1
|
Dierikx TH, Malinowska AM, Łukasik J, Besseling-van der Vaart I, Belzer C, Szajewska H, de Meij TGJ. Probiotics and Antibiotic-Induced Microbial Aberrations in Children: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2418129. [PMID: 38967929 PMCID: PMC11227081 DOI: 10.1001/jamanetworkopen.2024.18129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024] Open
Abstract
Importance Probiotics are often considered in children to prevent antibiotic-associated diarrhea. However, the underlying mechanistic effects and impact of probiotics on antibiotic-induced microbiota changes are not well understood. Objective To investigate the effects of a multispecies probiotic on the gut microbiota composition in children receiving antibiotics. Design, Setting, and Participants This is a secondary analysis of a randomized, quadruple-blind, placebo-controlled clinical trial from February 1, 2018, to May 31, 2021, including 350 children receiving broad-spectrum antibiotics in the inpatient and outpatient settings. Patients were followed up until 1 month after the intervention period. Fecal samples and data were analyzed between September 1, 2022, and February 28, 2023. Eligibility criteria included 3 months to 18 years of age and recruitment within 24 hours following initiation of broad-spectrum systemic antibiotics. In total, 646 eligible patients were approached and 350 participated in the trial. Intervention Participants were randomly assigned to receive daily placebo or a multispecies probiotic formulation consisting of 8 strains from 5 different genera during antibiotic treatment and for 7 days afterward. Main Outcomes and Measures Fecal stool samples were collected at 4 predefined times: (1) inclusion, (2) last day of antibiotic use, (3) last day of the study intervention, and (4) 1 month after intervention. Microbiota analysis was performed by 16S ribosomal RNA gene sequencing. Results A total of 350 children were randomized and collected stool samples from 88 were eligible for the microbiota analysis (54 boys and 34 girls; mean [SD] age, 47.09 [55.64] months). Alpha diversity did not significantly differ between groups at the first 3 times. Shannon diversity (mean [SD], 3.56 [0.75] vs 3.09 [1.00]; P = .02) and inverse Simpson diversity (mean [SD], 3.75 [95% CI, 1.66-5.82] vs -1.31 [95% CI, -3.17 to 0.53]; P = 1 × 10-4) indices were higher in the placebo group compared with the probiotic group 1 month after intervention. Beta diversity was not significantly different at any of the times. Three of 5 supplemented genera had higher relative abundance during probiotic supplementation, but this difference had disappeared after 1 month. Conclusions and Relevance The studied probiotic mixture had minor and transient effects on the microbiota composition during and after antibiotic treatment. Further research is needed to understand their working mechanisms in manipulating the microbiome and preventing antibiotic-associated dysbiosis and adverse effects such as antibiotic-associated diarrhea. Trial Registration ClinicalTrials.gov Identifier: NCT03334604.
Collapse
Affiliation(s)
- Thomas H. Dierikx
- Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Paediatric Gastroenterology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Anna M. Malinowska
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jan Łukasik
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | | | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Hania Szajewska
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Tim G. J. de Meij
- Department of Paediatric Gastroenterology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam, the Netherlands
| |
Collapse
|
2
|
You L, Lv R, Jin H, Ma T, Zhao Z, Kwok LY, Sun Z. A large-scale comparative genomics study reveals niche-driven and within-sample intra-species functional diversification in Lacticaseibacillus rhamnosus. Food Res Int 2023; 173:113446. [PMID: 37803772 DOI: 10.1016/j.foodres.2023.113446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023]
Abstract
Lacticaseibacillus rhamnosus (L. rhamnosus) is widely recognized as a probiotic species, and it exists in a variety of environments including host gut and dairy products. This work aimed at conducting a large-scale comparative genomics analysis of 384 L. rhamnosus genomes (257 whole-sequence or metagenomic-assembled genomes from gut-associated isolates [122 and 135 retrieved from the UHGG and NCBI databases, respectively] and 127 genomes from dairy isolates [34 from the NCBI database; 93 isolated from a cheese sample and sequenced here]). Our results showed that L. rhamnosus had a large and open pan-genome (15,253 pan-genes identified from all 384 genomes; 15,028 pan-genes if the 93 cheese-originated isolates were excluded). The core-gene phylogenetic tree constructed from the 384 L. rhamnosus genomes comprised five phylogenetic branches, with a random distribution of dairy and gut-associated isolates/genomes across the tree. No significant difference was identified in the overall profile of metabolism-related genes between dairy and gut-associated genomes; however, notably, the gut-associated strains/isolates contained more genes coding for specific metabolic pathways and carbohydrate-active enzymes, e.g., lacto-N-biosidase (EC 3.2.1.140; GT20) and lacto-N-biose phosphorylase/galacto-N-biose phosphorylase (EC 2.4.1.211; GH112). Further, we found that there was obvious intra-species diversification of the 93 cheese-originated L. rhamnosus isolates, forming three clades (Clades A, B, and C) in the reconstructed core-gene phylogenetic tree. There were numerous single nucleotide variations (over 10,000) across the three clades. Moreover, significant differences were observed in the content of metabolism-related genes across clades (p < 0.05, Adonis test), characterized by the enrichment in glycoside hydrolases in Clade C and the possession of unique metabolic pathways in each clade. These results implicated genomics/functional diversification of L. rhamnosus in a single food matrix and niche-driven adaptive evolution of isolates from dairy and host gut-associated origins. Our study shed insights into the selection of candidate strains for food industry applications.
Collapse
Affiliation(s)
- Lijun You
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ruirui Lv
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhixin Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
3
|
Doar NW, Samuthiram SD. Qualitative Analysis of the Efficacy of Probiotic Strains in the Prevention of Antibiotic-Associated Diarrhea. Cureus 2023; 15:e40261. [PMID: 37440799 PMCID: PMC10335840 DOI: 10.7759/cureus.40261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/15/2023] Open
Abstract
Antibiotic-associated diarrhea is often managed by the withdrawal of the culprit antibiotics or the administration of alternative antibiotics when a Clostridium difficile infection (CDI) is suspected, an infection that tends to be the most common causative agent of the disease. Probiotics are also gaining popularity as alternative therapies, and it was hypothesized in this article that a Lactobacillus strain is the most efficacious probiotic for the prevention of antibiotic-associated diarrhea. This article conducted a literature review investigating the relative efficacy of the Lactobacillus, Bifidobacterium, and Saccharomyces probiotic strains as effective alternative therapies for antibiotic-associated diarrhea. The literature searched was from the PubMed database. The inclusion filters were: random control trials (RCTs), clinical trials, meta-analysis, last 10 years, full-text articles available in English, and all articles published in peer-reviewed journals. All three probiotic genera had strains that demonstrated significant efficacy in the prevention of antibiotic-associated diarrhea. However, Saccharomyces boulardii I-745 tends to outperform all the strains as the most effective and the one with the fewest, if any, adverse effects. Whenever probiotics are considered for the prevention of antibiotic-associated diarrhea (AAD) in both pediatric and adult patients, S. boulardii I-745 should probably be prioritized.
Collapse
Affiliation(s)
- Nyier W Doar
- Medicine, Interfaith Medical Center, New York, USA
| | | |
Collapse
|
4
|
Łukasik J, Dierikx T, Besseling-van der Vaart I, de Meij T, Szajewska H. Multispecies Probiotic for the Prevention of Antibiotic-Associated Diarrhea in Children: A Randomized Clinical Trial. JAMA Pediatr 2022; 176:860-866. [PMID: 35727573 PMCID: PMC9214631 DOI: 10.1001/jamapediatrics.2022.1973] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE The efficacy of multispecies probiotic formulations in the prevention of antibiotic-associated diarrhea (AAD) remains unclear. OBJECTIVE To assess the effect of a multispecies probiotic on the risk of AAD in children. DESIGN, SETTING, AND PARTICIPANTS This randomized, quadruple-blind, placebo-controlled trial was conducted from February 2018 to May 2021 in a multicenter, mixed setting (inpatients and outpatients). Patients were followed up throughout the intervention period. Eligibility criteria included age 3 months to 18 years, recruitment within 24 hours following initiation of broad-spectrum systemic antibiotics, and signed informed consent. In total, 646 eligible patients were approached and 350 patients took part in the trial. INTERVENTIONS A multispecies probiotic consisting of Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Lactobacillus acidophilus W37, L acidophilus W55, Lacticaseibacillus paracasei W20, Lactiplantibacillus plantarum W62, Lacticaseibacillus rhamnosus W71, and Ligilactobacillus salivarius W24, for a total dose of 10 billion colony-forming units daily, for the duration of antibiotic treatment and for 7 days after. MAIN OUTCOMES AND MEASURES The primary outcome was AAD, defined as 3 or more loose or watery stools per day in a 24-hour period, caused either by Clostridioides difficile or of otherwise unexplained etiology, after testing for common diarrheal pathogens. The secondary outcomes included diarrhea regardless of the etiology, diarrhea duration, and predefined diarrhea complications. RESULTS A total of 350 children (192 boys and 158 girls; mean [range] age, 50 [3-212] months) were randomized and 313 were included in the intention-to-treat analysis. Compared with placebo (n = 155), the probiotic (n = 158) had no effect on risk of AAD (relative risk [RR], 0.81; 95% CI, 0.49-1.33). However, children in the probiotic group had a lower risk of diarrhea regardless of the etiology (RR, 0.65; 95% CI, 0.44-0.94). No differences were observed between the groups for most of the secondary outcomes, including adverse events. CONCLUSIONS AND RELEVANCE A multispecies probiotic did not reduce the risk of AAD in children when analyzed according to the most stringent definition. However, it reduced the overall risk of diarrhea during and for 7 days after antibiotic treatment. Our study also shows that the AAD definition has a significant effect on clinical trial results and their interpretation. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03334604.
Collapse
Affiliation(s)
- Jan Łukasik
- Department of Pediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Thomas Dierikx
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, the Netherlands
| | | | - Tim de Meij
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, the Netherlands
| | - Hania Szajewska
- Department of Pediatrics, The Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
5
|
Wu Y, Nie C, Xu C, Luo R, Chen H, Niu J, Bai X, Zhang W. Effects of dietary supplementation with multispecies probiotics on intestinal epithelial development and growth performance of neonatal calves challenged with Escherichia coli K99. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4373-4383. [PMID: 35066866 PMCID: PMC9303730 DOI: 10.1002/jsfa.11791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Probiotics exhibit antibiotic properties and are capable of treating certain bacterial infections, including diarrhea. Therefore, the aim of this study is to investigate the effects of dietary supplementation with multispecies probiotic (MSP) on diarrhea, average daily gain (ADG) and intestinal development of neonatal calves challenged with Escherichia coli K99. RESULTS Thirty-six neonatal Holstein calves were randomly assigned to three treatment groups. After E. coli K99 challenge, calves in the control (C) and MSP treatment groups had significantly higher ADG and feed efficiency, and significantly lower fecal scores than those of calves in the diarrhea (D) group. The mean time of diarrhea resolution was 4.5 and 3.1 days for calves in the D and MSP treatment groups, respectively. Furthermore, the structures of the various segments (duodenum, jejunum and ileum) of the small intestine of the calves, activities of several small intestinal enzymes, and expression of several energy metabolism-related genes in the small intestine segments were significantly affected by MSP treatments. CONCLUSION Dietary supplementation of MSP had a positive effect in treating calf diarrhea; it improved ADG and feed efficiency and promoted development of the small intestine. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan‐yan Wu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Cun‐xi Nie
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Chunsheng Xu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Rui‐qing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co. LtdShiheziChina
| | - Hong‐li Chen
- Xinjiang Tianshan Junken Animal Husbandry Co. LtdShiheziChina
| | - Jun‐li Niu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Xue Bai
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Wenju Zhang
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| |
Collapse
|
6
|
Wu Y, Wang L, Luo R, Chen H, Nie C, Niu J, Chen C, Xu Y, Li X, Zhang W. Effect of a Multispecies Probiotic Mixture on the Growth and Incidence of Diarrhea, Immune Function, and Fecal Microbiota of Pre-weaning Dairy Calves. Front Microbiol 2021; 12:681014. [PMID: 34335503 PMCID: PMC8318002 DOI: 10.3389/fmicb.2021.681014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The effects of different doses of a multispecies probiotic (MSP) mixture on growth performance, the incidence of diarrhea rate and immune function, and fecal microbial diversity and structure were evaluated in pre-weaning Holstein dairy calves at WK2, WK4, WK6, and WK8. Forty Chinese Holstein female newborn calves were randomly assigned to four treatments with 10 calves in each group, C (control group), T1 (0.5 g MSP/calf/day, T2 (1 g MSP/calf/day), and T3 (2 g MSP/calf/day) groups. The experimental period was 56 days. Feed intake and health scoring were recorded every day until the end of the experiment. Fecal contents and blood samples were sampled at WK2, WK4, WK6, and WK8. Growth performance, incidence of diarrhea, and total serum concentrations (IgA, IgG, and IgM) were analyzed. Bacterial 16S rRNA and fungal ITS genes were high-throughput sequenced for fecal microbiota. The relationships among the populations of the principal fecal microbiota at WK2 and the growth performance or serum immunoglobulin concentrations were analyzed using Pearson's rank correlation coefficients. The MSP supplementation reduced the incidence of diarrhea in the first 4 weeks of life, and serum IgA, IgG, and IgM concentrations increased between WK2 and WK8 in the T3 group. There was an increase in growth performance and reduction in the incidence of diarrhea until WK4 after birth in T3 group, compared with the control, T1, and T2 groups. The results of fecal microbiota analysis showed that Firmicutes and Bacteroides were the predominant phyla, with Blautia, Ruminococcaceae_UCG-005, norank_f__Muribaculaceae, Bacteroides, Subdoligranulum, and Bifidobacterium being the dominant genera in calf feces. Aspergillus, Thermomyces, and Saccharomyces were the predominant fungal phyla. Compared with the control, in T1 and T2 groups, the MSP supplementation reduced the relative abundance of Bacteroidetes and increased the relative abundance of Bifidobacterium, Lactobacillus, Collinsella, and Saccharomyces at WK2 in group T3. Thus, the fecal microbial composition and diversity was significantly affected by the MSP mixture during the first 2 weeks of the calves' life. MSP mixtures reduced the incidence of diarrhea in pre-weaning calves (during the first 4 weeks of life). There was a significant improvement in growth performance, reduction in calf diarrhea, balance in the fecal microbiota, and an overall improvement in serum immunity, compared with the control group. We, therefore, recommend adding 2 g/day of multispecies probiotic mixture supplementation in diets of dairy calves during their first 4 weeks of life before weaning.
Collapse
Affiliation(s)
- Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Hongli Chen
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wenjun Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
López-Moreno A, Suárez A, Avanzi C, Monteoliva-Sánchez M, Aguilera M. Probiotic Strains and Intervention Total Doses for Modulating Obesity-Related Microbiota Dysbiosis: A Systematic Review and Meta-analysis. Nutrients 2020; 12:E1921. [PMID: 32610476 PMCID: PMC7400323 DOI: 10.3390/nu12071921] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing health threat worldwide. Administration of probiotics in obesity has also parallelly increased but without any protocolization. We conducted a systematic review exploring the administration pattern of probiotic strains and effective doses for obesity-related disorders according to their capacity of positively modulating key biomarkers and microbiota dysbiosis. Manuscripts targeting probiotic strains and doses administered for obesity-related disorders in clinical studies were sought. MEDLINE, Scopus, Web of Science, and Cochrane Library databases were searched using keywords during the last fifteen years up to April 2020. Two independent reviewers screened titles, abstracts, and then full-text papers against inclusion criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. From 549 interventional reports identified, we filtered 171 eligible studies, from which 24 full-text assays were used for calculating intervention total doses (ITD) of specific species and strains administered. Nine of these reports were excluded in the second-step because no specific data on gut microbiota modulation was found. Six clinical trials (CT) and 9 animal clinical studies were retained for analysis of complete outcome prioritized (body mass index (BMI), adiposity parameters, glucose, and plasma lipid biomarkers, and gut hormones). Lactobacillus spp. administered were double compared to Bifidobacterium spp.; Lactobacillus as single or multispecies formulations whereas most Bifidobacteria only through multispecies supplementations. Differential factors were estimated from obese populations' vs. obesity-induced animals: ITD ratio of 2 × 106 CFU and patterns of administrations of 11.3 weeks to 5.5 weeks, respectively. Estimation of overall probiotics impact from selected CT was performed through a random-effects model to pool effect sizes. Comparisons showed a positive association between the probiotics group vs. placebo on the reduction of BMI, total cholesterol, leptin, and adiponectin. Moreover, negative estimation appeared for glucose (FPG) and CRP. While clinical trials including data for positive modulatory microbiota capacities suggested that high doses of common single and multispecies of Lactobacillus and Bifidobacterium ameliorated key obesity-related parameters, the major limitation was the high variability between studies and lack of standardized protocols. Efforts in solving this problem and searching for next-generation probiotics for obesity-related diseases would highly improve the rational use of probiotics.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Antonio Suárez
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Camila Avanzi
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (M.M.-S.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada Armilla, 18016 Granada, Spain;
- IBS: Instituto de Investigación Biosanitaria ibs., 18012 Granada, Spain
| |
Collapse
|
8
|
Faber WXM, Nachtegaal J, Stolwijk-Swuste JM, Achterberg-Warmer WJ, Koning CJM, Besseling-van der Vaart I, van Bennekom CAM. Study protocol of a double-blind randomised placebo-controlled trial on the effect of a multispecies probiotic on the incidence of antibiotic-associated diarrhoea in persons with spinal cord injury. Spinal Cord 2020; 58:149-156. [PMID: 31712614 PMCID: PMC7223836 DOI: 10.1038/s41393-019-0369-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022]
Abstract
STUDY DESIGN Multi-centre, double-blind randomised placebo-controlled study. OBJECTIVE To investigate whether the use of a multispecies probiotic can prevent antibiotic-associated diarrhoea in people with spinal cord injury (SCI). SETTING Three Dutch SCI rehabilitation centres. METHODS Fifty-six people aged 18-75 years with SCI during inpatient rehabilitation, who require antibiotics, will be given probiotics or placebo randomly assigned (T0). After cessation of the antibiotics (T1), the participants will use probiotics/placebo for 3 more weeks (T2). Defaecation, assessed by the Bristol Stool Scale, and bowel management will be monitored daily until 2 weeks after cessation of probiotics/placebo intake (T3). Also, the degree of nausea and information on quality of life will be collected at T0, T1, T2 and T3. MAIN OUTCOME MEASURES The difference between the incidence of antibiotic-associated diarrhoea between people with SCI using probiotics compared to those using a placebo at the moment the antibiotics stops, the probiotics stops and two weeks thereafter. SECONDARY OUTCOME MEASURES The time to reach effective bowel management, degree of nausea and quality of life. REGISTRATION The Dutch Trial Register- NTR 5831.
Collapse
Affiliation(s)
- W X M Faber
- Heliomare Rehabilitation Center, Wijk aan Zee, The Netherlands.
| | - J Nachtegaal
- Department of Research & Development, Heliomare Rehabilitation Center, Wijk aan Zee, The Netherlands
| | - J M Stolwijk-Swuste
- Center of Excellence for Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht University, Utrecht, the Netherlands
| | | | - C J M Koning
- Winclove Probiotics B.V, Amsterdam, The Netherlands
| | | | - C A M van Bennekom
- Heliomare Rehabilitation Center, Wijk aan Zee, The Netherlands
- Department of Research & Development, Heliomare Rehabilitation Center, Wijk aan Zee, The Netherlands
| |
Collapse
|
9
|
Sotoudegan F, Daniali M, Hassani S, Nikfar S, Abdollahi M. Reappraisal of probiotics’ safety in human. Food Chem Toxicol 2019; 129:22-29. [DOI: 10.1016/j.fct.2019.04.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
|
10
|
Puga AM, Lopez-Oliva S, Trives C, Partearroyo T, Varela-Moreiras G. Effects of Drugs and Excipients on Hydration Status. Nutrients 2019; 11:nu11030669. [PMID: 30897748 PMCID: PMC6470661 DOI: 10.3390/nu11030669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Despite being the most essential nutrient, water is commonly forgotten in the fields of pharmacy and nutrition. Hydration status is determined by water balance (the difference between water input and output). Hypohydration or negative water balance is affected by numerous factors, either internal (i.e., a lack of thirst sensation) or external (e.g., polypharmacy or chronic consumption of certain drugs). However, to date, research on the interaction between hydration status and drugs/excipients has been scarce. Drugs may trigger the appearance of hypohydration by means of the increase of water elimination through either diarrhea, urine or sweat; a decrease in thirst sensation or appetite; or the alteration of central thermoregulation. On the other hand, pharmaceutical excipients induce alterations in hydration status by decreasing the gastrointestinal transit time or increasing the gastrointestinal tract rate or intestinal permeability. In the present review, we evaluate studies that focus on the effects of drugs/excipients on hydration status. These studies support the aim of monitoring the hydration status in patients, mainly in those population segments with a higher risk, to avoid complications and associated pathologies, which are key axes in both pharmaceutical care and the field of nutrition.
Collapse
Affiliation(s)
- Ana M Puga
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - Sara Lopez-Oliva
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - Carmen Trives
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - Teresa Partearroyo
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - Gregorio Varela-Moreiras
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
- Spanish Nutrition Foundation (FEN), 28010 Madrid, Spain.
| |
Collapse
|