1
|
Vos DJW, Ruarus AH, Timmer FEF, Geboers B, Bagla S, Belfiore G, Besselink MG, Leen E, Martin II RCG, Narayanan G, Nilsson A, Paiella S, Weintraub JL, Wiggermann P, Scheffer HJ, Meijerink MR. Consensus Guidelines of Irreversible Electroporation for Pancreatic Tumors: Protocol Standardization Using the Modified Delphi Technique. Semin Intervent Radiol 2024; 41:176-219. [PMID: 38993594 PMCID: PMC11236456 DOI: 10.1055/s-0044-1787164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Since no uniform treatment protocol for pancreatic irreversible electroporation (IRE) exists, the heterogeneity throughout literature complicates the comparison of results. To reach agreement among experts, a consensus study was performed. Eleven experts, recruited according to predefined criteria regarding previous IRE publications, participated anonymously in three rounds of questionnaires according to a modified Delphi technique. Consensus was defined as having reached ≥80% agreement. Response rates were 100, 64, and 64% in rounds 1 to 3, respectively; consensus was reached in 93%. Pancreatic IRE should be considered for stage III pancreatic cancer and inoperable recurrent disease after previous local treatment. Absolute contraindications are ventricular arrhythmias, implantable stimulation devices, congestive heart failure NYHA class 4, and severe ascites. The inter-electrode distance should be 10 to 20 mm and the exposure length should be 15 mm. After 10 test pulses, 90 treatment pulses of 1,500 V/cm should be delivered continuously, with a 90-µs pulse length. The first postprocedural contrast-enhanced computed tomography should take place 1 month post-IRE, and then every 3 months. This article provides expert recommendations regarding patient selection, procedure, and follow-up for IRE treatment in pancreatic malignancies through a modified Delphi consensus study. Future studies should define the maximum tumor diameter, response evaluation criteria, and the optimal number of preoperative FOLFIRINOX cycles.
Collapse
Affiliation(s)
- Danielle J. W. Vos
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Alette H. Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Florentine E. F. Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Sandeep Bagla
- Vascular Institute of Virginia, Woodbridge, Virginia
| | - Giuseppe Belfiore
- Department of Diagnostic Imaging, S. Anna-S. Sebastiano Hospital, Caserta, Italy
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Edward Leen
- Department of Experimental Medicine, Imperial College London, London, United Kingdom
| | | | - Govindarjan Narayanan
- Department of Interventional Radiology, Miami Cardiac and Vascular Institute, Miami, Florida
| | - Anders Nilsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Salvatore Paiella
- Department of General and Pancreatic Surgery, University of Verona Hospital Trust, G. B. Rossi Hospital, Verona, Italy
| | | | | | - Hester J. Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Northwest Hospital, Alkmaar, The Netherlands
| | - Martijn R. Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Gajewska-Naryniecka A, Szwedowicz U, Łapińska Z, Rudno-Rudzińska J, Kielan W, Kulbacka J. Irreversible Electroporation in Pancreatic Cancer-An Evolving Experimental and Clinical Method. Int J Mol Sci 2023; 24:4381. [PMID: 36901812 PMCID: PMC10002122 DOI: 10.3390/ijms24054381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Pancreatic cancer has no symptoms until the disease has advanced and is aggressive cancer with early metastasis. Up to now, the only curative treatment is surgical resection, which is possible in the early stages of the disease. Irreversible electroporation treatment offers new hope for patients with unresectable tumors. Irreversible electroporation (IRE) is a type of ablation therapy that has been explored as a potential treatment for pancreatic cancer. Ablation therapies involve the use of energy to destroy or damage cancer cells. IRE involves using high-voltage, low-energy electrical pulses to create resealing in the cell membrane, causing the cell to die. This review summarizes experiential and clinical findings in terms of the IRE applications. As was described, IRE can be a non-pharmacological approach (electroporation) or combined with anticancer drugs or standard treatment methods. The efficacy of irreversible electroporation (IRE) in eliminating pancreatic cancer cells has been demonstrated through both in vitro and in vivo studies, and it has been shown to induce an immune response. Nevertheless, further investigation is required to assess its effectiveness in human subjects and to comprehensively understand IRE's potential as a treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julia Rudno-Rudzińska
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Wojciech Kielan
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
3
|
Novickij V, Rembiałkowska N, Szlasa W, Kulbacka J. Does the shape of the electric pulse matter in electroporation? Front Oncol 2022; 12:958128. [PMID: 36185267 PMCID: PMC9518825 DOI: 10.3389/fonc.2022.958128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Electric pulses are widely used in biology, medicine, industry, and food processing. Numerous studies indicate that electroporation (EP) is a pulse-dependent process, and the electric pulse shape and duration strongly determine permeabilization efficacy. EP protocols are precisely planned in terms of the size and charge of the molecules, which will be delivered to the cell. In reversible and irreversible EP applications, rectangular or sine, polar or bipolar pulses are commonly used. The usage of pulses of the asymmetric shape is still limited to high voltage and low voltage (HV/LV) sequences in the context of gene delivery, while EP-based applications of ultra-short asymmetric pulses are just starting to emerge. This review emphasizes the importance and role of the pulse shape for membrane permeabilization by EP.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University (Vilnius TECH), Vilnius, Lithuania
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| |
Collapse
|
4
|
Franken LC, van Veldhuisen E, Ruarus AH, Coelen RJS, Roos E, van Delden OM, Besselink MG, Klümpen HJ, van Lienden KP, van Gulik TM, Meijerink MR, Erdmann JI. Outcomes of irreversible electroporation (IRE) for perihilar cholangiocarcinoma (ALPACA): a prospective pilot study. J Vasc Interv Radiol 2022; 33:805-813.e1. [PMID: 35346858 DOI: 10.1016/j.jvir.2022.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate safety and efficacy of percutaneous or open irreversible electroporation (IRE) in a prospective cohort of patients with locally advanced, unresectable perihilar cholangiocarcinoma (PHC). MATERIALS AND METHODS In a multicenter phase I/II study patients with unresectable PHC due to extensive vascular involvement or N2 lymph node metastases or local recurrence after resection for PHC were included and treated by open or percutaneous IRE combined with palliative chemotherapy (current standard of care). Primary outcome was the number of major adverse events occurring within 90 days after IRE (grade ≥3) and the upper-limit was predefined at 60%. Secondary outcomes included technical success rate, hospital stay and overall survival (OS). RESULTS Twelve patients (mean age 63±12 years) were treated with IRE. The primary outcome of major adverse event rate was 50% (6 out of 12 patients) and no 90-day mortality was observed. All procedures were technically successful, with no intra-procedural adverse events requiring additional interventions. Median OS from diagnosis was 21 months (95% CI 15-27 months), with a one-year survival rate after IRE of 75%. CONCLUSION Percutaneous IRE in selected patients with locally advanced PHC seems feasible, with the major adverse event rate of 50% below the predefined upper safety limit in this prospective study. Future comparative research exploring the efficacy of IRE is warranted.
Collapse
Affiliation(s)
- Lotte C Franken
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Eran van Veldhuisen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Alette H Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Cancer Center Amsterdam, the Netherlands
| | - Robert J S Coelen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Eva Roos
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Otto M van Delden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Krijn P van Lienden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Cancer Center Amsterdam, the Netherlands
| | - Joris I Erdmann
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Inchingolo R, Acquafredda F, Ferraro V, Laera L, Surico G, Surgo A, Fiorentino A, Marini S, de'Angelis N, Memeo R, Spiliopoulos S. Non-surgical treatment of hilar cholangiocarcinoma. World J Gastrointest Oncol 2021; 13:1696-1708. [PMID: 34853644 PMCID: PMC8603446 DOI: 10.4251/wjgo.v13.i11.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/30/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer of the biliary confluence also known as hilar cholangiocarcinoma (HC) or Klatskin tumor, is a rare type of neoplastic disease constituting approximately 40%-60% of intrahepatic malignancies, and 2% of all cancers. The prognosis is extremely poor and the majority of Klatskin tumors are deemed unresectable upon diagnosis. Most patients with unresectable bile duct cancer die within the first year after diagnosis, due to hepatic failure, and/or infectious complications secondary to biliary obstruction. Curative treatments include surgical resection and liver transplantation in highly selected patients. Nevertheless, very few patients are eligible for surgery or transplant at the time of diagnosis. For patients with unresectable HC, radiotherapy, chemotherapy, photodynamic therapy, and liver-directed minimally invasive procedures such as percutaneous image-guided ablation and intra-arterial chemoembolization are recommended treatment options. This review focuses on currently available treatment options for unresectable HC and discusses future perspectives that could optimize outcomes.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Interventional Radiology Unit, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70124, Italy
| | - Fabrizio Acquafredda
- Interventional Radiology Unit, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70124, Italy
| | - Valentina Ferraro
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Letizia Laera
- Department of Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Gianmarco Surico
- Department of Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Stefania Marini
- Department of Radiology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Nicola de'Angelis
- Unit of Minimally Invasive and Robotic Digestive Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Stavros Spiliopoulos
- 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Athens 12461, Greece
| |
Collapse
|
6
|
Nooijen LE, Franken LC, Belkouz A, Oulad Abdennabi I, Besselink MG, Busch OR, Swijnenburg RJ, Klümpen HJ, Erdmann JI. Efficacy and Safety of Gemcitabine Plus Cisplatin as Potential Preoperative Chemotherapy in Locally Advanced Intrahepatic, Perihilar, and Mid-Cholangiocarcinoma: A Retrospective Cohort Study. Am J Clin Oncol 2021; 44:526-532. [PMID: 34469345 DOI: 10.1097/coc.0000000000000861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND In this retrospective cohort study, the potential of gemcitabine (gem)/cisplatin (cis) chemotherapy as future preoperative therapy for patients with unresectable locally advanced or borderline resectable intrahepatic, perihilar, and mid-cholangiocarcinoma was investigated. METHODS All patients with intrahepatic, perihilar, and mid-cholangiocarcinoma presented at Amsterdam UMC between January 2016 and October 2019 were included. The radiologic response after 3 and/or 6 cycles of gem/cis chemotherapy in patients with unresectable locally advanced or borderline resectable disease was derived from the original radiologic reports and subsequently re-evaluated for surgical exploration by consensus reading of 2 HPB surgeons and 1 radiologist. RESULTS Overall, 65 of 364 patients had a locally advanced or borderline resectable disease. Twenty-eight patients were treated with palliative chemotherapy, including 25 (89.3%) patients who received more than 3 cycles. Twenty-two patients (88.0%) and 13 patients (46.4%) showed RECIST stable disease or partial response after 3 and 6 cycles of chemotherapy, respectively. Three patients experienced grade 3 adverse events. Consensus reading concluded that exploration could have been reconsidered in 7 of 28 patients (25.0%). CONCLUSION Gem/cis may be a safe and feasible preoperative treatment in initially unresectable locally advanced or borderline resectable cholangiocarcinoma. In addition, the findings of this study support to always rediscuss patients with stable or responsive disease in multidisciplinary team meetings to reconsider resection. Besides, prospective studies are needed to investigate this effect further and, based on these preliminary data, seem feasible in this setting.
Collapse
Affiliation(s)
| | | | | | - Ikrame Oulad Abdennabi
- Radiology and Nuclear sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Baak R, Willemssen FEJA, van Norden Y, Eskens FALM, Milder MTW, Heijmen BJM, Koerkamp BG, Sprengers D, van Driel LMJW, Klümpen HJ, den Toom W, Koedijk MS, IJzermans JNM, Méndez Romero A. Stereotactic Body Radiation Therapy after Chemotherapy for Unresectable Perihilar Cholangiocarcinoma: The STRONG Trial, a Phase I Safety and Feasibility Study. Cancers (Basel) 2021; 13:cancers13163991. [PMID: 34439146 PMCID: PMC8394718 DOI: 10.3390/cancers13163991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The role of radiotherapy in the treatment of perihilar cholangiocarcinoma has not yet been properly defined. In this prospective study, we therefore explored the addition to first-line chemotherapy of stereotactic body radiation therapy (SBRT) delivered in 15 fractions. Patients eligible for the study had been diagnosed with unresectable perihilar cholangiocarcinoma, and then had no progressive disease after completing treatment with 6–8 cycles of cisplatin-gemcitabine. Primary endpoints were feasibility and safety. Secondary endpoints were local control, progression-free survival, overall survival, and quality of life. As each patient completed the SBRT successfully and no dose-limiting toxicity was found, we consider this treatment to be both feasible and safe. The local control rate and overall survival were promising. However, due to the small sample size of this study, we urge the analysis of this treatment in a larger series of patients. Abstract Background: In unresectable pCCA, the standard of care is palliative chemotherapy. We investigated the feasibility and safety of adding stereotactic body radiation therapy (SBRT) after chemotherapy. Methods: Patients with unresectable pCCA, stage T1-T4N0-N1M0, ECOG 0-1, having finished 6–8 cycles of cisplatin and gemcitabine without disease progression were eligible. SBRT was planned in 15 fractions of 3.0–4.5 Gy. The primary endpoints were feasibility (defined as completing SBRT as planned) and toxicity, evaluated within 3 months after SBRT (CTCAE v4.03). A conventional “3 + 3” design was used, corresponding to a sample size of 6 patients. Dose-limiting toxicity (DLT) was defined as grade ≥ 4 hepatobiliary or grade ≥ 3 gastrointestinal toxicity. The secondary endpoints, measured from the start of radiotherapy, were local control, progression-free survival, overall survival, and quality of life (QoL). ClinicalTrials.gov identifier: NCT03307538. Results: Six patients were enrolled between November 2017 and March 2020. SBRT was delivered as planned. All patients were treated with 60Gy (15 × 4.0Gy). No SBRT-related DLT was observed. The most common grade ≥ 3 toxicity was cholangitis (n = 5). The median follow-up was 14 months. The 12-month local control rate was 80%. We observed no substantial changes in QoL. Conclusion: In patients with unresectable pCCA with stable disease after palliative chemotherapy, adding SBRT is feasible and safe. The observed local control merits an additional evaluation of effectiveness.
Collapse
Affiliation(s)
- Rogier Baak
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 CN Rotterdam, The Netherlands; (Y.v.N.); (M.T.W.M.); (B.J.M.H.); (W.d.T.); (A.M.R.)
- Correspondence:
| | - François E. J. A. Willemssen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Yvette van Norden
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 CN Rotterdam, The Netherlands; (Y.v.N.); (M.T.W.M.); (B.J.M.H.); (W.d.T.); (A.M.R.)
| | - Ferry A. L. M. Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, The Netherlands;
| | - Maaike T. W. Milder
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 CN Rotterdam, The Netherlands; (Y.v.N.); (M.T.W.M.); (B.J.M.H.); (W.d.T.); (A.M.R.)
| | - Ben J. M. Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 CN Rotterdam, The Netherlands; (Y.v.N.); (M.T.W.M.); (B.J.M.H.); (W.d.T.); (A.M.R.)
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands; (B.G.K.); (J.N.M.I.)
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands; (D.S.); (L.M.J.W.v.D.)
| | - Lydi M. J. W. van Driel
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands; (D.S.); (L.M.J.W.v.D.)
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Wilhelm den Toom
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 CN Rotterdam, The Netherlands; (Y.v.N.); (M.T.W.M.); (B.J.M.H.); (W.d.T.); (A.M.R.)
| | - Merel S. Koedijk
- Radiotherapeutisch Instituut Friesland, 8934 AD Leeuwarden, The Netherlands;
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands; (B.G.K.); (J.N.M.I.)
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 CN Rotterdam, The Netherlands; (Y.v.N.); (M.T.W.M.); (B.J.M.H.); (W.d.T.); (A.M.R.)
| |
Collapse
|
8
|
Geboers B, Timmer FEF, Ruarus AH, Pouw JEE, Schouten EAC, Bakker J, Puijk RS, Nieuwenhuizen S, Dijkstra M, van den Tol MP, de Vries JJJ, Oprea-Lager DE, Menke-van der Houven van Oordt CW, van der Vliet HJ, Wilmink JW, Scheffer HJ, de Gruijl TD, Meijerink MR, on behalf of the Dutch Pancreatic Cancer Group. Irreversible Electroporation and Nivolumab Combined with Intratumoral Administration of a Toll-Like Receptor Ligand, as a Means of In Vivo Vaccination for Metastatic Pancreatic Ductal Adenocarcinoma (PANFIRE-III). A Phase-I Study Protocol. Cancers (Basel) 2021; 13:cancers13153902. [PMID: 34359801 PMCID: PMC8345515 DOI: 10.3390/cancers13153902] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Metastatic pancreatic ductal adenocarcinoma has a dismal prognosis, and to date no curative treatment options exist. The image guided tumor ablation technique irreversible electroporation (IRE) employs high-voltage electrical pulses through the application of several needle electrodes in and around the tumor in order to induce cell death. IRE ablation of the primary tumor has the ability to reduce pancreatic tumor induced immune suppression while allowing the expansion of tumor specific effector T cells, hereby possibly shifting the pancreatic tumor microenvironment into a more immune permissive state. The addition of immune enhancing therapies to IRE might work synergistically and could potentially induce a clinically significant treatment effect. This study protocol describes the rationale and design of the PANFIRE-III trial that aims to assess the safety of the combination of IRE with IMO-2125 (toll-like receptor 9 ligand) and/or nivolumab in patients with metastatic pancreatic ductal adenocarcinoma. Abstract Irreversible electroporation (IRE) is a novel image-guided tumor ablation technique with the ability to generate a window for the establishment of systemic antitumor immunity. IRE transiently alters the tumor’s immunosuppressive microenvironment while simultaneously generating antigen release, thereby instigating an adaptive immune response. Combining IRE with immunotherapeutic drugs, i.e., electroimmunotherapy, has synergistic potential and might induce a durable antitumor response. The primary objective of this study is to assess the safety of the combination of IRE with IMO-2125 (a toll-like receptor 9 ligand) and/or nivolumab in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). In this randomized controlled phase I clinical trial, 18 patients with mPDAC pretreated with chemotherapy will be enrolled in one of three study arms: A (control): nivolumab monotherapy; B: percutaneous IRE of the primary tumor followed by nivolumab; or C: intratumoral injection of IMO-2125 followed by percutaneous IRE of the primary tumor and nivolumab. Assessments include contrast enhanced computed tomography (ceCT), 18F-FDG and 18F-BMS-986192 (PD-L1) positron emission tomography (PET)-CT, biopsies of the primary tumor and metastases, peripheral blood samples, and quality of life and pain questionnaires. There is no curative treatment option for patients with mPDAC, and palliative chemotherapy regimens only moderately improve survival. Consequently, there is an urgent need for innovative and radically different treatment approaches. Should electroimmunotherapy establish an effective and durable anti-tumor response, it may ultimately improve PDAC’s dismal prognosis.
Collapse
Affiliation(s)
- Bart Geboers
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
- Correspondence:
| | - Florentine E. F. Timmer
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Alette H. Ruarus
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Johanna E. E. Pouw
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Evelien A. C. Schouten
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Joyce Bakker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Robbert S. Puijk
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Sanne Nieuwenhuizen
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Madelon Dijkstra
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - M. Petrousjka van den Tol
- Department of Surgery, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Jan J. J. de Vries
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - C. Willemien Menke-van der Houven van Oordt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Hans J. van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
- Lava Therapeutics, Yalelaan 60, 3584 CM Utrecht, The Netherlands
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Hester J. Scheffer
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.E.E.P.); (J.B.); (C.W.M.-v.d.H.v.O.); (H.J.v.d.V.); (J.W.W.); (T.D.d.G.)
| | - Martijn R. Meijerink
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (F.E.F.T.); (A.H.R.); (E.A.C.S.); (R.S.P.); (S.N.); (M.D.); (J.J.J.d.V.); (D.E.O.-L.); (H.J.S.); (M.R.M.)
| | | |
Collapse
|
9
|
Li H, Chen L, Zhu GY, Yao X, Dong R, Guo JH. Interventional Treatment for Cholangiocarcinoma. Front Oncol 2021; 11:671327. [PMID: 34268114 PMCID: PMC8276166 DOI: 10.3389/fonc.2021.671327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common type of primary liver malignancy. The latest classification includes intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma, with the latter one further categorized into perihilar and distal cholangiocarcinoma. Although surgical resection is the preferred treatment for CCA, less than half of the patients are actually eligible for radical surgical resection. Interventional treatment, such as intra-arterial therapies, ablation, and brachytherapy (iodine-125 seed implantation), has become an acceptable palliative treatment for patients with unresectable CCA. For these patients, interventional treatment is helpful for locoregional control, symptom relief, and improving quality of life. Herein, in a timely and topical manner, we will review these advances and highlight future directions of research in this article.
Collapse
Affiliation(s)
- Hang Li
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Li Chen
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Guang-Yu Zhu
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xijuan Yao
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Rui Dong
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jin-He Guo
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Advanced Techniques in the Percutaneous Ablation of Liver Tumours. Diagnostics (Basel) 2021; 11:diagnostics11040585. [PMID: 33805107 PMCID: PMC8064108 DOI: 10.3390/diagnostics11040585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023] Open
Abstract
Percutaneous ablation is an accepted treatment modality for primary hepatocellular carcinoma (HCC) and liver metastases. The goal of curative ablation is to cause the necrosis of all tumour cells with an adequate margin, akin to surgical resection, while minimising local damage to non-target tissue. Aside from the ablative modality, the proceduralist must decide the most appropriate imaging modality for visualising the tumour and monitoring the ablation zone. The proceduralist may also employ protective measures to minimise injury to non-target organs. This review article discusses the important considerations an interventionalist needs to consider when performing the percutaneous ablation of liver tumours. It covers the different ablative modalities, image guidance, and protective techniques, with an emphasis on new and advanced ablative modalities and adjunctive techniques to optimise results and achieve satisfactory ablation margins.
Collapse
|
11
|
Ruarus AH, Barabasch A, Catalano O, Leen E, Narayanan G, Nilsson A, Padia SA, Wiggermann P, Scheffer HJ, Meijerink MR. Irreversible Electroporation for Hepatic Tumors: Protocol Standardization Using the Modified Delphi Technique. J Vasc Interv Radiol 2020; 31:1765-1771.e15. [PMID: 32978054 DOI: 10.1016/j.jvir.2020.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE A consensus study of panelists was performed to provide a uniform protocol regarding (contra) indications, procedural parameters, perioperative care, and follow-up of irreversible electroporation (IRE) for the treatment of hepatic malignancies. MATERIALS AND METHODS Interventional radiologists who had 2 or more publications on IRE, reporting at least 1 patient cohort in the field of hepatobiliary IRE, were recruited. The 8 panelists were asked to anonymously complete 3 iterative rounds of IRE-focused questionnaires to collect data according to a modified Delphi technique. Consensus was defined as having reached 80% or greater agreement. RESULTS Panel members' response rates were 88%, 75%, and 88% in rounds 1, 2, and 3, respectively; consensus was reached on 124 of 136 items (91%). Percutaneous or intraoperative hepatic IRE should be considered for unresectable primary and secondary malignancies that are truly unsuitable for thermal ablation because of proximity to critical structures. Absolute contraindications are ventricular arrhythmias, cardiac stimulation devices, and congestive heart failure of New York Heart Association class 3 or higher. A metal stent outside the ablation zone should not be considered a contraindication. For the only commercially available IRE device, the recommended settings are an inter-electrode distance of 10-20 mm and an exposure length of 20 mm. After 10 test pulses, 90 treatment pulses of 1500 V/cm should be delivered continuously, with a pulse length of 70-90 μs. The first post-procedural follow-up should take place 1 month after IRE and thereafter every 3 months, using cross-sectional imaging plus tumor marker assessment. CONCLUSIONS This article provides recommendations, created by a modified Delphi consensus study, regarding patient selection, workup, procedure, and follow-up of IRE treatment for hepatic malignancies.
Collapse
Affiliation(s)
- Alette H Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Alexandra Barabasch
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Orlando Catalano
- Department of Radiology, Istituto Nazionale Tumori Fondazione G.Pascale, Naples, Italy
| | - Edward Leen
- Department of Experimental Medicine, Imperial College London, London, United Kingdom
| | - Govindarajan Narayanan
- Department of Interventional Radiology, Miami Cardiac and Vascular Institute, Miami, Florida
| | - Anders Nilsson
- Department of Medical Imaging and Physiology, Lund University Hospital, Lund, Sweden
| | - Siddharth A Padia
- Department of Radiology, University of California Los Angeles, Los Angeles, California
| | - Philipp Wiggermann
- Department of Radiology and Nuclear Medicine, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Hester J Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Agnass P, van Veldhuisen E, van Gemert MJC, van der Geld CWM, van Lienden KP, van Gulik TM, Meijerink MR, Besselink MG, Kok HP, Crezee J. Mathematical modeling of the thermal effects of irreversible electroporation for in vitro, in vivo, and clinical use: a systematic review. Int J Hyperthermia 2020; 37:486-505. [DOI: 10.1080/02656736.2020.1753828] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pierre Agnass
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eran van Veldhuisen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martin J. C. van Gemert
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Cees W. M. van der Geld
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Krijn P. van Lienden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas M. van Gulik
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Martijn R. Meijerink
- Department of Radiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - H. Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Belfiore MP, Reginelli A, Maggialetti N, Carbone M, Giovine S, Laporta A, Urraro F, Nardone V, Grassi R, Cappabianca S, Brunese L. Preliminary results in unresectable cholangiocarcinoma treated by CT percutaneous irreversible electroporation: feasibility, safety and efficacy. Med Oncol 2020; 37:45. [PMID: 32270353 DOI: 10.1007/s12032-020-01360-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CC) accounts for about 3% of the gastrointestinal and 10-25% of all hepatobiliary malignancies. It arises from the epithelium of the bile duct and it can be classified in intrahaepatic (ICC), perihilar (PCC) and distal (DCC) cholangiocarcinoma, depending on the anatomical location. About 50-60% of the cases are PCC. Early detection is very difficult for the lack of symptoms, and most of the patients are not resectable at the time of diagnosis. IRE is a non-thermal ablation technique that determines cellular apoptosis by electrical impulses without involving extracellular matrix like MW or RF ablation (MWA and RFA). The aim of our study is to demonstrate the safety, feasibility and efficacy of this procedure in the treatment of cholangiocarcinoma according to our experience. From 2015 to 2019, fifteen patients with unre-sectable perhilar and intrahepatic colangiocarcinoma (7 female and 8 male, mean age 69.2) were referred to our department to be enrolled in our prospective study that was approved by local Ethical Committee. Eight lesions were defined iCC and seven of them pCC. Six patients had biliary STENT and four external percutaneous transhepatic biliary drainage (PTBD). The IRE procedure was performed to expert radiologist (G.B.) under CT guidance using the Nanoknife IRE device (Angiodynamics, Queensbury, NY). The data before and after treatment were compared using Wilcoxon Rank Test and the survival outcome was evaluated using Kaplan Meyer Test. All procedures performed under CT guidance have been successfully completed. Treated lesions were located seven perhilar and eight intrahepatic sites and showed a mean volume 66.3 (SD 70.9; IC ranged from 5.57 to 267.20 cm3). No major complications were observed. From 30 to 90 days, the mortality rate was around 0%. Progression of the disease in all cases were not observed. Only one patient was reported increase of the Ca19-9 without sign of pancreatitis and bile obstruction. The imaging follow-up showed the local disease control with a decrease of the entire volume of the lesion and a further reduction of the densitometric values. From the comparison between the mean volumes for each group (before and after treatment), the Wilcoxon Rank test demonstrated the statistical significant difference with a p value < 0.01. On the contrary, it is believed that this results encouraging in considering the IRE procedure the safe, feasible and effective method in the treatment of the CC.
Collapse
Affiliation(s)
- Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Nicola Maggialetti
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via Francesco De Sanctis 1, Campobasso, Italy
| | - Mattia Carbone
- Department of Radiology, San Giovanni E Ruggi D'Aragona Hospital, Ospedale, Via San Leonardo, Salerno, Italy
| | - Sabrina Giovine
- Department of Radiology, SG Moscati Hospital, ASL Caserta, Aversa, Italy
| | | | - Fabrizio Urraro
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Valerio Nardone
- Unit of Radiation Oncology, Ospedale del Mare, 80147, Naples, Italy
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Brunese
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via Francesco De Sanctis 1, Campobasso, Italy
| |
Collapse
|
14
|
Thermodynamic profiling during irreversible electroporation in porcine liver and pancreas: a case study series. J Clin Transl Res 2020; 5:109-132. [PMID: 32617426 PMCID: PMC7326268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 11/24/2022] Open
Abstract
AIMS First, the aim of the study was to determine whether irreversible electroporation (IRE) is associated with heat generation in the liver and pancreas at clinical (≤1,500 V/cm) and supraclinical (>1,500 V/cm) electroporation settings; second, to assess the risk of thermal tissue damage in and adjacent to the treated volume in highly perfused versus moderately perfused parts of both organs; third, to investigate the influence of perfusion and of the presence and the orientation of a metal stent on the maximal thermal elevation (ΔTSession,max) in the tissue during an IRE session at fixed IRE settings, and finally, to determine whether the maximum temperature elevation within the IRE-subjected organ during an IRE treatment (single or multiple sessions) is reflected in the organ's surface temperature. METHODS The aims were investigated in 12 case studies conducted in five female Landrace pigs. Several IRE settings were applied for lateral (2), triangular (3), and rectangular (4) electrode configurations in the liver hilum, liver periphery, pancreas head, and pancreas tail. IRE series of 10-90 pulses were applied with pulse durations that varied from 70 μs to 90 μs and electric field strengths between 1,200 V/cm and 3,000 V/cm. In select cases, a metal stent was positioned in the bile duct at the level of the liver hilum. Temperatures were measured before, during, and after IRE in and adjacent to the treatment volumes using fiber optical temperature probes (temperature at the nucleation centers) and digital thermography (surface temperature). The occurrence of thermal damage was assumed to be at temperatures above 50 °C (ΔTSession,max ≥ 13 °C relative to body temperature of 37 °C). The temperature fluctuations at the organ surface (ΔTLocSurf) were compared to the maximum temperature elevation during an IRE treatment in the electroporation zone. In select cases, IRE was applied to tissue volumes encompassing the portal vein (PV) and a constricted and patent superior mesenteric vein (SMV) to determine the influence of the heatsink effect of PV and SMV on ΔTSession,max. RESULTS The median baseline temperature was 31.6 °C-36.3 °C. ΔTSession,max ranged from -1.7 °C to 25.5 °C in moderately perfused parts of the liver and pancreas, and from 0.0 °C to 5.8 °C in highly perfused parts. The median ΔTLocSurf of the liver and pancreas was 1.0 °C and 10.3 °C, respectively. Constricting the SMV in the pancreas head yielded a 0.8 °C higher ΔTSession,max. The presence of a metal stent in the liver hilum resulted in a ΔTSession,max of 19.8 °C. Stents parallel to the electrodes caused a ΔTSession,max difference of 4.2 °C relative to the perpendicular orientation. CONCLUSIONS Depending on IRE settings and tissue type, IRE is capable of inducing considerable heating in the liver and pancreas that is sufficient to cause thermal tissue damage. More significant temperature elevations are positively correlated with increasing number of electrode pairs, electric field strength, and pulse number. Temperature elevations can be further exacerbated by the presence and orientation of metal stents. Temperature elevations at the nucleation centers are not always reflected in the organ's surface temperature. Heat sink effects caused by large vessels were minimal in some instances, possibly due to reduced blood flow caused by anesthesia. RELEVANCE FOR PATIENTS Appropriate IRE settings must be chosen based on the tissue type and the presence of stents to avoid thermal damage in healthy peritumoral tissue and to protect anatomical structures [Table: see text].
Collapse
|
15
|
Vogel JA, van Veldhuisen E, Alles LK, Busch OR, Dijk F, van Gulik TM, Huijzer GM, Besselink MG, van Lienden KP, Verheij J. Time-Dependent Impact of Irreversible Electroporation on Pathology and Ablation Size in the Porcine Liver: A 24-Hour Experimental Study. Technol Cancer Res Treat 2020; 18:1533033819876899. [PMID: 31533537 PMCID: PMC6753518 DOI: 10.1177/1533033819876899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation causes cell death through low frequency, high voltage electrical pulses and is increasingly used to treat non-resectable cancers. A recent systematic review revealed that tissue damage through irreversible electroporation is time-dependent, but the impact of time on the ablation zone size remains unknown. Irreversible electroporation ablations were performed hourly during 24 consecutive hours in the peripheral liver of 2 anaesthetized domestic pigs using clinical treatment settings. Immediately after the 24th ablation, the livers were harvested and examined for tissue response in time based on macroscopic and microscopic pathology. The impact of time on these outcomes was assessed with Spearman rank correlation test. Ablation zones were sharply demarcated as early as 1 hour after treatment. During 24 hours, the ablation zones showed a significant increase in diameter (rs = 0.493, P = .014) and total surface (rs = 0.499, P = .013), whereas the impact of time on the homogeneous ablated area was not significant (rs = 0.172, P = .421). Therefore, the increase in size could mainly be attributed to an increase in the transition zone. Microscopically, the ablation zones showed progression in cell death and inflammation. This study assessed the dynamics of irreversible electroporation on the porcine liver during 24 consecutive hours and found that the pathological response (ie, cell death/inflammation), and ablation size continue to develop for at least 24 hours. Consequently, future studies on irreversible electroporation should prolong their observation period.
Collapse
Affiliation(s)
- Jantien A Vogel
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Eran van Veldhuisen
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lindy K Alles
- Department of Experimental Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Olivier R Busch
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Goos M Huijzer
- Department of Experimental Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marc G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Krijn P van Lienden
- Department of Interventional Radiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Fang G, Niu L, Chen J. Prevention of Procedural Hypertension in the Irreversible Electroporation Ablation of Liver and Pancreatic Tumors Based on Distance from the Adrenal Gland. Cancer Manag Res 2020; 12:71-78. [PMID: 32021424 PMCID: PMC6954856 DOI: 10.2147/cmar.s235227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
Background and objective When irreversible electroporation (IRE) ablation of abdominal tumors, procedural hypertension often occurs, which often affects the progress of the ablation. Until now, there is no reasonable explanation for this phenomenon. The objective of this research was to explore the cause and solution of procedural hypertension in percutaneous IRE. Methods In this study, the treatment data of 4 consecutive groups of patients were used to confirm the cause of intraoperative hypertension and then verify the solution. A total of 155 patients with procedural hypertension were screened based on their medical records of pancreatic or hepatic IRE treatment. Procedural hypertension was monitored in 21 new patients, the correlation between serum catecholamines and hypertension was recorded and evaluated using regression analysis. Forty new patients were divided into two groups (distance from needle tip to adrenal gland, < 2 cm vs ≥ 2 cm), and the blood pressure was recorded and compared with two-way ANOVA. Eleven patients with ablative distance <2 cm were treated in advance with phentolamine to observe for the occurrence of procedural hypertension. Results Of the 21 re-enrolled patients with ablation of the pancreas and liver tumors, 9 developed intraoperative hypertension with significantly elevated serum catecholamines levels, epinephrine, norepinephrine and dopamine are all positively associated with hypertension, with P values were 0.0003, 0.0253, and 0.0015, respectively. For the two groups with different needle-insertion distances, hypertension in the < 2 cm group was more significant than that in the other group (for procedural hypertension, P< 0.01; for heart rate, P< 0.05), which was considered as a high-risk group. The occurrence of intraoperative hypertension could be completely prevented by using phentolamine prior to treatment. Conclusion Hypertension occurs frequently during hepatic and pancreatic IRE because of the damage of adrenal gland. The safe distance of ablation probe for the adrenal gland was 2 cm. For high-risk patients, early drug prevention works well.
Collapse
Affiliation(s)
- Gang Fang
- Fuda Cancer Hospital of Jinan University, Guangzhou 510665, People's Republic of China
| | - Lizhi Niu
- Fuda Cancer Hospital of Jinan University, Guangzhou 510665, People's Republic of China
| | - Jibing Chen
- Fuda Cancer Hospital of Jinan University, Guangzhou 510665, People's Republic of China
| |
Collapse
|
17
|
DeWitt MR, Latouche EL, Kaufman JD, Fesmire CC, Swet JH, Kirks RC, Baker EH, Vrochides D, Iannitti DA, McKillop IH, Davalos RV, Sano MB. Simplified Non-Thermal Tissue Ablation With a Single Insertion Device Enabled by Bipolar High-Frequency Pulses. IEEE Trans Biomed Eng 2019; 67:2043-2051. [PMID: 31751216 DOI: 10.1109/tbme.2019.2954122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To demonstrate the feasibility of a single electrode and grounding pad approach for delivering high frequency irreversible electroporation treatments (H-FIRE) in in-vivo hepatic tissue. METHODS Ablations were created in porcine liver under surgical anesthesia by adminstereing high frequency bursts of 0.5-5.0 μs pulses with amplitudes between 1.1-1.7 kV in the absence of cardiac synchronization or intraoperative paralytics. Finite element simulations were used to determine the electric field strength associated with the ablation margins (ELethal) and predict the ablations feasible with next generation electronics. RESULTS All animals survived the procedures for the protocol duration without adverse events. ELethal of 2550, 1650, and 875 V/cm were found for treatments consisting of 100x bursts containing 0.5 μs pulses and 25, 50, and 75 μs of energized-time per burst, respectively. Treatments with 1 μs pulses consisting of 100 bursts with 100 μs energized-time per burst resulted in ELethal of 650 V/cm. CONCLUSION A single electrode and grounding pad approach was successfully used to create ablations in hepatic tissue. This technique has the potential to reduce challenges associated with placing multiple electrodes in anatomically challenging environments. SIGNIFICANCE H-FIRE is an in situ tumor ablation approach in which electrodes are placed within or around a targeted region to deliver high voltage electrical pulses. Electric fields generated around the electrodes induce irrecoverable cell membrane damage leading to predictable cell death in the relative absence of thermal damage. The sparing of architectural integrity means H-FIRE offers potential advantages compared to thermal ablation modalities for ablating tumors near critical structures.
Collapse
|
18
|
Lyu C, Lopez-Ichikawa M, Rubinsky B, Chang TT. Normal and fibrotic liver parenchyma respond differently to irreversible electroporation. HPB (Oxford) 2019; 21:1344-1353. [PMID: 30879992 PMCID: PMC7170179 DOI: 10.1016/j.hpb.2019.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The safety and efficacy of irreversible electroporation (IRE) in treating hepatic, biliary, and pancreatic malignancies are active areas of clinical investigation. In addition, recent studies have shown that IRE may enable regenerative surgery and in vivo tissue engineering. To use IRE effectively in these clinical applications, it is important to understand how different tissue microenvironments impact the response to IRE. In this study, we characterize the electrical and histological properties of non-fibrotic and fibrotic liver parenchyma before and after IRE treatment. METHODS Electrical resistivity and histology of fibrotic liver from C57BL/6 mice fed a 0.1% 3,5-diethylcarbonyl-1,4-dihydrocollidine (DDC) diet were compared to those of non-fibrotic liver from matched control mice before and after IRE treatment. RESULTS At baseline, the electrical resistivity of fibrotic liver was lower than that of non-fibrotic liver. Post-IRE, resistivity of non-fibrotic liver declined and then recovered back to baseline with time, correlating with hepatocyte repopulation of the ablated parenchyma without deposition of fibrotic scar. In contrast, resistivity of fibrotic liver remained depressed after IRE treatment, correlating with persistent inflammation. CONCLUSION Non-fibrotic and fibrotic liver respond to IRE differently. The underlying tissue microenvironment is an important modifying factor to consider when designing IRE protocols for tissue ablation.
Collapse
Affiliation(s)
- Chenang Lyu
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720
| | | | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720
| | - Tammy T. Chang
- Department of Surgery, University of California, San Francisco, CA 94143
| |
Collapse
|
19
|
Ringel-Scaia VM, Beitel-White N, Lorenzo MF, Brock RM, Huie KE, Coutermarsh-Ott S, Eden K, McDaniel DK, Verbridge SS, Rossmeisl JH, Oestreich KJ, Davalos RV, Allen IC. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 2019; 44:112-125. [PMID: 31130474 PMCID: PMC6606957 DOI: 10.1016/j.ebiom.2019.05.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Background Despite promising treatments for breast cancer, mortality rates remain high and treatments for metastatic disease are limited. High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation technique that utilizes high-frequency bipolar electric pulses to destabilize cancer cell membranes and induce cell death. However, there is currently a paucity of data pertaining to immune system activation following H-FIRE and other electroporation based tumor ablation techniques. Methods Here, we utilized the mouse 4T1 mammary tumor model to evaluate H-FIRE treatment parameters on cancer progression and immune system activation in vitro and in vivo. Findings H-FIRE effectively ablates the primary tumor and induces a pro-inflammatory shift in the tumor microenvironment. We further show that local treatment with H-FIRE significantly reduces 4T1 metastases. H-FIRE kills 4T1 cells through non-thermal mechanisms associated with necrosis and pyroptosis resulting in damage associated molecular pattern signaling in vitro and in vivo. Our data indicate that the level of tumor ablation correlates with increased activation of cellular immunity. Likewise, we show that the decrease in metastatic lesions is dependent on the intact immune system and H-FIRE generates 4T1 neoantigens that engage the adaptive immune system to significantly attenuate tumor progression. Interpretation Cell death and tumor ablation following H-FIRE treatment activates the local innate immune system, which shifts the tumor microenvironment from an anti-inflammatory state to a pro-inflammatory state. The non-thermal damage to the cancer cells and increased innate immune system stimulation improves antigen presentation, resulting in the engagement of the adaptive immune system and improved systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Veronica M Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Natalie Beitel-White
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Melvin F Lorenzo
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
| | - Rebecca M Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kathleen E Huie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Dylan K McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA
| | - John H Rossmeisl
- Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA; Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kenneth J Oestreich
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA; Virginia Tech, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Rafael V Davalos
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA.
| |
Collapse
|
20
|
Cillo U, Fondevila C, Donadon M, Gringeri E, Mocchegiani F, Schlitt HJ, Ijzermans JNM, Vivarelli M, Zieniewicz K, Olde Damink SWM, Groot Koerkamp B. Surgery for cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:143-155. [PMID: 30843343 PMCID: PMC6563077 DOI: 10.1111/liv.14089] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
Surgical resection is the only potentially curative treatment for patients with cholangiocarcinoma. For both perihilar cholangiocarcinoma (pCCA) and intrahepatic cholangiocarcinoma (iCCA), 5-year overall survival of about 30% has been reported in large series. This review addresses several challenges in surgical management of cholangiocarcinoma. The first challenge is diagnosis: a biopsy is typically avoided because of the risk of seeding metastases and the low yield of a brush of the bile duct. However, about 15% of patients with suspected pCCA are found to have a benign diagnosis after resection. The second challenge is staging; even with the best preoperative imaging, a substantial percentage of patients has occult metastatic disease detected at staging laparoscopy or early recurrence after resection. The third challenge is an adequate volume and function of the future liver remnant, which may require preoperative biliary drainage and portal vein embolization. The fourth challenge is a complete resection: a positive bile duct margin is not uncommon because the microscopic biliary extent of disease may be more extensive than perceived on imaging. The fifth challenge is the high post-operative mortality that has decreased in very high volume Asian centres, but remains about 10% in many Western referral centres. The sixth challenge is that even after a complete resection most patients develop recurrent disease. Recent randomized controlled trials found conflicting results regarding the benefit of adjuvant chemotherapy. The final challenge is to determine which patients with cholangiocarcinoma should undergo liver transplantation rather than resection.
Collapse
Affiliation(s)
- Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation UnitPadova University HospitalPadovaItaly
| | - Constantino Fondevila
- Department of General & Digestive Surgery, Institut de Malalties Digestives I Metabòliques (IMDiM)Hospital Clínic, University of BarcelonaSpain
| | - Matteo Donadon
- Department of Surgery, Division of Hepatobiliary and General SurgeryHumanitas Clinical and Research Center, Humanitas UniversityRozzanoItaly
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation UnitPadova University HospitalPadovaItaly
| | - Federico Mocchegiani
- Hepatopancreatobiliary and Transplant Unit, Department of Experimental and Clinical MedicinePolytechnic University of MarcheAnconaItaly
| | - Hans J. Schlitt
- Department of SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Jan N. M. Ijzermans
- Department of SurgeryErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Marco Vivarelli
- Hepatopancreatobiliary and Transplant Unit, Department of Experimental and Clinical MedicinePolytechnic University of MarcheAnconaItaly
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Steven W. M. Olde Damink
- Department of SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| | - Bas Groot Koerkamp
- Department of SurgeryErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
21
|
Koedijk MS, Heijmen BJM, Groot Koerkamp B, Eskens FALM, Sprengers D, Poley JW, van Gent DC, van der Laan LJW, van der Holt B, Willemssen FEJA, Méndez Romero A. Protocol for the STRONG trial: stereotactic body radiation therapy following chemotherapy for unresectable perihilar cholangiocarcinoma, a phase I feasibility study. BMJ Open 2018; 8:e020731. [PMID: 30327398 PMCID: PMC6196820 DOI: 10.1136/bmjopen-2017-020731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION For patients with perihilar cholangiocarcinoma (CCA), surgery is the only treatment modality that can result in cure. Unfortunately, in the majority of these patients, the tumours are found to be unresectable at presentation due to either local invasive tumour growth or the presence of distant metastases. For patients with unresectable CCA, palliative chemotherapy is the standard treatment yielding an estimated median overall survival (OS) of 12-15.2 months. There is no evidence from randomised trials to support the use of stereotactic body radiation therapy (SBRT) for CCA. However, small and most often retrospective studies combining chemotherapy with SBRT have shown promising results with OS reaching up to 33-35 months. METHODS AND ANALYSIS This study has been designed as a single-centre phase I feasibility trial and will investigate the addition of SBRT after standard chemotherapy in patients with unresectable perihilar CCA (T1-4 N0-1 M0). A total of six patients will be included. SBRT will be delivered in 15 fractions of 3-4.5 Gy (risk adapted). The primary objective of this study is to determine feasibility and toxicity. Secondary outcomes include local tumour control, progression-free survival (PFS), OS and quality of life. Length of follow-up will be 2 years. As an ancillary study, the personalised effects of radiotherapy will be measured in vitro, in patient-derived tumour and bile duct organoid cultures. ETHICS AND DISSEMINATION Ethics approval for the STRONG trial has been granted by the Medical Ethics Committee of Erasmus MC Rotterdam, the Netherlands. It is estimated that all patients will be included between October 2017 and October 2018. The results of this study will be published in a peer-reviewed journal, and presented at national and international conferences. TRIAL REGISTRATION NUMBER NCT03307538; Pre-results.
Collapse
Affiliation(s)
- Merel S Koedijk
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ben J M Heijmen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jan-Werner Poley
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bronno van der Holt
- Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - François E J A Willemssen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|