized mean difference (SMD) - 0.66, 95% CI - 1.27 to - 0.06, p = 0.03, I2 = 86%). RIPC was also associated with improved oxygenation (higher PaO2/FiO2, 5 studies, 420 patients, MD 51.51 mmHg, 95% CI 27.32 to 75.69, p < 0.01, I2 = 89%), lower biomarker of oxidative stress (malondialdehyde (MDA), 3 studies, 100 patients, MD - 1.24 µmol/L, 95% CI - 2.4 to - 0.07, p = 0.04, I2 = 91%)) and shorter length of hospital stay (15 studies, 2110 patients, MD - 0.99 days, 95% CI - 1.75 to - 0.23, p = 0.01, I2 = 88%). CONCLUSIONS This meta-analysis did not show an improvement in the primary outcomes of interest with the use of RIPC. RIPC was associated with a small improvement in certain surrogate parameters of organ function and small reduction in hospital length of stay. Our results should be interpreted with caution due to the limited number of studies addressing individual outcomes and the considerable heterogeneity identified. TRIAL REGISTRATION PROSPERO CRD42019129503.
Collapse
Affiliation(s)
| | - Matthew Dickinson
- Department of Anesthesia, Royal Surrey County Hospital, Guildford, UK
| | - Theophilus L Samuels
- Department of Critical Care, Surrey and Sussex Healthcare NHS Trust, Redhill, UK
| | - Christian Heiss
- Vascular Department, Surrey and Sussex Healthcare NHS Trust, Redhill, UK
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Lui Forni
- Department of Critical Care, Royal Surrey County Hospital, Guildford, UK
| | - Ben Creagh-Brown
- Department of Critical Care, Royal Surrey County Hospital, Guildford, UK
| |
Collapse
|
7
|
Kampman JM, Sperna Weiland NH. Anaesthesia and environment: impact of a green anaesthesia on economics. Curr Opin Anaesthesiol 2023; 36:188-195. [PMID: 36700462 PMCID: PMC9973446 DOI: 10.1097/aco.0000000000001243] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The excessive growth of the health sector has created an industry that, while promoting health, is now itself responsible for a significant part of global environmental pollution. The health crisis caused by climate change urges us to transform healthcare into a sustainable industry. This review aims to raise awareness about this issue and to provide practical and evidence-based recommendations for anaesthesiologists.
Collapse
Affiliation(s)
| | - Nicolaas H. Sperna Weiland
- Amsterdam UMC location University of Amsterdam, Anaesthesiology
- Amsterdam UMC Centre for Sustainable Healthcare, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Wahlstrøm KL, Hansen HF, Kvist M, Burcharth J, Lykkesfeldt J, Gögenur I, Ekeloef S. Effect of Remote Ischaemic Preconditioning on Perioperative Endothelial Dysfunction in Non-Cardiac Surgery: A Randomised Clinical Trial. Cells 2023; 12:cells12060911. [PMID: 36980253 PMCID: PMC10047371 DOI: 10.3390/cells12060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/24/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Endothelial dysfunction result from inflammation and excessive production of reactive oxygen species as part of the surgical stress response. Remote ischemic preconditioning (RIPC) potentially exerts anti-oxidative and anti-inflammatory properties, which might stabilise the endothelial function after non-cardiac surgery. This was a single centre randomised clinical trial including 60 patients undergoing sub-acute laparoscopic cholecystectomy due to acute cholecystitis. Patients were randomised to RIPC or control. The RIPC procedure consisted of four cycles of five minutes of ischaemia and reperfusion of one upper extremity. Endothelial function was assessed as the reactive hyperaemia index (RHI) and circulating biomarkers of nitric oxide (NO) bioavailability (L-arginine, asymmetric dimethylarginine (ADMA), L-arginine/ADMA ratio, tetra- and dihydrobiopterin (BH4 and BH2), and total plasma biopterin) preoperative, 2–4 h after surgery and 24 h after surgery. RHI did not differ between the groups (p = 0.07). Neither did levels of circulating biomarkers of NO bioavailability change in response to RIPC. L-arginine and L-arginine/ADMA ratio was suppressed preoperatively and increased 24 h after surgery (p < 0.001). The BH4/BH2-ratio had a high preoperative level, decreased 2–4 h after surgery and remained low 24 h after surgery (p = 0.01). RIPC did not influence endothelial function or markers of NO bioavailability until 24 h after sub-acute laparoscopic cholecystectomy. In response to surgery, markers of NO bioavailability increased, and oxidative stress decreased. These findings support that a minimally invasive removal of the inflamed gallbladder countereffects reduced markers of NO bioavailability and increased oxidative stress caused by acute cholecystitis.
Collapse
Affiliation(s)
- Kirsten L. Wahlstrøm
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Correspondence:
| | - Hannah F. Hansen
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Madeline Kvist
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Jakob Burcharth
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg C, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Sarah Ekeloef
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| |
Collapse
|
9
|
Strickland SS, Quintela EM, Wilson MJ, Lee MJ. Long-term major adverse cardiovascular events following myocardial injury after non-cardiac surgery: meta-analysis. BJS Open 2023; 7:zrad021. [PMID: 37104754 PMCID: PMC10129390 DOI: 10.1093/bjsopen/zrad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Myocardial injury after non-cardiac surgery is diagnosed following asymptomatic troponin elevation in the perioperative interval. Myocardial injury after non-cardiac surgery is associated with high mortality rates and significant rates of major adverse cardiac events within the first 30 days following surgery. However, less is known regarding its impact on mortality and morbidity beyond this time. This systematic review and meta-analysis aimed to establish the rates of long-term morbidity and mortality associated with myocardial injury after non-cardiac surgery. METHODS MEDLINE, Embase and Cochrane CENTRAL were searched, and abstracts screened by two reviewers. Observational studies and control arms of trials, reporting mortality and cardiovascular outcomes beyond 30 days in adult patients diagnosed with myocardial injury after non-cardiac surgery, were included. Risk of bias was assessed using the Quality in Prognostic Studies tool. A random-effects model was used for the meta-analysis of outcome subgroups. RESULTS Searches identified 40 studies. The meta-analysis of 37 cohort studies found a rate of major adverse cardiac events-associated myocardial injury after non-cardiac surgery of 21 per cent and mortality following myocardial injury after non-cardiac surgery was 25 per cent at 1-year follow-up. A non-linear increase in mortality rate was observed up to 1 year after surgery. Major adverse cardiac event rates were also lower in elective surgery compared with a subgroup including emergency cases. The analysis demonstrated a wide variety of accepted myocardial injury after non-cardiac surgery and major adverse cardiac events diagnostic criteria within the included studies. CONCLUSION A diagnosis of myocardial injury after non-cardiac surgery is associated with high rates of poor cardiovascular outcomes up to 1 year after surgery. Work is needed to standardize diagnostic criteria and reporting of myocardial injury after non-cardiac surgery-related outcomes. REGISTRATION This review was prospectively registered with PROSPERO in October 2021 (CRD42021283995).
Collapse
Affiliation(s)
- Scarlett S Strickland
- Academic Directorate of General Surgery, Sheffield Teaching Hospitals, Sheffield, UK
| | - Ella M Quintela
- Department of Anaesthesia, Sheffield Teaching Hospitals, Sheffield, UK
- Centre for Urgent and Emergency Care Research, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Matthew J Wilson
- Department of Anaesthesia, Sheffield Teaching Hospitals, Sheffield, UK
- Centre for Urgent and Emergency Care Research, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Matthew J Lee
- Academic Directorate of General Surgery, Sheffield Teaching Hospitals, Sheffield, UK
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Protasov KV, Barahtenko OA, Batunova EV, Rasputina EA. Incidence and Severity of Acute Myocardial Injury after Thoracic Surgery: Effects of Nicorandil. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2023-01-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Aim. To study the perioperative dynamics of myocardial injury biomarkers high-sensitivity cardiac troponin I (hs-cTnI), ischemia-modified albumin (IMA) and soluble ST2 (sST2) when taking nicorandil in lung cancer patients with concomitant coronary heart disease (CHD) undergoing surgical lung resection.Material and methods. The study included 54 patients (11 women and 43 men) with non-small cell lung cancer and concomitant stable CHD who underwent lung resection in the volume of lobectomy or pneumonectomy. Patients were randomly assigned to the nicorandil group (oral administration 10 mg BID for 7 days before and 3 days after surgery; n=27) and the control group (n=27). In the study groups, the perioperative dynamics of hscTnI, IMA and sST2, determined in the blood before and 24 and 48h after surgery, were compared. We calculated the incidence of acute myocardial injury in the groups, which was diagnosed in cases of postoperative hs-cTnI increase of more than one 99th percentile of the upper reference limit. The associations of nicorandil intake and acute myocardial injury were evaluated.Results. The groups were comparable in gender, age, basic clinical characteristics, as well as baseline levels of myocardial injury biomarkers. After the intervention, both samples showed an increase in the hs-cTnI and sST2 levels and a decrease in IMA concentration (all p<0.02 for related group differences). In the nicorandil group, in comparison with the control one, 48h after surgery, we found lower mean levels of hs-cTnI [16.7 (11.9;39.7) vs 44.3 (15.0;130.7) ng/l; p<0.05) and sST2 [62.8 (43.6;70.1) vs 76.5 (50.2;87.1) ng/ml; p<0.05), concentration increase rates of hs-cTnI [14.8 (0.7;42.2) vs 32.5 (14.0;125.0) ng/l; p<0.01) and sST2 [24.4 (10.3;42.4) vs 47.4 (17.5;65.3) ng/ml; p<0.05), as well as highest concentrations for the entire postoperative period of hs-cTnI [30.7 (12.0;53.7) vs 79.0 (20.3;203.3) ng/L, p<0.01] and sST2 [99.8 (73.6;162.5) vs 147.8 (87.8;207.7) ng/mL; p<0.05]. The serum IMA decreased when taking nicorandil to a greater extent [-8.0 (-12.6; -2.0) vs -2.7 (-6.0; +5.5) ng/ ml; p<0.01] 24h after surgery. Acute myocardial injury was diagnosed in 7 people in the nicorandil group (25.9%) and in 15 in the control one (55.6%; pχ2=0.027). The adjusted odds ratio of acute myocardial injury when taking nicorandil was 0.35 (95% confidence interval 0.15-0.83, p=0.017).Conclusion. Taking nicorandil in patients with lung cancer and concomitant CHD who underwent surgical lung resection is associated with a lower postoperative increase in hs-cTnI and sST2 and a reduced risk of acute myocardial injury, which may indicate the cardioprotective effect of nicorandil under acute surgical stress conditions.
Collapse
Affiliation(s)
- K. V. Protasov
- Irkutsk State Medical Academy of Postgraduate Education – Branch Campus of the RMACPE MOH Russia
| | | | - E. V. Batunova
- Irkutsk State Medical Academy of Postgraduate Education – Branch Campus of the RMACPE MOH Russia
| | - E. A. Rasputina
- Irkutsk State Medical Academy of Postgraduate Education – Branch Campus of the RMACPE MOH Russia
| |
Collapse
|
11
|
Chen L, Weng Y, Qing A, Li J, Yang P, Ye L, Zhu T. Protective Effect of Remote Ischemic Preconditioning against Myocardial Ischemia-Reperfusion Injury in Rats and Mice: A Systematic Review and Meta-Analysis. Rev Cardiovasc Med 2022; 23:413. [PMID: 39076668 PMCID: PMC11270448 DOI: 10.31083/j.rcm2312413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 07/31/2024] Open
Abstract
Background Remote ischemic preconditioning (RIPC) has cardioprotective effects. This study was designed to evaluate the effectiveness and potential influencing factors of RIPC for myocardial ischemia-reperfusion injury (MIRI) in rats and mice. Methods The PubMed, Web of Science, Embase, and Cochrane Library databases were searched to identify animal model studies that explored the effect of RIPC on MIRI. The primary outcome was myocardial infarct size, and secondary outcomes included serum cardiac markers, vital signs, hemodynamic parameters, and TUNEL-positive cells. Quality was assessed using SYRCLE's Risk of Bias Tool. Results This systematic review and meta-analysis included 713 male animals from 37 studies. RIPC significantly protected against MIRI in small animal models by reducing infarct size, decreasing serum myocardial marker levels and cell death, and improving cardiac function. Subgroup analysis indicated that RIPC duration and sites influence the protective effect of RIPC on MIRI. Meta-regression suggested that study type and staining method might be sources of heterogeneity. The funnel plot, Egger's test, and Begg's test suggested the existence of publication bias, but results of the sensitivity analysis and nonparametric trim-and-fill method showed that the overall effect of RIPC on MIRI infarct size was robust. Conclusions RIPC significantly protected against MIRI in small animal models by reducing infarct size, decreasing serum myocardial markers and limiting cell death, and improving cardiac function. RIPC duration and site influence the protective effect of RIPC on MIRI, which contributes in reducing confounding factors and determines the best approach for human studies.
Collapse
Affiliation(s)
- Lu Chen
- Department of Anesthesiology, West China Hospital, Sichuan University,
610041 Chengdu, Sichuan, China
| | - Yan Weng
- Department of Anesthesiology, The People's Hospital of Jianyang, 641400
Jianyang, Sichuan, China
| | - Ailing Qing
- Department of Anesthesiology, West China School of Public Health and West
China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Jun Li
- Department of Pain Management, West China Hospital, Sichuan University,
610041 Chengdu, Sichuan, China
| | - Pingliang Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu
Medical College, 610500 Chengdu, Sichuan, China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University,
610041 Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University,
610041 Chengdu, Sichuan, China
| |
Collapse
|
12
|
Zhong Z, Dong H, Wu Y, Zhou S, Li H, Huang P, Tian H, Li X, Xiao H, Yang T, Xiong K, Zhang G, Tang Z, Li Y, Fan X, Yuan C, Ning J, Li Y, Xie J, Li P. Remote ischemic preconditioning enhances aerobic performance by accelerating regional oxygenation and improving cardiac function during acute hypobaric hypoxia exposure. Front Physiol 2022; 13:950086. [PMID: 36160840 PMCID: PMC9500473 DOI: 10.3389/fphys.2022.950086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) may improve exercise performance. However, the influence of RIPC on aerobic performance and underlying physiological mechanisms during hypobaric hypoxia (HH) exposure remains relatively uncertain. Here, we systematically evaluated the potential performance benefits and underlying mechanisms of RIPC during HH exposure. Seventy-nine healthy participants were randomly assigned to receive sham intervention or RIPC (4 × 5 min occlusion 180 mm Hg/reperfusion 0 mm Hg, bilaterally on the upper arms) for 8 consecutive days in phases 1 (24 participants) and phase 2 (55 participants). In the phases 1, we measured the change in maximal oxygen uptake capacity (VO2max) and muscle oxygenation (SmO2) on the leg during a graded exercise test. We also measured regional cerebral oxygenation (rSO2) on the forehead. These measures and physiological variables, such as cardiovascular hemodynamic parameters and heart rate variability index, were used to evaluate the intervention effect of RIPC on the changes in bodily functions caused by HH exposure. In the phase 2, plasma protein mass spectrometry was then performed after RIPC intervention, and the results were further evaluated using ELISA tests to assess possible mechanisms. The results suggested that RIPC intervention improved VO2max (11.29%) and accelerated both the maximum (18.13%) and minimum (53%) values of SmO2 and rSO2 (6.88%) compared to sham intervention in hypobaric hypoxia exposure. Cardiovascular hemodynamic parameters (SV, SVRI, PPV% and SpMet%) and the heart rate variability index (Mean RR, Mean HR, RMSSD, pNN50, Lfnu, Hfnu, SD1, SD2/SD1, ApEn, SampEn, DFA1and DFA2) were evaluated. Protein sequence analysis showed 42 unregulated and six downregulated proteins in the plasma of the RIPC group compared to the sham group after HH exposure. Three proteins, thymosin β4 (Tβ4), heat shock protein-70 (HSP70), and heat shock protein-90 (HSP90), were significantly altered in the plasma of the RIPC group before and after HH exposure. Our data demonstrated that in acute HH exposure, RIPC mitigates the decline in VO2max and regional oxygenation, as well as physiological variables, such as cardiovascular hemodynamic parameters and the heart rate variability index, by influencing plasma Tβ4, HSP70, and HSP90. These data suggest that RIPC may be beneficial for acute HH exposure.
Collapse
Affiliation(s)
- Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaping Dong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Wu
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Simin Zhou
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaijun Tian
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoxu Li
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Heng Xiao
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Yang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kun Xiong
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Zhang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhongwei Tang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaling Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xueying Fan
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Yuan
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaolin Ning
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Li
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxin Xie
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| |
Collapse
|
13
|
Chhetri I, Hunt JEA, Mendis JR, Forni LG, Kirk-Bayley J, White I, Cooper J, Somasundaram K, Shah N, Patterson SD, Puthucheary ZA, Montgomery HE, Creagh-Brown BC. Safety and Feasibility Assessment of Repetitive Vascular Occlusion Stimulus (RVOS) Application to Multi-Organ Failure Critically Ill Patients: A Pilot Randomised Controlled Trial. J Clin Med 2022; 11:3938. [PMID: 35887701 PMCID: PMC9316533 DOI: 10.3390/jcm11143938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle wasting is implicated in the pathogenesis of intensive care unit acquired weakness (ICU-AW), affecting 40% of patients and causing long-term physical disability. A repetitive vascular occlusion stimulus (RVOS) limits muscle atrophy in healthy and orthopaedic subjects, thus, we explored its application to ICU patients. Adult multi-organ failure patients received standard care +/- twice daily RVOS {4 cycles of 5 min tourniquet inflation to 50 mmHg supra-systolic blood pressure, and 5 min complete deflation} for 10 days. Serious adverse events (SAEs), tolerability, feasibility, acceptability, and exploratory outcomes of the rectus femoris cross-sectional area (RFCSA), echogenicity, clinical outcomes, and blood biomarkers were assessed. Only 12 of the intended 32 participants were recruited. RVOS sessions (76.1%) were delivered to five participants and two could not tolerate it. No SAEs occurred; 75% of participants and 82% of clinical staff strongly agreed or agreed that RVOS is an acceptable treatment. RFCSA fell significantly and echogenicity increased in controls (n = 5) and intervention subjects (n = 4). The intervention group was associated with less frequent acute kidney injury (AKI), a greater decrease in the total sequential organ failure assessment score (SOFA) score, and increased insulin-like growth factor-1 (IGF-1), and reduced syndecan-1, interleukin-4 (IL-4) and Tumor necrosis factor receptor type II (TNF-RII) levels. RVOS application appears safe and acceptable, but protocol modifications are required to improve tolerability and recruitment. There were signals of possible clinical benefit relating to RVOS application.
Collapse
Affiliation(s)
- Ismita Chhetri
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London SW7 2BX, UK
| | - Julie E. A. Hunt
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Jeewaka R. Mendis
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Lui G. Forni
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Justin Kirk-Bayley
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
| | - Ian White
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Jonathan Cooper
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Karthik Somasundaram
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Nikunj Shah
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Stephen D. Patterson
- Faculty of Sport, Allied Health & Performance Sciences, St Mary’s University, London TW1 4SX, UK;
| | - Zudin A. Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London E1 4NS, UK;
- Institute for Sport, Exercise and Health, University College London, London W1T 7HA, UK
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
- Intensive Care Unit, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Hugh E. Montgomery
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
| | - Benedict C. Creagh-Brown
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| |
Collapse
|
14
|
Papadopoulou A, Dickinson M, Samuels TL, Heiss C, Hunt J, Forni L, Creagh-Brown BC. Remote Ischaemic Preconditioning in Intra-Abdominal Cancer Surgery (RIPCa): A Pilot Randomised Controlled Trial. J Clin Med 2022; 11:jcm11071770. [PMID: 35407378 PMCID: PMC8999621 DOI: 10.3390/jcm11071770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
There is limited evidence on the effect of remote ischaemic preconditioning (RIPC) following non-cardiac surgery. The aim of this study was to investigate the effect of RIPC on morbidity following intra-abdominal cancer surgery. We conducted a double blinded pilot randomised controlled trial that included 47 patients undergoing surgery for gynaecological, pancreatic and colorectal malignancies. The patients were randomized into an intervention (RIPC) or control group. RIPC was provided by intermittent inflations of an upper limb tourniquet. The primary outcome was feasibility of the study, and the main secondary outcome was postoperative morbidity including perioperative troponin change and the urinary biomarkers tissue inhibitor of metalloproteinases-2 and insulin-like growth factor-binding protein 7 (TIMP-2*IGFBP-7). The recruitment target was reached, and the protocol procedures were followed. The intervention group developed fewer surgical complications at 30 days (4.5% vs. 33%), 90 days (9.5% vs. 35%) and 6 months (11% vs. 41%) (adjusted p 0.033, 0.044 and 0.044, respectively). RIPC was a significant independent variable for lower overall postoperative morbidity survey (POMS) score, OR 0.79 (95% CI 0.63 to 0.99) and fewer complications at 6 months including pulmonary OR 0.2 (95% CI 0.03 to 0.92), surgical OR 0.12 (95% CI 0.007 to 0.89) and overall complications, OR 0.18 (95% CI 0.03 to 0.74). There was no difference in perioperative troponin change or TIMP2*IGFBP-7. Our pilot study suggests that RIPC may improve outcomes following intra-abdominal cancer surgery and that a larger trial would be feasible.
Collapse
Affiliation(s)
- Aikaterini Papadopoulou
- Department of Anaesthesia, King’s College Hospital, London SE5 9RS, UK
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (C.H.); (J.H.); (L.F.); (B.C.C.-B.)
- Correspondence:
| | - Matthew Dickinson
- Department of Anaesthesia, Royal Surrey County Hospital, Guildford GU2 7XX, UK;
| | - Theophilus L. Samuels
- Department of Critical Care, Surrey and Sussex Healthcare NHS Trust, Redhill RH2 5RH, UK;
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (C.H.); (J.H.); (L.F.); (B.C.C.-B.)
- Vascular Department, Surrey and Sussex Healthcare NHS Trust, Redhill RH2 5RH, UK
| | - Julie Hunt
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (C.H.); (J.H.); (L.F.); (B.C.C.-B.)
| | - Lui Forni
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (C.H.); (J.H.); (L.F.); (B.C.C.-B.)
- Department of Critical Care, Royal Surrey County Hospital, Guildford GU2 7XX, UK
| | - Ben C. Creagh-Brown
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (C.H.); (J.H.); (L.F.); (B.C.C.-B.)
- Department of Critical Care, Royal Surrey County Hospital, Guildford GU2 7XX, UK
| |
Collapse
|
15
|
Wahlstrøm KL, Ekeloef S, Sidelmann JJ, Gögenur I, Münster AMB. Effect of remote ischemic preconditioning on fibrin formation and metabolism in patients undergoing hip fracture surgery: a randomized clinical trial. Blood Coagul Fibrinolysis 2022; 33:25-33. [PMID: 34561340 PMCID: PMC8728681 DOI: 10.1097/mbc.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Remote ischemic preconditioning (RIPC) prior to surgery has recently been shown to reduce the risk of myocardial injury and myocardial infarction after hip fracture surgery. This study investigated whether RIPC initiated antithrombotic mechanisms in patients undergoing hip fracture surgery. This trial was a predefined sub-study of a multicentre randomized clinical trial. Adult patients with cardiovascular risk factors undergoing hip fracture surgery between September 2015 and September 2017 were randomized 1 : 1 to RIPC or control. RIPC was initiated before surgery with a tourniquet applied to the upper arm and it consisted of four cycles of 5 min of forearm ischemia followed by five minutes of reperfusion. The outcomes such as surgery-induced changes in thrombin generation, fibrinogen/fibrin turnover, tissue plasminogen activator, plasminogen activator inhibitor-1 and fibrin structure measurements were determined preoperatively (prior to RIPC) and 2 h postoperatively. One hundred and thirty-seven patients were randomized to RIPC (n = 65) or control (n = 72). There were no significant changes in thrombin generation, fibrinogen/fibrin turnover or fibrin structure measurements determined pre and postoperatively between patients in the RIPC and control groups. Subgroup analyses on patients not on anticoagulant therapy (n = 103), patients receiving warfarin (n = 17) and patients receiving direct oral anticoagulant therapy (n = 18) showed no significant changes between the RIPC-patients and controls. RIPC did not affect changes in thrombin generation, fibrin turnover or fibrin structure in adult patients undergoing hip fracture surgery suggesting that the cardiovascular effect of RIPC in hip fracture surgery is not related to alterations in fibrinogen/fibrin metabolism.
Collapse
Affiliation(s)
- Kirsten L. Wahlstrøm
- Centre for Surgical Science, Department of Surgery, Zealand University Hospital, Køge
| | - Sarah Ekeloef
- Centre for Surgical Science, Department of Surgery, Zealand University Hospital, Køge
| | - Johannes J. Sidelmann
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark and Department of Clinical Biochemistry, University Hospital of Southern Denmark
| | - Ismail Gögenur
- Centre for Surgical Science, Department of Surgery, Zealand University Hospital, Køge
| | - Anna-Marie B. Münster
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark and Department of Clinical Biochemistry, University Hospital of Southern Denmark
- Department of Clinical Biochemistry, Regional Hospital West Jutland, Holstebro, Denmark
| |
Collapse
|
16
|
Krag AE, Hvas CL, Kiil BJ, Hvas AM. Effect of Remote Ischemic Conditioning on Bleeding Complications in Surgery: A Systematic Review and Meta-Analysis. Semin Thromb Hemost 2021; 48:229-239. [PMID: 34428800 DOI: 10.1055/s-0041-1732468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Remote ischemic conditioning (RIC) is administered with an inflatable tourniquet by inducing brief, alternating cycles of limb ischemia and reperfusion. RIC possibly impacts the hemostatic system, and the intervention has been tested as protective therapy against ischemia-reperfusion injury and thrombotic complications in cardiac surgery and other surgical procedures. In the present systematic review, we aimed to investigate the effect of RIC on intraoperative and postoperative bleeding complications in meta-analyses of randomized controlled trials including adult patients undergoing surgery. A systematic search was performed on November 7, 2020 in PubMed, Embase, and the Cochrane Central Register of Controlled Trials. Randomized controlled trials comparing RIC versus no RIC in adult patients undergoing surgery that reported bleeding outcomes in English publications were included. Effect estimates with 95% confidence intervals were calculated using the random-effects model for intraoperative and postoperative bleeding outcomes. Thirty-two randomized controlled trials with 3,804 patients were eligible for inclusion. RIC did not affect intraoperative bleeding volume (nine trials; 392 RIC patients, 399 controls) with the effect estimate -0.95 [-9.90; 7.99] mL (p = 0.83). RIC significantly reduced postoperative drainage volume (seven trials; 367 RIC patients, 365 controls) with mean difference -83.6 [-134.9; -32.4] mL (p = 0.001). The risk of re-operation for bleeding was reduced in the RIC group (16 trials; 838 RIC patients, 839 controls), albeit not significantly, with the relative risk 0.65 [0.39; 1.09] (p = 0.10). In conclusion, RIC reduced postoperative bleeding measured by postoperative drainage volume in this meta-analysis of adult patients undergoing surgery.
Collapse
Affiliation(s)
- Andreas E Krag
- Thrombosis and Hemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Plastic and Breast Surgery, Aarhus University Hospital, Denmark
| | - Christine L Hvas
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Denmark
| | - Birgitte J Kiil
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Denmark
| | - Anne-Mette Hvas
- Thrombosis and Hemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Implementing stakeholder engagement to explore alternative models of consent: An example from the PREP-IT trials. Contemp Clin Trials Commun 2021; 22:100787. [PMID: 34195467 PMCID: PMC8239736 DOI: 10.1016/j.conctc.2021.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Cluster randomized crossover trials are often faced with a dilemma when selecting an optimal model of consent, as the traditional model of obtaining informed consent from participant's before initiating any trial related activities may not be suitable. We describe our experience of engaging patient advisors to identify an optimal model of consent for the PREP-IT trials. This paper also examines surrogate measures of success for the selected model of consent. Methods The PREP-IT program consists of two multi-center cluster randomized crossover trials that engaged patient advisors to determine an optimal model of consent. Patient advisors and stakeholders met regularly and reached consensus on decisions related to the trial design including the model for consent. Patient advisors provided valuable insight on how key decisions on trial design and conduct would be received by participants and the impact these decisions will have. Results Patient advisors, together with stakeholders, reviewed the pros and cons and the requirements for the traditional model of consent, deferred consent, and waiver of consent. Collectively, they agreed upon a deferred consent model, in which patients may be approached for consent after their fracture surgery and prior to data collection. The consent rate in PREP-IT is 80.7%, and 0.67% of participants have withdrawn consent for participation. Discussion Involvement of patient advisors in the development of an optimal model of consent has been successful. Engagement of patient advisors is recommended for other large trials where the traditional model of consent may not be optimal.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW After successfully reducing mortality in the operating room, the time has come for anesthesiologists to conquer postoperative complications. This review aims to raise awareness about myocardial injury after noncardiac surgery (MINS), its definition, diagnosis, clinical importance, and treatment. RECENT FINDINGS MINS, defined as an elevated postoperative troponin judged to be due to myocardial ischemia (with or without ischemic features), occurs in up to one in five patients having noncardiac surgery and is responsible for 16% of all postoperative deaths within 30 days of surgery. New evidence on risk factors, etiology, potential prevention strategies, treatment options, and the economic impact of MINS highlights the actionability of perioperative clinicians in caring for adult patients who are considered to be at risk of cardiovascular complications. SUMMARY Millions of patients safely going through surgery suffer MINS and die shortly after the procedure every year. Without a structured approach to predicting, preventing, diagnosing, and treating MINS, we lose the opportunity to provide our patients with the best chance of deriving benefit from noncardiac surgery. The perioperative community needs to come together, appreciate the clinical relevance of MINS, and step up with high-quality research in the future.
Collapse
|
19
|
Gao J, Qin Z, Qu X, Wu S, Xie X, Liang C, Liu J. Endogenous neuroprotective mechanism of ATP2B1 in transcriptional regulation of ischemic preconditioning. Am J Transl Res 2021; 13:1170-1183. [PMID: 33841647 PMCID: PMC8014370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Ischemic stroke is the main cause of disability and mortality in the world. Clinical studies have shown that patients who undergo mild transient ischemic attack (TIA) before more severe ischemic stroke have lower clinical severity of stroke and better functional prognosis. This phenomenon is called ischemic preconditioning (IPC). IPC is a powerful intrinsic protection of the brain against ischemic injury, but the underlying mechanism of IPC-mediated endogenous protection of the brain is not clear. METHODS Using transcriptome method, we sequenced the serum of 3 stroke patients with progenitor TIA and 3 stroke patients without prodromal TIA. We explored the expression profiles of miRNAs and mRNAs in response to IPC, and predicted the regulatory pathway of IPC related genes and their expression in cerebral neurons. The methylation consistent expression of IPC-related gene ATP2B1 in blood and brain and alternative polyadenylate (APA) analysis were used to identify the pathway and molecular mechanism of endogenous neuroprotection of IPC. RESULTS We found that the brain protective effect of IPC was related to platelet homeostasis and Ca2+ concentration. IPC-related gene ATP2B1 was highly expressed in γ-aminobutyric acid (GABA)-containing neurons in the brain. From the mechanism, we speculated that ATP2B1 was representative of the same methylation in blood and brain and was affected by alternative polyadenylation. CONCLUSION We speculate that IPC can induce alternative polyadenylation of ATP2B1 and trigger the mechanism of brain endogenous neuroprotection by regulating the decrease of Ca2+ concentration in platelet homeostasis pathway and the activation of GABAB receptor.
Collapse
Affiliation(s)
- Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Zhenxiu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Xiang Qu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Shuang Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Xiaoyun Xie
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Chengwei Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| |
Collapse
|
20
|
Wahlstrøm KL, Bjerrum E, Gögenur I, Burcharth J, Ekeloef S. Effect of remote ischaemic preconditioning on mortality and morbidity after non-cardiac surgery: meta-analysis. BJS Open 2021; 5:zraa026. [PMID: 33733660 PMCID: PMC7970092 DOI: 10.1093/bjsopen/zraa026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/16/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Remote ischaemic preconditioning (RIPC) has been shown to have a protective role on vital organs exposed to reperfusion injury. The aim of this systematic review was to evaluate the effects of non-invasive RIPC on clinical and biochemical outcomes in patients undergoing non-cardiac surgery. METHODS A systematic literature search of PubMed, EMBASE, Scopus, and Cochrane databases was carried out in February 2020. RCTs investigating the effect of non-invasive RIPC in adults undergoing non-cardiac surgery were included. Meta-analyses and trial sequential analyses (TSAs) were performed on cardiovascular events, acute kidney injury, and short- and long-term mortality. RESULTS Some 43 RCTs including 3660 patients were included. The surgical areas comprised orthopaedic, vascular, abdominal, pulmonary, neurological, and urological surgery. Meta-analysis showed RIPC to be associated with fewer cardiovascular events in non-cardiac surgery (13 trials, 1968 patients, 421 events; odds ratio (OR) 0.68, 95 per cent c.i. 0.47 to 0.96; P = 0.03). Meta-analyses of the effect of RIPC on acute kidney injury (12 trials, 1208 patients, 211 events; OR 1.14, 0.78 to 1.69; P = 0.50; I2 = 9 per cent), short-term mortality (7 trials, 1239 patients, 65 events; OR 0.65, 0.37 to 1.12; P = 0.12; I2 = 0 per cent), and long-term mortality (4 trials, 1167 patients, 9 events; OR 0.67, 0.18 to 2.55; P = 0.56; I2 = 0 per cent) showed no significant differences for RIPC compared with standard perioperative care in non-cardiac surgery. However, TSAs showed that the required information sizes have not yet been reached. CONCLUSION Application of RIPC to non-cardiac surgery might reduce cardiovascular events, but not acute kidney injury or all-cause mortality, but currently available data are inadequate to confirm or reject an assumed intervention effect.
Collapse
Affiliation(s)
- K L Wahlstrøm
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - E Bjerrum
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - I Gögenur
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - J Burcharth
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - S Ekeloef
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| |
Collapse
|
21
|
Ekeloef S, Gundel O, Falkenberg A, Mathiesen O, Gögenur I. The effect of remote ischaemic preconditioning on endothelial function after hip fracture surgery. Acta Anaesthesiol Scand 2021; 65:169-175. [PMID: 33048342 DOI: 10.1111/aas.13724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Endothelial dysfunction seems to play a role in the pathophysiology of myocardial injury after surgery. The aim of this randomised clinical trial was to examine whether remote ischaemic preconditioning in relation to hip fracture surgery ameliorates post-operative systemic endothelial dysfunction. METHODS This was a planned single-centre pilot sub-study of a multicentre, randomised clinical trial. Patients ≥45 years with a cardiovascular risk factor were randomised to remote ischaemic preconditioning (RIPC) or control (standard treatment) performed in relation with their hip fracture operation. RIPC consisted of four cycles of 5 minutes forearm ischaemia and reperfusion. The procedure was performed non-invasively with a tourniquet. The endothelial function was assessed with non-invasive digital pulse amplitude tonometry on post-operative day 1 and expressed as the reactive hyperaemia index (RHI). Endothelial dysfunction was defined as RHI < 1.22. RESULTS Between February 2015 and December 2016, 18 patients were allocated to the RIPC group and 20 patients to the control group. The endothelial function was impaired in both groups on post-operative day 1. RHI did not differ between the groups, 1.47 (95% CI 1.20-1.75) in the RIPC group vs. 1.54 (95% CI 1.17-1.91) in the control group, P = .76. Endothelial dysfunction was present in 3/18 patients (16.7%) in the RIPC group and 8/20 patients (40%) in the control group, P = .11. CONCLUSION No beneficial effect of remote ischaemic preconditioning on the systemic endothelial dysfunction, assessed at a single time point on post-operative day one, was detected after hip fracture surgery.
Collapse
Affiliation(s)
- Sarah Ekeloef
- Center for Surgical Science Department of Surgery Zealand University Hospital Koege Denmark
| | - Ossian Gundel
- Center for Surgical Science Department of Surgery Zealand University Hospital Koege Denmark
| | - Andreas Falkenberg
- Center for Surgical Science Department of Surgery Zealand University Hospital Koege Denmark
| | - Ole Mathiesen
- Centre for Anaesthesiological Research Department of Anaesthesiology Zealand University Hospital Koege Denmark
- Department of Clinical Medicine Copenhagen University Copenhagen Denmark
| | - Ismail Gögenur
- Center for Surgical Science Department of Surgery Zealand University Hospital Koege Denmark
| |
Collapse
|
22
|
Lamidi S, Baker DM, Wilson MJ, Lee MJ. Remote Ischemic Preconditioning in Non-cardiac Surgery: A Systematic Review and Meta-analysis. J Surg Res 2021; 261:261-273. [PMID: 33460972 DOI: 10.1016/j.jss.2020.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Remote ischemic preconditioning (RIPC) may mitigate physiological stress related to surgery. There is no clear consensus on conduct of RIPC studies, or whether it is effective. The aim of this study was to (i) assess delivery of RIPC, (ii) identify reported outcomes, (iii) measure effect on key clinical outcomes. METHODS This review was registered on PROSPERO (CRD:42020180725). EMBASE and Medline databases were searched, and results screened by two reviewers. Full-texts were assessed for eligibility by two reviewers. Data extracted were methods of RIPC and outcomes reported. Meta-analysis of key clinical events was performed using a Mantel-Haenszel random effects model. The TIDieR framework was used to assess intervention reporting, and Cochrane risk of bias tool was used for all studies included. RESULTS Searches identified 25 studies; 25 were included in the narrative analysis and 18 in the meta-analysis. RIPC was frequently performed by occluding arm circulation (15/25), at 200 mmHg (9/25), with three cycles of 5 min ischemia and 5 min of reperfusion (16/25). No study fulfilled all 12 TIDieR items (mean score 7.68). Meta-analysis showed no benefit of RIPC on MI (OR 0.71 95% CI 0.48-1.04, I2 = 0%), mortality (OR 0.56, 95% CI 0.31-1.01, I2 = 0%), or acute kidney injury (OR 0.72 95% CI 0.48-1.08). CONCLUSIONS RIPC could be standardized as 200 mmHg pressure in 3 × 5 min on and off cycles. The signal of benefit should be explored in a larger well-designed randomized trial.
Collapse
Affiliation(s)
- Segun Lamidi
- The Medical School, University of Sheffield, Sheffield, UK
| | - Daniel M Baker
- Academic Directorate of General Surgery, Sheffield Teaching Hospitals NHS FT, Sheffield, UK
| | - Matthew J Wilson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Matthew J Lee
- Academic Directorate of General Surgery, Sheffield Teaching Hospitals NHS FT, Sheffield, UK; Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
23
|
Ekeloef S, Koyuncu S, Holst-Knudsen J, Gundel O, Meyhoff CS, Homilius M, Stilling M, Ekeloef P, Münster AMB, Mathiesen O, Gögenur I. Cardiovascular events in patients undergoing hip fracture surgery treated with remote ischaemic preconditioning: 1-year follow-up of a randomised clinical trial. Anaesthesia 2021; 76:1042-1050. [PMID: 33440017 DOI: 10.1111/anae.15357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Remote ischaemic preconditioning reduces the risk of myocardial injury within 4 days of hip fracture surgery. We aimed to investigate the effect of remote ischaemic preconditioning on the incidence of major adverse cardiovascular events 1 year after hip fracture surgery. We performed a phase-2, multicentre, randomised, observer-blinded, clinical trial between February 2015 and September 2017. We studied patients aged ≥ 45 years with a hip fracture and a minimum of one cardiovascular risk factor. Patients were allocated randomly to remote ischaemic preconditioning applied just before surgery or no treatment (control group). Remote ischaemic preconditioning was performed on the upper arm with a tourniquet in four cycles of 5 min ischaemia and 5 min reperfusion. Primary outcome was the occurrence of major adverse cardiovascular events within 1 year of surgery. A total of 316 patients were allocated randomly to the remote ischaemic preconditioning group and 309 patients to the control group. Major adverse cardiovascular events occurred in 43 patients (13.6%) in the remote ischaemic preconditioning group compared with 51 patients (16.5%) in the control group (adjusted hazard ratio (95%CI) 0.83 (0.55-1.25); p = 0.37). Fewer patients in the remote ischaemic preconditioning group had a myocardial infarction (11 (3.5%) vs. 22 (7.1%); hazard ratio (95%CI) 0.48 (CI 0.23-1.00); p = 0.04). Remote ischaemic preconditioning did not reduce the occurrence of major adverse cardiovascular events within 1 year of hip fracture surgery. The effect of remote ischaemic preconditioning on clinical cardiovascular outcomes in non-cardiac surgery needs confirmation in appropriately powered randomised clinical trials.
Collapse
Affiliation(s)
- S Ekeloef
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koege, Denmark
| | - S Koyuncu
- Centre for Anaesthesiological Research, Department of Anaesthesiology, Zealand University Hospital, Koege, Denmark
| | - J Holst-Knudsen
- Centre for Anaesthesiological Research, Department of Anaesthesiology, Zealand University Hospital, Koege, Denmark
| | - O Gundel
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - C S Meyhoff
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - M Homilius
- Department of Orthopaedic Surgery, University Clinic for Hand, Hip and Knee Surgery, Regional Hospital West Jutland, Holstebro, Denmark
| | - M Stilling
- Department of Orthopaedic Surgery, University Clinic for Hand, Hip and Knee Surgery, Regional Hospital West Jutland, Holstebro, Denmark
| | - P Ekeloef
- Department of Anaesthesiology, Regional Hospital West Jutland, Holstebro, Denmark
| | - A M B Münster
- Unit for Thrombosis Research, Department of Clinical Biochemistry, Hospital of South West Denmark, Esbjerg, Denmark
| | - O Mathiesen
- Centre for Anaesthesiological Research, Department of Anaesthesiology, Zealand University Hospital, Koege, Denmark
| | - I Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koege, Denmark
| |
Collapse
|
24
|
Mi B, Chen L, Tong D, Panayi AC, Ji F, Guo J, Ou Z, Zhang Y, Xiong Y, Liu G. Delayed surgery versus nonoperative treatment for hip fractures in post-COVID-19 arena: a retrospective study of 145 patients. Acta Orthop 2020; 91:639-643. [PMID: 32896189 PMCID: PMC8023940 DOI: 10.1080/17453674.2020.1816617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - Following the outbreak of COVID-19 in December 2019, in China, many hip fracture patients were unable to gain timely admission and surgery. We assessed whether delayed surgery improves hip joint function and reduces major complications better than nonoperative therapy. Patients and methods - In this retrospective observational study, we collected data from 24 different hospitals from January 1, 2020, to July 20, 2020. 145 patients with hip fractures aged 65 years or older were eligible. Clinical data was extracted from electronic medical records. The primary outcomes were visual analogue scale (VAS) score and Harris Hip Score. Major complications, including deep venous thrombosis (DVT) and pneumonia within 1 month and 3 months, were collected for further analysis. Results - Of the 145 hip fracture patients 108 (median age 72; 70 females) received delayed surgery and 37 (median age 74; 20 females) received nonoperative therapy. The median time from hip fracture injury to surgery was 33 days (IQR 24-48) in the delayed surgery group. Hypertension, in about half of the patients in both groups, and cerebral infarction, in around a quarter of patients in both groups, were the most common comorbidities. Both VAS score and Harris Hip Score were superior in the delayed surgery group. At the 3-month follow-up, the median VAS score was 1 in the delayed surgery group and 2.5 in the nonoperative group (p < 0.001). Also, the percentage of complications was higher in the nonoperative group (p = 0.004 for DVT, p < 0.001 for pulmonary infection). Interpretation - In hip fracture patients, delayed surgery compared with nonoperative therapy significantly improved hip function and reduced various major complications.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Dake Tong
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China;
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical College, Boston, USA;
| | - Fang Ji
- Department of Orthopedics, Changhai Hospital, Shanghai, China;
| | - Junfei Guo
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Ou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ,Correspondence:
| |
Collapse
|
25
|
Ekeloef S, Bjerrum E, Kristiansen P, Wahlstrøm K, Burcharth J, Gögenur I. The risk of post-operative myocardial injury after major emergency abdominal surgery: A retrospective cohort study. Acta Anaesthesiol Scand 2020; 64:1073-1081. [PMID: 32407553 DOI: 10.1111/aas.13622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim was to examine the risk of post-operative myocardial injury after major emergency abdominal surgery and identify pre- and intra-operative risk factors of post-operative myocardial injury. Moreover, the study aimed to examine the association between post-operative myocardial injury and clinical outcomes. METHODS This was a retrospective cohort study including patients undergoing major emergency abdominal surgery from February 2017 to January 2019. Troponin I was assessed on post-operative days 1-3. Post-operative myocardial injury was defined as a cardiac troponin I ≥ 45 ng per litre. Post-operative clinical outcomes included in-hospital myocardial infarction, in-hospital major adverse cardiovascular events, reoperation, admission to the intensive care unit, lengths of stay, 30- and 90-day all-cause mortality. RESULTS 98 out of 401 patients (24.4%) sustained a post-operative myocardial injury within the third post-operative day. Increasing age was an independent risk factor of post-operative myocardial injury (age per 10 years adjusted odds ratio 2.2 [95% CI 1.7-2.9], P < .0001). Patients with post-operative myocardial injury had an increased risk of major adverse cardiovascular events, a higher admission rate to the intensive care unit, a longer median post-operative length of stay and a higher 30- and 90-day all-cause mortality compared with patients without myocardial injury. CONCLUSION One in four patients suffered a post-operative myocardial injury within the third post-operative day. Post-operative myocardial injury was a risk factor of adverse cardiac and non-cardiac clinical outcomes. Troponin monitoring could potentially improve the post-operative risk stratification in this cohort of high-risk surgical patients.
Collapse
Affiliation(s)
- Sarah Ekeloef
- Department of Surgery Center for Surgical Science Zealand University Hospital Koege Denmark
| | - Ellen Bjerrum
- Department of Surgery Center for Surgical Science Zealand University Hospital Koege Denmark
| | - Puk Kristiansen
- Department of Surgery Center for Surgical Science Zealand University Hospital Koege Denmark
| | - Kirsten Wahlstrøm
- Department of Surgery Center for Surgical Science Zealand University Hospital Koege Denmark
| | - Jakob Burcharth
- Department of Surgery Center for Surgical Science Zealand University Hospital Koege Denmark
| | - Ismail Gögenur
- Department of Surgery Center for Surgical Science Zealand University Hospital Koege Denmark
| |
Collapse
|
26
|
Rytter N, Carter H, Piil P, Sørensen H, Ehlers T, Holmegaard F, Tuxen C, Jones H, Thijssen D, Gliemann L, Hellsten Y. Ischemic Preconditioning Improves Microvascular Endothelial Function in Remote Vasculature by Enhanced Prostacyclin Production. J Am Heart Assoc 2020; 9:e016017. [PMID: 32750305 PMCID: PMC7792245 DOI: 10.1161/jaha.120.016017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanisms underlying the effect of preconditioning on remote microvasculature remains undisclosed. The primary objective was to document the remote effect of ischemic preconditioning on microvascular function in humans. The secondary objective was to test if exercise also induces remote microvascular effects. METHODS AND RESULTS A total of 12 healthy young men and women participated in 2 experimental days in a random counterbalanced order. On one day the participants underwent 4×5 minutes of forearm ischemic preconditioning, and on the other day they completed 4×5 minutes of hand-grip exercise. On both days, catheters were placed in the brachial and femoral artery and vein for infusion of acetylcholine, sodium nitroprusside, and epoprostenol. Vascular conductance was calculated from blood flow measurements with ultrasound Doppler and arterial and venous blood pressures. Ischemic preconditioning enhanced (P<0.05) the remote vasodilator response to intra-arterial acetylcholine in the leg at 5 and 90 minutes after application. The enhanced response was associated with a 6-fold increase (P<0.05) in femoral venous plasma prostacyclin levels and with a transient increase (P<0.05) in arterial plasma levels of brain-derived neurotrophic factor and vascular endothelial growth factor. In contrast, hand-grip exercise did not influence remote microvascular function. CONCLUSIONS These findings demonstrate that ischemic preconditioning of the forearm improves remote microvascular endothelial function and suggest that one of the underlying mechanisms is a humoral-mediated potentiation of prostacyclin formation.
Collapse
Affiliation(s)
- Nicolai Rytter
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Denmark
| | - Howard Carter
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Denmark
| | - Peter Piil
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Denmark
| | - Henrik Sørensen
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Denmark.,Department of Anesthesia Centre for Cancer and Organ Diseases Rigshospitalet Copenhagen Denmark
| | - Thomas Ehlers
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Denmark
| | - Frederik Holmegaard
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Denmark
| | - Christoffer Tuxen
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Denmark
| | - Helen Jones
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Liverpool United Kingdom
| | - Dick Thijssen
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Liverpool United Kingdom.,Department of Physiology Radboud Institute for Health Sciences Nijmegen The Netherlands
| | - Lasse Gliemann
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Denmark
| | - Ylva Hellsten
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Denmark
| |
Collapse
|